For a non-negative-integer-valued random variable T, the generating function of T is the expected value of s^T as a function of s

$$G(s) = \mathsf{E}[s^{\mathsf{T}}] = \sum_{k=0}^{\infty} s^{k} \mathsf{P}(\mathsf{T} = k),$$

in which s^{T} is defined as 0 if $T = \infty$. Since $0 \le P(T = k) \le 1$, the generating function is always defined for $-1 \le s \le 1$

Examples of Generating Functions

If T has a geometric distribution: P(T = k) = p(1 − p)^k, k = 0, 1, 2, ..., the generating function of T is

$$G(s) = \sum_{k=0}^{\infty} s^{k} P(T = k) = \sum_{k=0}^{\infty} s^{k} p(1-p)^{k} = \frac{p}{1-(1-p)s}$$

▶ If T has a Binomial distribution $P(T = k) = \binom{n}{k} p^k (1-p)^{n-k}$, k = 0, 1, 2, ..., n, the generating function of T is

$$G(s) = \sum_{k=0}^{\infty} s^{k} P(T = k) = \sum_{k=0}^{\infty} s^{k} {n \choose k} p^{k} (1-p)^{n-k}$$
$$= (ps + (1-p))^{n}$$

Properties of Generating Function

$$G(s) = \mathsf{E}[s^T] = \sum_{k=0}^{\infty} s^k \mathrm{P}(T=k)$$

• G(s) is a power series converging absolutely for all $-1 \le s \le 1$. since $0 \le P(T = k) \le 1$ and $\sum_k P(T = k) \le 1$.

•
$$G(1) = P(T < \infty) \begin{cases} = 1 & \text{if } T \text{ is finite w/ prob. 1} \\ < 1 & \text{otherwise} \end{cases}$$

111

►
$$P(T = k) = \frac{G^{(k)}(0)}{k!}$$

Knowing $G(s) \Leftrightarrow$ Knowing $P(T = k)$ for all $k = 0, 1, 2, ...$

More Properties of Generating Functions

$$G(s) = \mathsf{E}[s^{\mathsf{T}}] = \sum_{k=0}^{\infty} s^k \mathrm{P}(\mathsf{T} = k)$$

• $E[T] = \lim_{s \to 1^{-}} G'(s)$ if it exists because

$$G'(s) = \frac{d}{ds} \mathsf{E}[s^{\mathsf{T}}] = \mathsf{E}[\mathsf{T}s^{\mathsf{T}-1}] = \sum_{k=1}^{\infty} s^{k-1} k \mathsf{P}(\mathsf{T}=k).$$

•
$$E[T(T-1)] = \lim_{s \to 1^{-}} G''(s)$$
 if it exists because
 $G''(s) = E[T(T-1)s^{T-2}] = \sum_{k=2}^{\infty} s^{k-2}k(k-1)P(T=k)$

▶ If *T* and *U* are **independent** non-negative-integer-valued random variables, with generating function $G_T(s)$ and $G_U(s)$ respectively, then the generating function of T + U is

$$G_{T+U}(s) = \mathsf{E}[s^{T+U}] = \mathsf{E}[s^T]\mathsf{E}[s^U] = G_T(s)G_U(s)$$

4.5.3 Random Walk w/ Reflective Boundary at 0

•
$$P_{01} = 1, P_{i,i+1} = p, P_{i,i-1} = 1 - p = q, \text{ for } i = 1, 2, 3...$$

- Only one class, irreducible
- ▶ For i < j, define</p>

$$N_{ij} = \min\{m > 0 : X_m = j | X_0 = i\}$$

= time to reach state *j* starting in state *i*

 Observe that N_{0n} = N₀₁ + N₁₂ + ... + N_{n-1,n} By the Markov property, N₀₁, N₁₂,..., N_{n-1,n} are indep.
 Given X₀ = i

$$N_{i,i+1} = \begin{cases} 1 & \text{if } X_1 = i+1\\ 1 + N_{i-1,i}^* + N_{i,i+1}^* & \text{if } X_1 = i-1 \end{cases}$$
(1)

where $N_{i-1,i}^* \sim N_{i-1,i}$, $N_{i,i+1}^* \sim N_{i,i+1}$, and $N_{i-1,i}^*$, $N_{i,i+1}^*$ are indep.

Generating Function of $N_{i,i+1}$

Let $G_i(s)$ be the generating function of $N_{i,i+1}$. From (1), and by the independence of $N_{i-1,i}^*$ and $N_{i,i+1}^*$, we get that

$$G_i(s) = ps + q\mathsf{E}[s^{1+N^*_{i-1,i}+N^*_{i,i+1}}] = ps + qsG_{i-1}(s)G_i(s)$$

So

$$G_i(s) = \frac{ps}{1 - qsG_{i-1}(s)} \tag{2}$$

 \sim

 \sim

Since N_{01} is always 1, we have $G_0(s) = s$. Using the iterative relation (2), we can find

$$G_{1}(s) = \frac{ps}{1 - qs} = \frac{ps}{1 - qs} = ps \sum_{k=0}^{\infty} (qs^{2})^{k} = \sum_{k=0}^{\infty} pq^{k}s^{2k+1}$$

So $P(N_{12} = n) = \begin{cases} pq^{k} & \text{if } n = 2k+1 \text{ for } k = 0, 1, 2... \\ 0 & \text{if } n \text{ is even} \end{cases}$

Similarly,

$$\begin{aligned} G_2(s) &= \frac{ps}{1 - qsG_1(s)} = \frac{ps(1 - qs^2)}{1 - q(1 + p)s^2} \\ &= \frac{ps}{1 - q(1 + p)s^2} - \frac{pqs^3}{1 - q(1 + p)s^2} \\ &= ps\sum_{k=0}^{\infty} (q(1 + p)s^2)^k - pqs^3\sum_{k=0}^{\infty} (q(1 + p)s^2)^k \\ &= \sum_{k=0}^{\infty} pq^k(1 + p)^k s^{2k+1} - \sum_{k=0}^{\infty} pq^{k+1}(1 + p)^k s^{2k+3} \\ &= ps + \sum_{k=1}^{\infty} pq^k [(1 + p)^k - (1 + p)^{k-1}]s^{2k+1} \\ &= ps + \sum_{k=1}^{\infty} p^2 q^k (1 + p)^{k-1} s^{2k+1} \end{aligned}$$

So

$$P(N_{23} = n) = \begin{cases} p & \text{if } n = 1\\ p^2 q^k (1+p)^{k-1} & \text{if } n = 2k+1 \text{ for } k = 1, 2, \dots\\ 0 & \text{if } n \text{ is even} \end{cases}$$

Mean of $N_{i,i+1}$

Recall that $G'_i(1) = E(N_{i,i+1})$. Let $m_i = E(N_{i,i+1}) = G'_i(1)$.

$$\begin{split} G_i'(s) &= \frac{p(1-qsG_{i-1}(s)) + ps(qG_{i-1}(s) + qsG_{i-1}'(s))}{(1-qsG_{i-1}(s))^2} \\ &= \frac{p+pqs^2G_{i-1}'(s)}{(1-qsG_{i-1}(s))^2} \end{split}$$

Since $N_{i,i+1} < \infty$, $G_i(1) = 1$ for all $i = 0, 1, \ldots, n-1$. We have

$$m_i = G_i'(1) = rac{p + pqG_{i-1}'(1)}{(1-q)^2} = rac{1 + qG_{i-1}'(1)}{p} = rac{1}{p} + rac{q}{p}m_{i-1}$$

We get the same iterative equation as in Lecture 7.

4.7 Branching Processes Revisit

Recall a Branching Process is a population of individuals in which

- all individuals have the same lifespan, and
- each individual will produce a random number of offsprings at the end of its life

Let X_n = size of the *n*th generation, n = 0, 1, 2, ... Let $Z_{n,i} = #$ of offsprings produced by the *i*th individuals in the *n*th generation. Then

$$X_{n+1} = \sum_{i=1}^{X_n} Z_{n,i}$$
(3)

Suppose $Z_{n,i}$'s are i.i.d with probability mass function

$$P(Z_{n,i}=j)=P_j, \ j\geq 0.$$

We suppose the non-trivial case that $P_j < 1$ for all $j \ge 0$. $\{X_n\}$ is a Markov chain with state space = $\{0, 1, 2, ...\}$.

Generating Functions of the Branching Processes

Let $g(s) = E[s^{Z_{n,i}}] = \sum_{k=0}^{\infty} P_k s^k$ be the generating function of $Z_{n,i}$, and $G_n(s)$ be the generating function of X_n , n = 0, 1, 2, ...Then $\{G_n(s)\}$ satisfies the following two iterative equations.

(i)
$$G_{n+1}(s) = G_n(g(s))$$
 for $n = 0, 1, 2, ...$
(ii) $G_{n+1}(s) = g(G_n(s))$ if $X_0 = 1$, for $n = 0, 1, 2, ...$
Proof of (i).
 $E[s^{X_{n+1}}|X_n] = E\left[s^{\sum_{i=1}^{X_n} Z_{n,i}}\right] = E\left[\prod_{i=1}^{X_n} s^{Z_{n,i}}\right]$
 $= \prod_{i=1}^{X_n} E[s^{Z_{n,i}}]$ by indep. of $Z_{n,i}$'s
 $= \prod_{i=1}^{X_n} g(s)$ as $g(s) = E[s^{Z_{n,i}}]$
 $= g(s)^{X_n}$

From which, we have

$$G_{n+1}(s) = \mathsf{E}[s^{X_{n+1}}] = \mathsf{E}[\mathsf{E}[s^{X_{n+1}}|X_n]] = \mathsf{E}[g(s)^{X_n}] = G_n(g(s))$$

since $G_n(s) = \mathsf{E}[s^{X_n}]$.
Lecture 8 - 10

Proof of (ii) $G_{n+1}(s) = g(G_n(s))$ if $X_0 = 1$

Suppose there are k individuals in the first generation $(X_1 = k)$. Let Y_i be the number offspring of the *i*th individual in the first generation in the (n + 1)st generation. Obviously,

$$X_{n+1}=Y_1+\ldots+Y_k.$$

Observe Y_1, \ldots, Y_k 's are indep and each has the same distn. as X_n since they are all the size of the *n*th generation of a single ancestor. Thus, by ndep. of Y_i 's

$$E[s^{X_{n+1}}|X_1 = k] = E[s^{Y_1 + \dots + Y_k}] = E\left[\prod_{i=1}^k s^{Y_i}\right] = \prod_{i=1}^k E[s^{Y_i}]$$

Since Y_i 's have the same dist'n as X_n and $G_n(s) = E[s^{X_n}]$, we have

$$\mathsf{E}[s^{X_{n+1}}|X_1=k] = \prod_{i=1}^k G_n(s) = (G_n(s))^k$$

Since $X_0 = 1$, $X_1 = Z_{1,1}$, and hence $P(X_1 = k) = P_k$.

$$G_{n+1}(s) = \mathsf{E}[s^{X_{n+1}}] = \sum_{k=0}^{\infty} \mathsf{E}[s^{X_{n+1}}|X_1 = k] P_k = \sum_{k=0}^{\infty} (G_n(s))^k P_k = g(G_n(s)),$$

where the last equality comes from that $g(s) = \sum_{k=0}^{\infty} P_k s^k$. Lecture 8 - 11

Example

Suppose $X_0 = 1$, and $(P_0, P_1, P_2) = (1/4, 1/2, 1/4)$. Find the distribution of X_2 . Sol. $g(s) = \frac{1}{4}s^0 + \frac{1}{2}s^1 + \frac{1}{4}s^2 = (1+s)^2/4.$ Since $X_0 = 1$, $G_0(s) = E[s^{X_0}] = E[s^1] = s$. From (i) we have $G_1(s) = G_0(g(s)) = g(s) = (1+s)^2/4$ $G_2(s) = G_1(g(s)) = rac{1}{4}(1+rac{1}{4}(1+s)^2)^2 = rac{1}{64}(5+2s+s^2)^2$ $=\frac{1}{64}(25+20s+14s^2+4s^3+s^4)=\sum_{k=1}^{\infty} P(X_2=k)s^k$

Extinction Probability of a Branching Process

Let
$$\pi_0 = \lim_{n \to \infty} P(X_n = 0 | X_0 = 1)$$

= P(the population will eventually die out| $X_0 = 1$)
As $G_n(s) = E[s^{X_n}] = \sum_{k=0}^{\infty} P(X_n = k) s^k$, plugging in $s = 0$, we get

 $G_n(0) = P(X_n = 0) = P(\text{extinct by the } n\text{th generation}).$

Recall that if $X_0 = 1$, $G_1(s) = g(s)$, and $G_{n+1}(s) = g(G_n(s))$. We can compute $G_n(0)$ iteratively as follows

$$G_1(0) = g(0)$$

 $G_{n+1}(0) = g(G_n(0)), \quad n = 1, 2, 3, ...$

Finally, we can get the extinction probability by taking the limit

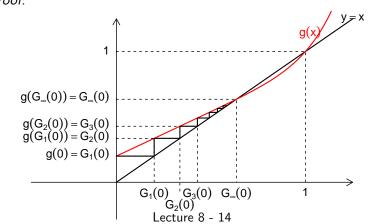
$$\pi_0=\lim_{n\to\infty}G_n(0).$$

Extinction Probability of a Branching Process

If $X_0 = 1$, the extinction probability π_0 is a **smallest root** of the equation

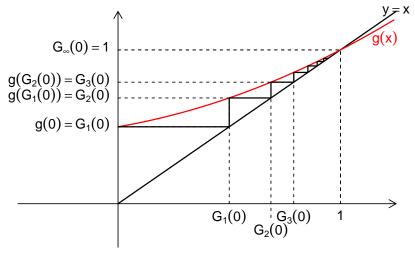
$$g(s) = s \tag{4}$$

in the range 0 < s < 1, where $g(s) = \sum_{k=0}^{\infty} P_k s^k$ is the generating function of $Z_{n,i}$. *Proof.*



A Branching Process Will Become Extinct If $\mu \leq 1$

Let $\mu = E[Z_{n,i}] = \sum_{j=0}^{\infty} jP_j$. If $\mu \le 1$, the extinction probability π_0 is 1 unless $P_1 = 1$. *Proof.*



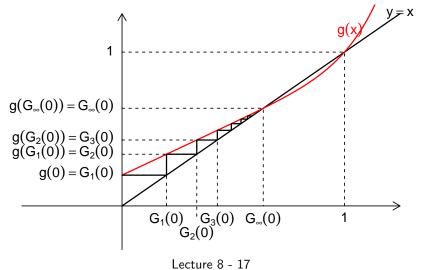
Formal Proof

Let
$$h(s) = g(s) - s$$
. Since $g(1) = 1$, $g'(1) = \mu$,
 $h(1) = g(1) - 1 = 0$,
 $h'(s) = \left(\sum_{j=1}^{\infty} jP_j s^{j-1}\right) - 1 \le \left(\sum_{j=1}^{\infty} jP_j\right) - 1 = \mu - 1$ for $0 \le s < 1$

Thus
$$\mu \leq 1 \Rightarrow h'(s) \leq 0$$
 for $0 \leq s < 1$
 $\Rightarrow h(s)$ is non-increasing in $[0, 1)$
 $\Rightarrow h(s) > h(1) = 0$ for $0 \leq s < 1$
 $\Rightarrow g(s) > s$ for $0 \leq s < 1$
 \Rightarrow There is no root in $[0,1)$.

Extinction Probability When $\mu > 1$

If $\mu > 1$, there is a unique root of the equation g(s) = s in the domain [0, 1), and that is the extinction probability. *Proof.*



Formal Proof

Let
$$h(s) = g(s) - s$$
. Observe that
 $h(0) = g(0) = P_0 > 0$
 $h'(0) = g'(0) - 1 = P_1 - 1 < 0$
Then $\mu > 1 \Rightarrow h'(1) = \mu - 1 > 0$
 $\Rightarrow h(s)$ is increasing near 1
 $\Rightarrow h(1 - \delta) < h(1) = 0$ for $\delta > 0$ small enough

Since h(s) is continuous in [0, 1), there must be a root to h(s) = s. The root is unique since

$$h''(s) = g''(s) = \sum_{j=2}^{\infty} j(j-1)P_j s^{j-2} \ge 0 \quad ext{for } 0 \le s < 1$$

h(s) is convex in [0,1).