STAT253/317 Lecture 7

Yibi Huang

- Using the Recursive Relations of Markov Chains
4.5.3 Random Walk w/ Reflective Boundary at 0
4.7 Branching Processes

Lecture 7-1

Using the Recursive Relations of Markov Chains

Consecutive terms in many Markov chains $\left\{X_{n}\right\}$ often have some recursive relations like

$$
X_{n+1}=g\left(X_{n}, \xi_{n+1}\right) \quad \text { for all } n
$$

where $\left\{\xi_{n}, n=0,1,2, \ldots\right\}$ are some i.i.d. random variables and X_{n} is independent of $\left\{\xi_{k}: k>n\right\}$.
In many cases, we can use the recursive relationship to find $\mathbb{E}\left[X_{n}\right]$ and $\operatorname{Var}\left[X_{n}\right]$ without knowing the distribution of X_{n}.

$$
\begin{aligned}
\mathbb{E}\left[X_{n+1}\right] & =\mathbb{E}\left[\mathbb{E}\left[X_{n+1} \mid X_{n}\right]\right] \\
\operatorname{Var}\left(X_{n+1}\right) & =\mathbb{E}\left[\operatorname{Var}\left(X_{n+1} \mid X_{n}\right)\right]+\operatorname{Var}\left(\mathbb{E}\left[X_{n+1} \mid X_{n}\right]\right)
\end{aligned}
$$

Example 1: Simple Random Walk

$$
x_{n+1}= \begin{cases}x_{n}+1 & \text { with prob } p \\ x_{n}-1 & \text { with prob } q=1-p\end{cases}
$$

So

$$
\begin{aligned}
\mathbb{E}\left[X_{n+1} \mid X_{n}\right] & =p\left(X_{n}+1\right)+q\left(X_{n}-1\right)=X_{n}+p-q \\
\operatorname{Var}\left[X_{n+1} \mid X_{n}\right] & =4 p q
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathbb{E}\left[X_{n+1}\right] & =\mathbb{E}\left[\mathbb{E}\left[X_{n+1} \mid X_{n}\right]\right]=\mathbb{E}\left[X_{n}\right]+p-q \\
\operatorname{Var}\left(X_{n+1}\right) & =\mathbb{E}\left[\operatorname{Var}\left(X_{n+1} \mid X_{n}\right)\right]+\operatorname{Var}\left(\mathbb{E}\left[X_{n+1} \mid X_{n}\right]\right) \\
& =\mathbb{E}[4 p q]+\operatorname{Var}\left(X_{n}+p-q\right)=4 p q+\operatorname{Var}\left(X_{n}\right)
\end{aligned}
$$

So

$$
\mathbb{E}\left[X_{n}\right]=n(p-q)+\mathbb{E}\left[X_{0}\right], \quad \operatorname{Var}\left(X_{n}\right)=4 n p q+\operatorname{Var}\left(X_{0}\right)
$$

Example 2: Ehrenfest Urn Model with M Balls

Recall that

$$
X_{n+1}= \begin{cases}X_{n}+1 & \text { with probability } \frac{M-X_{n}}{M} \\ X_{n}-1 & \text { with probability } \frac{X_{n}}{M}\end{cases}
$$

We have

$$
\mathbb{E}\left[X_{n+1} \mid X_{n}\right]=\left(X_{n}+1\right) \times \frac{M-X_{n}}{M}+\left(X_{n}-1\right) \times \frac{X_{n}}{M}=1+\left(1-\frac{2}{M}\right) X_{n}
$$

Thus

$$
\mathbb{E}\left[X_{n+1}\right]=\mathbb{E}\left[\mathbb{E}\left[X_{n+1} \mid X_{n}\right]\right]=1+\left(1-\frac{2}{M}\right) \mathbb{E}\left[X_{n}\right]
$$

Subtracting $M / 2$ from both sides of the equation above, we get

$$
\mathbb{E}\left[X_{n+1}\right]-\frac{M}{2}=\left(1-\frac{2}{M}\right)\left(\mathbb{E}\left[X_{n}\right]-\frac{M}{2}\right)
$$

Thus

$$
\mathbb{E}\left[X_{n}\right]-\frac{M}{2}=\underset{\text { Lecture } 7-4}{\left(1-\frac{2}{M}\right)^{n}\left(\mathbb{E}\left[X_{0}\right]-\frac{M}{2}\right)}
$$

Variance of Ehrenfest Urn Model

$$
\mathbb{E}\left[X_{n+1} \mid X_{n}\right]=1+\left(1-\frac{2}{M}\right) X_{n}, \quad \operatorname{Var}\left(X_{n+1} \mid X_{n}\right)=\frac{4 X_{n}\left(M-X_{n}\right)}{M^{2}}
$$

and hence

$$
\begin{aligned}
\operatorname{Var}\left(\mathbb{E}\left[X_{n+1} \mid X_{n}\right]\right) & =\operatorname{Var}\left(1+\left(1-\frac{2}{M}\right) X_{n}\right)=\left(1-\frac{2}{M}\right)^{2} \operatorname{Var}\left(X_{n}\right) \\
\mathbb{E}\left[\operatorname{Var}\left(X_{n+1} \mid X_{n}\right)\right] & =\frac{4 \mathbb{E}\left[X_{n}\left(M-X_{n}\right)\right]}{M^{2}}=\frac{4}{M} \mathbb{E}\left[X_{n}\right]-\frac{4}{M^{2}} \mathbb{E}\left[X_{n}^{2}\right] \\
& =\frac{4}{M} \mathbb{E}\left[X_{n}\right]-\frac{4}{M^{2}}\left(\operatorname{Var}\left(X_{n}\right)+\left(\mathbb{E}\left[X_{n}\right]\right)^{2}\right) \\
& =-\frac{4}{M^{2}} \operatorname{Var}\left(X_{n}\right)+4 \frac{\mathbb{E}\left[X_{n}\right]}{M}\left(1-\frac{\mathbb{E}\left[X_{n}\right]}{M}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
\operatorname{Var}\left(X_{n+1}\right) & =\operatorname{Var}\left(\mathbb{E}\left[X_{n+1} \mid X_{n}\right]\right)+\mathbb{E}\left[\operatorname{Var}\left(X_{n+1} \mid X_{n}\right)\right] \\
& =\left(1-\frac{2}{M}\right)^{2} \operatorname{Var}\left(X_{n}\right)-\frac{4}{M^{2}} \operatorname{Var}\left(X_{n}\right)+4 \frac{\mathbb{E}\left[X_{n}\right]}{M}\left(1-\frac{\mathbb{E}\left[X_{n}\right]}{M}\right) \\
& =\left(1-\frac{4}{M}\right) \operatorname{Var}\left(X_{n}\right)+4 \frac{\mathbb{E}\left[X_{n}\right]}{M}\left(1-\frac{\mathbb{E}\left[X_{n}\right]}{M}\right)
\end{aligned}
$$

Recall $\mathbb{E}\left[X_{n}\right]=\frac{M}{2}+\left(1-\frac{2}{M}\right)^{n}\left(\mathbb{E}\left[X_{0}\right]-\frac{M}{2}\right)$. So

$$
\begin{aligned}
\frac{\mathbb{E}\left[X_{n}\right]}{M} & =\frac{1}{2}+\left(1-\frac{2}{M}\right)^{n}\left(\frac{\mathbb{E}\left[X_{0}\right]}{M}-\frac{1}{2}\right), \\
1-\frac{\mathbb{E}\left[X_{n}\right]}{M} & =\frac{1}{2}-\left(1-\frac{2}{M}\right)^{n}\left(\frac{\mathbb{E}\left[X_{0}\right]}{M}-\frac{1}{2}\right)
\end{aligned}
$$

and their product is

$$
\frac{\mathbb{E}\left[X_{n}\right]}{M}\left(1-\frac{\mathbb{E}\left[X_{n}\right]}{M}\right)=\frac{1}{4}-\left(1-\frac{2}{M}\right)^{2 n}\left(\frac{\mathbb{E}\left[X_{0}\right]}{M}-\frac{1}{2}\right)^{2}
$$

$$
\operatorname{Var}\left(X_{n+1}\right)=\left(1-\frac{4}{M}\right) \operatorname{Var}\left(X_{n}\right)+1-\left(1-\frac{2}{M}\right)^{2 n}\left(\frac{2 \mathbb{E}\left[X_{0}\right]}{M}-1\right)^{2}
$$

Subtracting $M / 4$ from both sides, we get

$$
\begin{aligned}
& \operatorname{Var}\left(X_{n+1}\right)-\frac{M}{4}=\left(1-\frac{4}{M}\right)\left(\operatorname{Var}\left(X_{n}\right)-\frac{M}{4}\right)-\left(1-\frac{2}{M}\right)^{2 n}\left(\frac{2 \mathbb{E}\left[X_{0}\right]}{M}-1\right)^{2} \\
& \sum_{n=0}^{\infty} v_{n+1} s^{n+1}=\sum_{n=0}^{\infty} a v_{n} s^{n+1}-c \sum_{n=0}^{\infty} b^{n} s^{n+1} \\
& g(s)-v_{0}=a s g(s)-\frac{c s}{1-b s} \\
&(1-a s) g(s)=v_{0}-\frac{c s}{1-b s} \\
& g(s)=\frac{v_{0}}{1-a s}-\frac{c s}{(1-b s)(1-a s)} \\
&=\frac{v_{0}}{1-a s}-\frac{c}{b-a}\left(\frac{1}{1-b s}-\frac{1}{1-a s}\right)
\end{aligned}
$$

Lecture 7-7

$$
b=\left(1-\frac{2}{M}\right)^{2}, a=1-4 / M, b-a=4 / M^{2} .
$$

$$
\begin{aligned}
g(s) & =\frac{v_{0}}{1-a s}-\frac{c}{b-a}\left(\frac{1}{1-b s}-\frac{1}{1-a s}\right) \\
& =\left(v_{0}+\frac{c}{b-a}\right) \frac{1}{1-a s}-\frac{c}{b-a} \frac{1}{1-b s} \\
& =\left(v_{0}+\frac{c}{b-a}\right) \sum_{n=0}^{\infty} a^{n} s^{n}-\frac{c}{b-a} \sum_{n=0}^{\infty} b^{n} s^{n}
\end{aligned}
$$

$$
\frac{c}{b-a}=\left(M^{2} / 4\right)\left(\frac{2 \mathbb{E}\left[X_{0}\right]}{M}-1\right)^{2}=\left(\mathbb{E}\left[X_{0}\right]-\frac{M}{2}\right)^{2} \text { So }
$$

$$
\operatorname{Var}\left(X_{n}\right)-\frac{M}{4}=\left(\operatorname{Var}\left(X_{0}\right)-\frac{M}{4}+\left(\mathbb{E}\left[X_{0}\right]-\frac{M}{2}\right)^{2}\right)\left(1-\frac{4}{M}\right)^{n}
$$

$$
-\underbrace{\left(\mathbb{E}\left[X_{0}\right]-\frac{M}{2}\right)^{2}\left(1-\frac{2}{M}\right)^{2 n}}_{=\left(\mathbb{E}\left[X_{n}\right]-M / 2\right)^{2}}
$$

Lecture 7-8

$$
\begin{aligned}
& \operatorname{Var}\left(X_{n}\right)-\frac{M}{4}+\left(\mathbb{E}\left[X_{n}\right]-\frac{M}{2}\right)^{2} \\
& =\mathbb{E}\left(X_{n}^{2}\right)-\left(\mathbb{E}\left[X_{n}\right]\right)^{2}-\frac{M}{4}+\left(\mathbb{E}\left[X_{n}\right]\right)^{2}-M \mathbb{E}\left[X_{n}\right]+\frac{M^{2}}{4} \\
& =\mathbb{E}\left(X_{n}^{2}\right)-\frac{M}{4}-M \mathbb{E}\left[X_{n}\right]+\frac{M^{2}}{4} \\
& =\mathbb{E}\left(X_{n}\left(X_{n}-M\right)\right)+\frac{M(M-1)}{4} \\
& X_{n+1}= \begin{cases}X_{n}+1 & \text { with probability } \frac{M-X_{n}}{M} \\
X_{n}-1 & \text { with probability } \frac{X_{n}}{M}\end{cases} \\
& X_{n+1}\left(X_{n+1}-M\right)= \begin{cases}\left(X_{n}+1\right)\left(X_{n}-M+1\right) & \text { w. p. } \frac{M-X_{n}}{M} \\
\left(X_{n}-1\right)\left(X_{n}-M-1\right) & \text { w. p. } \frac{X_{n}}{M}\end{cases} \\
& = \begin{cases}X_{n}\left(X_{n}-M\right)+1-M+2 X_{n} & \text { w. p. } \frac{M-X_{n}}{M} \\
X_{n}\left(X_{n}-M\right)+1+M-2 X_{n} & \text { w. p. } \frac{X_{n}}{M}\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}\left(X_{n+1}\left(X_{n+1}-M\right) \mid X_{n}\right) \\
= & X_{n}\left(X_{n}-M\right)+1-\left(2 X_{n}-M\right)^{2} / M \\
= & X_{n}\left(X_{n}-M\right)+1-\left(4 X_{n}^{2}-4 M X_{n}+M^{2}\right) / M \\
= & X_{n}\left(X_{n}-M\right)+1-4 X_{n}^{2} / M-4 X_{n}+M \\
= & X_{n}\left(X_{n}-M\right)+1-4 X_{n}\left(X_{n}-M\right) / M+M \\
= & X_{n}\left(X_{n}-M\right)(1-4 / M)+1+M
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left(X_{1}\right)-\frac{M}{4}= & \left(\operatorname{Var}\left(X_{0}\right)-\frac{M}{4}+\left(\mathbb{E}\left[X_{0}\right]-\frac{M}{2}\right)^{2}\right)\left(1-\frac{4}{M}\right) \\
& -\left(\mathbb{E}\left[X_{0}\right]-\frac{M}{2}\right)^{2}\left(1-\frac{2}{M}\right)^{2} \\
= & \left(\operatorname{Var}\left(X_{0}\right)-\frac{M}{4}\right)\left(1-\frac{4}{M}\right) \\
& +\left(\mathbb{E}\left[X_{0}\right]-\frac{M}{2}\right)^{2} \underbrace{\left(1-\frac{4}{M}-\left(1-\frac{2}{M}\right)^{2}\right)}_{=-4 / M^{2}} \\
= & \left(\operatorname{Var}\left(X_{0}\right)-\frac{M}{4}\right)\left(1-\frac{4}{M}\right)-\left(\frac{2 \mathbb{E}\left[X_{0}\right]}{M}-1\right)^{2}
\end{aligned}
$$

Example 3: Branching Processes (Section 4.7)

Consider a population of individuals.

- All individuals have the same lifetime
- Each individual will produce a random number of offsprings at the end of its life
Let $X_{n}=$ size of the n-th generation, $n=0,1,2, \ldots$.
If $X_{n-1}=k$, the k individuals in the $(n-1)$-th generation will independently produce $Z_{n, 1}, Z_{n, 2}, \ldots, Z_{n, k}$ new offsprings, and $Z_{n, 1}, Z_{n, 2}, \ldots, Z_{n, X_{n-1}}$ are i.i.d such that

$$
P\left(Z_{n, i}=j\right)=P_{j}, j \geq 0
$$

We suppose that $P_{j}<1$ for all $j \geq 0$.

$$
\begin{equation*}
X_{n}=\sum_{i=1}^{X_{n-1}} Z_{n, i} \tag{1}
\end{equation*}
$$

$\left\{X_{n}\right\}$ is a Markov chain with state space $=\{0,1,2, \ldots\}$.
Lecture 7-12

Mean of a Branching Process

Let $\mu=\mathbb{E}\left[Z_{n, i}\right]=\sum_{j=0}^{\infty} j P_{j}$ be the mean $\#$ of offsprings produced by an individual. Since $X_{n}=\sum_{i=1}^{X_{n-1}} Z_{n, i}$ and $Z_{n, i}$'s are i.i.d., we have

$$
\mathbb{E}\left[X_{n} \mid X_{n-1}\right]=\mathbb{E}\left[\sum_{i=1}^{X_{n-1}} Z_{n, i} \mid X_{n-1}\right]=X_{n-1} \mathbb{E}\left[Z_{n, i}\right]=X_{n-1} \mu
$$

So

$$
\mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[\mathbb{E}\left[X_{n} \mid X_{n-1}\right]\right]=\mathbb{E}\left[X_{n-1} \mu\right]=\mu \mathbb{E}\left[X_{n-1}\right]
$$

Then

$$
\mathbb{E}\left[X_{n}\right]=\mu \mathbb{E}\left[X_{n-1}\right]=\mu^{2} \mathbb{E}\left[X_{n-2}\right]=\ldots=\mu^{n} \mathbb{E}\left[X_{0}\right]
$$

- If $\mu<1 \Rightarrow \mathbb{E}\left[X_{n}\right] \rightarrow 0$ as $n \rightarrow \infty \Rightarrow \lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n} \geq 1\right)=0$ the branching processes will eventually die out.
- What if $\mu=1$ or $\mu>1$?

Variance of a Branching Process

Let $\sigma^{2}=\operatorname{Var}\left[Z_{n, i}\right]=\sum_{j=0}^{\infty}(j-\mu)^{2} P_{j} . \operatorname{Var}\left(X_{n}\right)$ may be obtained using the conditional variance formula

$$
\operatorname{Var}\left(X_{n}\right)=\mathbb{E}\left[\operatorname{Var}\left(X_{n} \mid X_{n-1}\right)\right]+\operatorname{Var}\left(\mathbb{E}\left[X_{n} \mid X_{n-1}\right]\right)
$$

Again from that $X_{n}=\sum_{i=1}^{X_{n-1}} Z_{n, i}$, we have

$$
\mathbb{E}\left[X_{n} \mid X_{n-1}\right]=X_{n-1} \mu, \quad \operatorname{Var}\left(X_{n} \mid X_{n-1}\right)=X_{n-1} \sigma^{2}
$$

and hence

$$
\begin{aligned}
& \operatorname{Var}\left(\mathbb{E}\left[X_{n} \mid X_{n-1}\right]\right)=\operatorname{Var}\left(X_{n-1} \mu\right)=\mu^{2} \operatorname{Var}\left(X_{n-1}\right) \\
& \mathbb{E}\left[\operatorname{Var}\left(X_{n} \mid X_{n-1}\right)\right]=\sigma^{2} \mathbb{E}\left[X_{n-1}\right]=\sigma^{2} \mu^{n-1} \mathbb{E}\left[X_{0}\right]
\end{aligned}
$$

Variance of a Branching Process

So

$$
\begin{aligned}
\operatorname{Var}\left(X_{n}\right)= & \sigma^{2} \mu^{n-1} \mathbb{E}\left[X_{0}\right]+\mu^{2} \operatorname{Var}\left(X_{n-1}\right) \\
= & \sigma^{2} \mu^{n-1} \mathbb{E}\left[X_{0}\right]+\mu^{2}\left(\sigma^{2} \mu^{n-2} \mathbb{E}\left[X_{0}\right]+\mu^{2} \operatorname{Var}\left(X_{n-2}\right)\right) \\
= & \sigma^{2}\left(\mu^{n-1}+\mu^{n}\right) \mathbb{E}\left[X_{0}\right]+\mu^{4} \operatorname{Var}\left(X_{n-2}\right) \\
= & \sigma^{2}\left(\mu^{n-1}+\mu^{n}\right) \mathbb{E}\left[X_{0}\right]+\mu^{4}\left(\sigma^{2} \mu^{n-3} \mathbb{E}\left[X_{0}\right]+\mu^{2} \operatorname{Var}\left(X_{n-3}\right)\right) \\
= & \sigma^{2}\left(\mu^{n-1}+\mu^{n}+\mu^{n+1}\right) \mathbb{E}\left[X_{0}\right]+\mu^{6} \operatorname{Var}\left(X_{n-3}\right) \\
& \vdots \\
= & \sigma^{2}\left(\mu^{n-1}+\mu^{n}+\ldots+\mu^{2 n-2}\right) \mathbb{E}\left[X_{0}\right]+\mu^{2 n} \operatorname{Var}\left(X_{0}\right) \\
= & \begin{cases}\sigma^{2} \mu^{n-1}\left(\frac{1-\mu^{n}}{1-\mu}\right) \mathbb{E}\left[X_{0}\right]+\mu^{2 n} \operatorname{Var}\left(X_{0}\right) & \text { if } \mu \neq 1 \\
n \sigma^{2} \mathbb{E}\left[X_{0}\right]+\operatorname{Var}\left(X_{0}\right) & \text { if } \mu=1\end{cases}
\end{aligned}
$$

4.5.1 The Gambler's Ruin Problem

- A gambler repeatedly plays a game until he goes bankrupt or his fortune reaches N.
- In each game, he can win $\$ 1$ with probability p or lose $\$ 1$ with probability $q=1-p$.
- Outcomes of different games are independent
- Define $X_{n}=$ the gambler's fortune after the nth game.
- $\left\{X_{n}\right\}$ is a simple random walk $\mathrm{w} /$ absorbing boundaries at 0 and N.

$$
P_{00}=P_{N N}=1, P_{i, i+1}=p, P_{i, i-1}=q, i=1,2, \ldots, N-1
$$

- Two recurrent classes: $\{0\}$ and $\{N\}$ one transient class $\{1,2, \ldots, N-1\}$
- Regardless of the initial fortune X_{0}, eventually $\lim _{n \rightarrow \infty} X_{n}=0$ or N as all states are transient except 0 or N.

4.5.1 The Gambler's Ruin Problem

Denote A as the event that the gambler's fortune reaches N before reaches 0 . Then

$$
P_{i}=P\left(A \mid X_{0}=i\right)
$$

Conditioning on the outcome of the first game,

$$
\begin{aligned}
P_{i}= & P(A \mid X_{0}=i, \text { he wins the 1st game) } \underbrace{P(\text { he wins the 1st game })}_{=p} \\
& \quad+P(A \mid X_{0}=i, \text { he loses the 1st game) } \underbrace{P(\text { he loses the 1st game })}_{=q} \\
= & P\left(A \mid X_{0}=i, X_{1}=i+1\right) p+P\left(A \mid X_{0}=i, X_{1}=i-1\right) q \\
= & \underbrace{P\left(A \mid X_{1}=i+1\right)}_{=P_{i+1}} p+\underbrace{P\left(A \mid X_{1}=i-1\right)}_{=P_{i-1}} q(\because \text { Markov })
\end{aligned}
$$

We get a set of equations

$$
\begin{aligned}
& P_{i}=p P_{i+1}+q P_{i-1} \quad \text { for } i=1,2, \ldots, N-1 \\
& P_{0}=0, \quad P_{N}=1
\end{aligned}
$$

Solving the equations $P_{i}=p P_{i+1}+q P_{i-1}$

$$
\begin{array}{rlrl}
& (p+q) P_{i} & =p P_{i+1}+q P_{i-1} & \text { since } p+q=1 \\
\Leftrightarrow & q\left(P_{i}-P_{i-1}\right) & =p\left(P_{i+1}-P_{i}\right) & \\
\Leftrightarrow \quad P_{i+1}-P_{i} & =(q / p)\left(P_{i}-P_{i-1}\right) &
\end{array}
$$

As $P_{0}=0$,

$$
\begin{aligned}
& P_{2}-P_{1}=(q / p)\left(P_{1}-P_{0}\right)=(q / p) P_{1} \\
& P_{3}-P_{2}=(q / p)\left(P_{2}-P_{1}\right)=(q / p)^{2} P_{1}
\end{aligned}
$$

$$
P_{i}-P_{i-1}=(q / p)\left(P_{i-1}-P_{i-2}\right)=(q / p)(q / p)^{i-2} P_{1}=(q / p)^{i-1} P_{1}
$$

Adding up the equations above we get

$$
P_{i}-P_{1}=\left[q / p+(q / p)^{2}+\cdots+(q / p)^{i-1}\right] P_{1}
$$

Solving the equations $P_{i}=p P_{i+1}+q P_{i-1}$

$$
\begin{array}{rlrl}
& (p+q) P_{i} & =p P_{i+1}+q P_{i-1} & \text { since } p+q=1 \\
\Leftrightarrow & q\left(P_{i}-P_{i-1}\right) & =p\left(P_{i+1}-P_{i}\right) & \\
\Leftrightarrow \quad P_{i+1}-P_{i} & =(q / p)\left(P_{i}-P_{i-1}\right) &
\end{array}
$$

As $P_{0}=0$,

$$
\begin{aligned}
& P_{2}-P_{1}=(q / p)\left(P_{1}-P_{0}\right)=(q / p) P_{1} \\
& P_{3}-P_{2}=(q / p)\left(P_{2}-P_{1}\right)=(q / p)^{2} P_{1}
\end{aligned}
$$

$$
P_{i}-P_{i-1}=(q / p)\left(P_{i-1}-P_{i-2}\right)=(q / p)(q / p)^{i-2} P_{1}=(q / p)^{i-1} P_{1}
$$

Adding up the equations above we get

$$
P_{i}-P_{1}=\left[q / p+(q / p)^{2}+\cdots+(q / p)^{i-1}\right] P_{1}
$$

From

$$
P_{i}-P_{1}=\left[q / p+(q / p)^{2}+\cdots+(q / p)^{i-1}\right] P_{1}
$$

we get

$$
P_{i}= \begin{cases}\frac{1-(q / p)^{i}}{1-(q / p)} P_{1} & \text { if } p \neq q \\ i P_{1} & \text { if } p=q\end{cases}
$$

As $P_{N}=1$, we get

$$
P_{1}= \begin{cases}\frac{1-(q / p)}{1-(q / p)^{N}} & \text { if } p \neq 0.5 \\ 1 / N & \text { if } p=0.5\end{cases}
$$

So

$$
P_{i}= \begin{cases}\frac{1-(q / p)^{i}}{1-(q / p)^{N}} & \text { if } p \neq 0.5 \\ i / N & \text { if } p=0.5\end{cases}
$$

If the gambler will never quit with whatever fortune he has ($N=\infty$), then

$$
\lim _{N \rightarrow \infty} P_{i}= \begin{cases}1-(q / p)^{i} & \text { if } p>0.5 \\ 0 & \text { if } p \leq 0.5\end{cases}
$$

Lecture 7-19

4.5.3 Random Walk w/ Reflective Boundary at 0

- State Space $=\{0,1,2, \ldots\}$
- $P_{01}=1, P_{i, i+1}=p, P_{i, i-1}=1-p=q$, for $i=1,2,3 \ldots$
- Only one class, irreducible
- For $i<j$, define

$$
N_{i j}=\min \left\{m>0: X_{m}=j \mid X_{0}=i\right\}
$$

$=$ first time to reach state j when starting from state i

- Observe that $N_{0 n}=N_{01}+N_{12}+\ldots+N_{n-1, n}$ By the Markov property, $N_{01}, N_{12}, \ldots, N_{n-1, n}$ are indep.
- Given $X_{0}=i$

$$
N_{i, i+1}= \begin{cases}1 & \text { if } X_{1}=i+1 \tag{2}\\ 1+N_{i-1, i}^{*}+N_{i, i+1}^{*} & \text { if } X_{1}=i-1\end{cases}
$$

Observe that $N_{i, i+1}^{*} \sim N_{i, i+1}$, and $N_{i, i+1}^{*}$ is indep of $N_{i-1, i}^{*}$.

4.5.3 Random Walk w/ Reflective Boundary at 0 (Cont'd)

Let $m_{i}=\mathbb{E}\left(N_{i, i+1}\right)$. Taking expected value on Equation (??), we get

$$
m_{i}=\mathbb{E}\left[N_{i, i+1}\right]=1+q \mathbb{E}\left[N_{i-1, i}^{*}\right]+q \mathbb{E}\left[N_{i, i+1}^{*}\right]=1+q\left(m_{i-1}+m_{i}\right)
$$

Rearrange terms we get $p m_{i}=1+q m_{i-1}$ or

$$
\begin{aligned}
m_{i} & =\frac{1}{p}+\frac{q}{p} m_{i-1} \\
& =\frac{1}{p}+\frac{q}{p}\left(\frac{1}{p}+\frac{q}{p} m_{i-2}\right) \\
& =\frac{1}{p}\left[1+\frac{q}{p}+\left(\frac{q}{p}\right)^{2}+\ldots+\left(\frac{q}{p}\right)^{i-1}\right]+\left(\frac{q}{p}\right)^{i} m_{0}
\end{aligned}
$$

Since $N_{01}=1$, which implies $m_{0}=1$.

$$
m_{i}= \begin{cases}\frac{1-(q / p)^{i}}{p-q}+\left(\frac{q}{p}\right)^{i} & \text { if } p \neq 0.5 \\ 2 i+1 & \text { if } p=0.5\end{cases}
$$

Lecture 7-21

Mean of $N_{0, n}$

Recall that $N_{0 n}=N_{01}+N_{12}+\ldots+N_{n-1, n}$

$$
\begin{aligned}
\mathbb{E}\left[N_{0 n}\right] & =m_{0}+m_{1}+\ldots+m_{n-1} \\
& = \begin{cases}\frac{n}{p-q}-\frac{2 p q}{(p-q)^{2}}\left[1-\left(\frac{q}{p}\right)^{n}\right] & \text { if } p \neq 0.5 \\
n^{2} & \text { if } p=0.5\end{cases}
\end{aligned}
$$

When

$$
\begin{array}{lll}
p>0.5 & \mathbb{E}\left[N_{0 n}\right] \approx \frac{n}{p-q}-\frac{2 p q}{(p-q)^{2}} & \text { linear in } n \\
p=0.5 & \mathbb{E}\left[N_{0 n}\right]=n^{2} & \text { quadratic in } n \\
p<0.5 & \mathbb{E}\left[N_{0 n}\right]=O\left(\frac{2 p q}{(p-q)^{2}}\left(\frac{q}{p}\right)^{n}\right) & \text { exponential in } n
\end{array}
$$

Exercise 4.50 on p. 284

A Markov chain has transition probability matrix

$$
P=\begin{aligned}
& \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6
\end{aligned}\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0.2 & 0.4 & 0 & 0.3 & 0 & 0.1 \\
0.1 & 0.3 & 0 & 0.4 & 0 & 0.2 \\
0 & 0 & 0.3 & 0.7 & 0 & 0 \\
0 & 0 & 0.6 & 0.4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0 & 0 & 0.2 & 0.8
\end{array}\right)
$$

Communicating classes:

Find $\lim _{n \rightarrow \infty} P^{(n)}$.

Exercise 4.50 on p. 284 (Cont'd)

Observe that $\lim _{n \rightarrow \infty} P_{i j}^{(n)}=0$ if j is transient, hence,

Exercise 4.50 on p. 284 (Cont'd)

Observe that $\lim _{n \rightarrow \infty} P_{i j}^{(n)}=0$ if j is NOT accessible from i

$$
\lim _{n \rightarrow \infty} P^{(n)}=\begin{gathered}
1 \\
1 \\
2 \\
3 \\
3 \\
4 \\
5 \\
5 \\
0
\end{gathered}\left(\begin{array}{llllll}
1 & 3 & ? & ? & ? & 6 \\
0 & ? & ? & ? & ? \\
0 & 0 & ? & ? & 0 & 0 \\
0 & 0 & ? & ? & 0 & 0 \\
0 & 0 & 0 & 0 & ? & ? \\
0 & 0 & 0 & 0 & ? & ?
\end{array}\right)
$$

The two classes $\{3,4\}$ and $\{5,6\}$ do not communicate and hence the transition probabilities in between are all 0 .

Exercise 4.50 on p. 284 (Cont'd)

Since the Markov chain restricted to the closed class $\{3,4\}$ is also 34
a Markov chain with the transition matrix $\begin{aligned} & 3 \\ & 4\end{aligned}\left(\begin{array}{ll}0.3 & 0.7 \\ 0.6 & 0.4\end{array}\right)$ and the limiting distribution of a two-state Markov chain with the transition matrix $\left(\begin{array}{cc}1-\alpha & \alpha \\ \beta & 1-\beta\end{array}\right)$ is $\left(\frac{\beta}{\alpha+\beta}, \frac{\alpha}{\alpha+\beta}\right)$, we get

$$
\lim _{n \rightarrow \infty} P^{(n)}=\begin{gathered}
\\
1 \\
2 \\
3 \\
3 \\
4 \\
5 \\
6
\end{gathered}\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & ? & ? & ? & ? \\
0 & 0 & 6 / 13 & 7 / 13 & 0 & 0 \\
0 & 0 & 6 / 13 & 7 / 13 & 0 & 0 \\
0 & 0 & 0 & 0 & ? & ? \\
0 & 0 & 0 & 0 & ? & ?
\end{array}\right)
$$

Exercise 4.50 on p. 284 (Cont'd)

$P=$| 1 |
| :--- |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |\(\left(\begin{array}{cccccc}1 \& 2 \& 3 \& 4 \& 5 \& 6

0.2 \& 0.4 \& 0 \& 0.3 \& 0 \& 0.1

0.1 \& 0.3 \& 0 \& 0.4 \& 0 \& 0.2

0 \& 0 \& 0.3 \& 0.7 \& 0 \& 0

0 \& 0 \& 0.6 \& 0.4 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0.5 \& 0.5

0 \& 0 \& 0 \& 0 \& 0.2 \& 0.8\end{array}\right)\)

For the same reason,

Lecture 7-27

Exercise 4.50 on p. 284 (Cont'd)

It remains to find

$$
\pi_{i j}=\lim _{n \rightarrow \infty} P_{i j}^{(n)}
$$

from a transient state $i=1,2$ to a recurrent state $j=3,4$, 5 , or 6 .

$$
P=\begin{gathered}
\\
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{gathered}\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0.2 & 0.4 & 0 & 0.3 & 0 & 0.1 \\
0.1 & 0.3 & 0 & 0.4 & 0 & 0.2 \\
0 & 0 & 0.3 & 0.7 & 0 & 0 \\
0 & 0 & 0.6 & 0.4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0 & 0 & 0.2 & 0.8
\end{array}\right)
$$

By the Chapman-Kolmogorov Equation,

$$
\begin{aligned}
P_{13}^{(n+1)} & =P_{11} P_{13}^{(n)}+P_{12} P_{23}^{(n)}+P_{13} P_{33}^{(n)}+P_{14} P_{43}^{(n)}+P_{15} P_{53}^{(n)}+P_{16} P_{63}^{(n)} \\
& =0.2 P_{13}^{(n)}+0.4 P_{23}^{(n)}+0+0.3 P_{43}^{(n)}+0+0.1 \underbrace{P_{63}^{(n)}}_{=0}
\end{aligned}
$$

where $P_{63}^{(n)}=0$ since state 3 and 6 do not communicate.
Let $n \rightarrow \infty$ and recall we've shown earlier that $\lim _{n \rightarrow \infty} P_{43}^{(n)}=6 / 13$. We get the equation

$$
\pi_{13}=0.2 \pi_{13}+0.4 \pi_{23}+0.3 \times \frac{6}{13}
$$

Lecture 7-28

Exercise 4.50 on p. 284 (Cont'd)

Similarly,

$$
\begin{aligned}
P_{23}^{(n+1)} & =P_{21} P_{13}^{(n)}+P_{22} P_{23}^{(n)}+P_{23} P_{33}^{(n)}+P_{24} P_{43}^{(n)}+P_{25} P_{53}^{(n)}+P_{26} P_{63}^{(n)} \\
& =0.1 P_{13}^{(n)}+0.3 P_{23}^{(n)}+0+0.4 P_{43}^{(n)}+0+0.2 \underbrace{P_{63}^{(n)}}_{=0}
\end{aligned}
$$

where $P_{63}^{(n)}=0$ since state 3 and 6 do not communicate. Let $n \rightarrow \infty$ and recall we've shown earlier that $\lim _{n \rightarrow \infty} P_{43}^{(n)}=6 / 13$.
We get the equation

$$
\pi_{23}=0.1 \pi_{13}+0.3 \pi_{23}+0.4 \times \frac{6}{13} .
$$

Along with the equation $\pi_{13}=0.2 \pi_{13}+0.4 \pi_{23}+0.3 \times \frac{6}{13}$ obtained on the previous page, we get

$$
\pi_{13}=\frac{37}{52} \times \frac{6}{13}=\frac{111}{338}, \quad \pi_{23}=\frac{35}{52} \times \frac{6}{13}=\frac{105}{338}
$$

Lecture 7-29

Exercise 4.50 on p. 284 (Cont'd)

Similarly

$$
\begin{aligned}
P_{15}^{(n+1)} & =P_{11} P_{15}^{(n)}+P_{12} P_{25}^{(n)}+P_{13} P_{35}^{(n)}+P_{14} P_{45}^{(n)}+P_{15} P_{55}^{(n)}+P_{16} P_{65}^{(n)} \\
& =0.2 P_{15}^{(n)}+0.4 P_{25}^{(n)}+0+0.3 \underbrace{P_{45}^{(n)}}_{=0}+0+0.1 P_{65}^{(n)} \\
P_{25}^{(n+1)} & =P_{21} P_{15}^{(n)}+P_{22} P_{25}^{(n)}+P_{23} P_{35}^{(n)}+P_{24} P_{45}^{(n)}+P_{25} P_{55}^{(n)}+P_{26} P_{65}^{(n)} \\
& =0.1 P_{15}^{(n)}+0.3 P_{25}^{(n)}+0+0.4 \underbrace{P_{45}^{(n)}}_{=0}+0+0.2 P_{65}^{(n)}
\end{aligned}
$$

where $P_{45}^{(n)}=0$ since state 4 and 5 do not communicate. Letting $n \rightarrow \infty$ and since $\lim _{n \rightarrow \infty} P_{65}^{(n)}=2 / 7$, we get the equations

$$
\begin{aligned}
& \pi_{15}=0.2 \pi_{15}+0.4 \pi_{25}+0.1(2 / 7) \\
& \pi_{25}=0.1 \pi_{15}+0.3 \pi_{25}+0.2(2 / 7)
\end{aligned}
$$

and can find the solutions

$$
\pi_{15}=\frac{15}{52} \times \frac{2}{7}=\frac{15}{182}, \quad \pi_{25}=\frac{17}{52} \times \frac{2}{7}=\frac{17}{182} .
$$

Exercise 4.50 on p. 284 (Cont'd)

One can use the same method to find that

$$
\begin{array}{ll}
\pi_{14}=\frac{37}{52} \times \frac{7}{13}, & \pi_{24}=\frac{35}{52} \times \frac{7}{13} \\
\pi_{16}=\frac{15}{52} \times \frac{5}{7}, & \pi_{26}=\frac{17}{52} \times \frac{5}{7}
\end{array}
$$

Hence,

$$
\left.\lim _{n \rightarrow \infty} P^{(n)}=\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 \\
2 \\
3 & 0 & \frac{37}{52} \times \frac{6}{13} & \frac{37}{52} \times \frac{7}{13} & \frac{15}{52} \times \frac{2}{7} & \frac{15}{52} \times \frac{5}{7} \\
0 & 0 & \frac{55}{52} \times \frac{6}{13} & \frac{35}{52} \times \frac{7}{13} & \frac{17}{52} \times \frac{2}{7} & \frac{17}{52} \times \frac{5}{7} \\
4 & 0 & 6 / 13 & 7 / 13 & 0 & 0 \\
5 \\
0 & 0 & 6 / 13 & 7 / 13 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 / 7 & 5 / 7 \\
0 & 0 & 0 & 0 & 2 / 7 & 5 / 7
\end{array}\right)
$$

