
STAT253/317 Lecture 6 Time Reversibility (§4.8)
4.8.1 Backward Markov Chain

If {. . . ,Xn−1,Xn,Xn+1, . . .} is a Markov chain, the backward chain
{. . . ,Xn+1,Xn,Xn−1, . . .} is also a Markov chain.

Proof.

P(Xm = j | Xm+1 = i ,Xm+2,Xm+3, . . .)

=
P(Xm = j ,Xm+1 = i ,Xm+2,Xm+3, . . .)

P(Xm+1 = i ,Xm+2,Xm+3, . . .)

=
P(Xm+2,Xm+3, . . . | Xm = j ,Xm+1 = i)P(Xm = j ,Xm+1 = i)

P(Xm+2,Xm+3, . . . | Xm+1 = i)P(Xm+1 = i)

=
P(Xm+2,Xm+3, . . . | Xm+1 = i)P(Xm = j ,Xm+1 = i)

P(Xm+2,Xm+3, . . . | Xm+1 = i)P(Xm+1 = i)
(Markov Property)

=
P(Xm = j ,Xm+1 = i)

P(Xm+1 = i)
= P(Xm = j | Xm+1 = i)
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Transition Probabilities of the Backward Markov Chain

Consider a Markov chain {Xn : n = 0, 1, 2, . . .} with transition
probabilities {Pij}.
Let {π(m)

j = P(Xm = j)} be the marginal distribution of Xm.

The transition probabilities {Q(m)
ij } of the backward Markov chain

are

Q
(m)
ij = P(Xm = j | Xm+1 = i)

=
P(Xm = j ,Xm+1 = i)

P(Xm+1 = i)

=
P(Xm = j)P(Xm+1 = i | Xm = j)

P(Xm+1 = i)
=
π
(m)
j Pji

π
(m+1)
i

We can see the backward Markov chain is NOT stationary

because the transition probabilities Q
(m)
ij depend on m.
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To make the backward Markov chain stationary, the forward chain
must start with its stationary distribution {πj} so that

P(Xm = j) = πj for all m

the transition probabilities {Qij} of the backward Markov chain is

Qij = P(Xm = j | Xm+1 = i)

=
P(Xm = j ,Xm+1 = i)

P(Xm+1 = i)

=
P(Xm = j)P(Xm+1 = i | Xm = j)

P(Xm+1 = i)
=
πjPji

πi

which does not depend on m
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Time Reversible Markov Chains & Detailed Balanced
Equations

A Markov chain is said to be time reversible iff

Qij = Pij ,

i.e., it behaves exactly the same no matter running forward or
backward when in the stationary state.

Because Qij equals πjPji/πi , a Markov chain is time reversible if
and only if its stationary distribution {πj} satisfies the equations

πiPij = πjPji for all i , j .

This set of equations is called the detailed balanced equation.
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Balanced Equations v.s. Detailed Balanced Equations

Recall a distribution πj for a Markov chain is said to be stationary
if and only if it satisfies

πj =
∑
i∈X

πiPij for all j ∈ X.

This set of equations is called the balanced equations.

A solution to the detailed balanced equations must also be a
solution to the balanced equations, because∑

i∈X
πiPij =

∑
i∈X

πjPji = πj
∑

i∈X
Pji = πj · 1 = πj

It is possible that the balanced equations have solutions but the
detailed balanced equations do not.
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Interpretation of the Balanced Equation

πj =
∑
i∈X

πiPij for all j ∈ X

⇔ πj(1− Pjj) =
∑

i∈X,i 6=j

πiPij for all j ∈ X

rate of transitions out of state j = rate of transitions into state j

• • •
↖ ↑ ↗

• ←− j −→ •
↙ ↓ ↘

• • •

• • •
↘ ↓ ↙

• −→ j ←− •
↗ ↑ ↖

• • •
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Interpretation of the Detailed Balanced Equation

πiPij = πjPji

rate of transitions from i to j = rate of transitions from j to i

i −→ j j −→ i
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Balanced Eqns v.s. Detailed Balanced Eqns.

I For balanced equations,

the # of equations = # of states = # of unknowns

I For detailed balanced equations,

# of equations = # of pairs of states > # of unknowns

I Detailed Balanced Equations are easier to solve than the
Balanced Equations as the former ones involve only two
unknowns in each equation

I One can start by solving the detailed balanced equations for
the stationary distribution. If you can find one, it’ll also be
the solution for the balanced equations. That also proves the
Markov chain if positive recurrent if it’s irreducible.

I However, if the detailed balanced equations have no solutions,
it doesn’t prove the Markov chain to be null current or
transient since the balanced equations might have a solution.
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Example 4.35

Consider a random walk with states 0, 1, . . . ,M and transition
probabilities

Pi ,i+1 = αi = 1− Pi ,i−1, for i = 1, . . . ,M − 1,

P0,1 = α0 = 1− P0,0,

PM,M = αM = 1− PM,M−1

0
α0−→ 1

α1−→ 2 · · · −→ M − 1
αM−1−→ M

	
αM

0
1−α1←− 1

1−α2←− 2 · · · ←− M − 1
1−αM←− M

	
1− α0
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Example 4.35 (Cont’d)

The stationary distribution π can be solved via the detailed
balanced equation

πiPi ,i−1 = πi (1− αi ) = πi−1Pi−1,i = πi−1αi−1

So

πi =
αi−1

1− αi
πi−1 = . . . =

αi−1αi−2 . . . α0

(1− αi )(1− αi−1) . . . (1− α1)
π0

Since
∑M

0 πi = 1, one can solve π0 via

π0

[
1 +

∑M

i=1

αi−1αi−2 . . . α0

(1− αi )(1− αi−1) . . . (1− α1)

]
= 1
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A Non-Time-Reversible Markov Chain
In Exercise 4.34 (a flea moving around the vertices of a triangle),

1
p3
↗

p1
↘

3
p2←− 2

1
q1
↙

q2
↖

3
q3−→ 2

where pi + qi = 1

the transition probabilities, and the stationary distribution are
respectively


1 2 3

1 0 p1 q1
2 q2 0 p2
3 p3 q3 0

, and π = (
1− p2q3

C
,

1− p3q1
C

,
1− p1q2

C
)

where C = 3− p2q3 − p3q1 − p1q2. One can easily verify that

π1P12 = π1p1 6= π2P21 = π2q2

The chain is NOT time reversible.
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Other Non-Time-Reversible Markov Chains

I A Markov chain with transient states cannot be
time-reversible because then running forward and backward in
time will not be equivalent.

I If there exists two states i and j such that

Pij > 0 but Pji = 0

then the Markov chain cannot be time-reversible because then
when running backward in time

Qij =
πjPji

πi
= 0 6= Pij .
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Theorem 4.2

An ergodic Markov chain for which Pij = 0 whenever Pji = 0 is
time reversible if and only if starting in state i , any path back to i
has the same probability as the reversed path. That is, if

Pii1Pi1i2 . . .Pik i = PiikPik ik−1
. . .Pi1i

for all states i , i1, . . . , ik .

ik −→ i
↗ ↘

ik−1 i1
↖ ↙
· · · ←− i2

ik ←− i
↙ ↖

ik−1 i1
↘ ↗
· · · −→ i2
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Theorem 4.2 — Proof of Necessity

If a Markov chain is time reversible, we have

πiPij = πjPji , πkPkj = πjPjk .

implying (if PijPjk > 0) that

πi
πk

=
PjiPkj

PijPjk
,

but πiPik = πkPki also implies πi/πk = Pki/Pik . Thus

PikPkjPji = PijPjkPki .

This proves for the case i → j → k → i . The general case for
longer cycle can be proved similarly
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Theorem 4.2 — Proof of Sufficiency

Consider the cycle i → i1 → i2 → . . .→ ik → j → i .

Pii1Pi1i2 . . .Pik jPji = PijPjikPik ik−1
. . .Pi1i

Summing the preceding over all states i1, . . . , ik yields

P
(k)
ij Pji = PijP

(k)
ji

Letting k →∞ yields

lim
k→∞

P
(k)
ij︸ ︷︷ ︸

=πj

Pji = Pij lim
k→∞

P
(k)
ji︸ ︷︷ ︸

=πi

in which limk→∞ P
(k)
ij = πj for all j since the Markov chain is

ergodic.
This proves the theorem.
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Example 4.36 Random Walk on a Weighted Graph (p.241)

(m) Does there exist a probability vector π satisfying the equation π = πP? And, if so, is
it unique (among probability vectors of that length)? Explain.

3. Random Walk on a Graph. (15 points)

Consider a random walk on the graph containing 8 nodes and 10 edges shown in the figure
below. There is a weight on each arc or edge. Suppose that we move from node to node in
each step, going from each node only to a neighboring node (connected by an arc). Let the
neighboring node to which the walk goes be selected at random with probability proportional
to the weight on the arc to that node. For example, PG,F = 1/4, while PG,H = 3/4.

Random Walk on a Graph

G

2

1

1

1

1

3

1A

2

86

D

E

B

F

2

H

C

(a) Starting in node C, what is the probability of being in node C again after three steps?
(You need not do the arithmetic to simplify the answer.)

(b) Is the Markov chain irreducible?

(c) Is the Markov chain periodic? If so, what is the period?

(d) What is the long-run proportion of steps that the random walk spends in node E?

(e) What is the expected number of steps, starting in node E, until the random walk next
visits node E?

Honor Code: Students are expected to behave honorably, following the accepted code of
academic honesty. After completing your exam, please affirm that you have done so by writing
”I have neither given not received improper help on this examination,” on your examination
booklet and sign your name. You may keep the exam itself. Solutions will eventually be posted
on line.

2

A graph = a set of vertices (or nodes) + a set of arcs (or edges)
connecting some pairs of vertices. We consider random walk on a
connected graph such that

I each pair (i , j) of vertices are connected by at most one arc;

I all arcs are undirected: arc (i , j) = arc (j , i);

I there is a path consists of arcs connecting any pair of vertices;
I each arc (i , j) is associated with a weight wij > 0

I wij = 0 if there is not arc connecting (i , j)
I wij = wji
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Example 4.36 Random Walk on a Weighted Graph (p.241)
A particle moving from vertices to vertices that if at any time the
particle is at node i , then it will next move to node j with
probability

Pij =
wij∑
k wik

,

E.g., in the graph below, there are two arcs from vertices B with
weights wBA = 2 and WBC = 1 respectively. So,

PBA =
wBA

wBA + wBC
=

2

2 + 1
=

2

3
, PBC =

wBC

wBA + wBC
=

1

2 + 1
=

1

3
.

(m) Does there exist a probability vector π satisfying the equation π = πP? And, if so, is
it unique (among probability vectors of that length)? Explain.

3. Random Walk on a Graph. (15 points)

Consider a random walk on the graph containing 8 nodes and 10 edges shown in the figure
below. There is a weight on each arc or edge. Suppose that we move from node to node in
each step, going from each node only to a neighboring node (connected by an arc). Let the
neighboring node to which the walk goes be selected at random with probability proportional
to the weight on the arc to that node. For example, PG,F = 1/4, while PG,H = 3/4.
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(a) Starting in node C, what is the probability of being in node C again after three steps?
(You need not do the arithmetic to simplify the answer.)

(b) Is the Markov chain irreducible?

(c) Is the Markov chain periodic? If so, what is the period?

(d) What is the long-run proportion of steps that the random walk spends in node E?

(e) What is the expected number of steps, starting in node E, until the random walk next
visits node E?

Honor Code: Students are expected to behave honorably, following the accepted code of
academic honesty. After completing your exam, please affirm that you have done so by writing
”I have neither given not received improper help on this examination,” on your examination
booklet and sign your name. You may keep the exam itself. Solutions will eventually be posted
on line.

2

Random walk on a graph is irreducible because the graph is
connected. Lecture 6 - 17



Random Walk on a Weighted Graph is Time Reversible
Solving the detailed balanced equation:

πiPij =
πiwij∑
k wik

=
πjwji∑
k wjk

= πjPji for all i , j

or, equivalently, since wij = wji ,

πi∑
k wik

=
πj∑
k wjk

for all i , j ,

which means
πi∑
k wik

is a constant c for all i , i.e.,

πi = c
∑
k

wik .

Since 1 =
∑

j πj = c
∑

j

∑
k wjk , we know c = 1/(

∑
j

∑
k wjk),

and hence

πi =

∑
k wik∑

j

∑
k wjk

is a solution to the detailed balanced eq. The process is therefore
time-reversible.
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Random Walk on a Weighted Graph

(m) Does there exist a probability vector π satisfying the equation π = πP? And, if so, is
it unique (among probability vectors of that length)? Explain.

3. Random Walk on a Graph. (15 points)

Consider a random walk on the graph containing 8 nodes and 10 edges shown in the figure
below. There is a weight on each arc or edge. Suppose that we move from node to node in
each step, going from each node only to a neighboring node (connected by an arc). Let the
neighboring node to which the walk goes be selected at random with probability proportional
to the weight on the arc to that node. For example, PG,F = 1/4, while PG,H = 3/4.
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(a) Starting in node C, what is the probability of being in node C again after three steps?
(You need not do the arithmetic to simplify the answer.)

(b) Is the Markov chain irreducible?

(c) Is the Markov chain periodic? If so, what is the period?

(d) What is the long-run proportion of steps that the random walk spends in node E?

(e) What is the expected number of steps, starting in node E, until the random walk next
visits node E?

Honor Code: Students are expected to behave honorably, following the accepted code of
academic honesty. After completing your exam, please affirm that you have done so by writing
”I have neither given not received improper help on this examination,” on your examination
booklet and sign your name. You may keep the exam itself. Solutions will eventually be posted
on line.

2

Vertices i
∑

k wik πi
A 2 + 2 = 4 πA = 4/200
B 2 + 1 = 3 πB = 3/200
C 1 + 1 + 86 = 88 πC = 88/200
D 2 + 1 + 1 = 4 πD = 4/200
E 1 + 2 + 86 = 89 πE = 89/200
F 2 + 1 + 1 = 4 πF = 4/200
G 1 + 3 = 4 πG = 4/200
H 1 + 3 = 4 πH = 4/200

Sum
∑

i

∑
k wik = 200
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Random Knight on a Chessboard

I The Knight moves in an L shape in any
direction.

I At the blue square, the Knight can move
to any of the 8 red squares.

I From a square near the boundary, the
Knight has fewer possible moves as it
cannot move out of the Chessboard (see
the 3 graphs below.)
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Random Knight on a Chessboard

I A Knight moves randomly on an empty chessboard.

I In each step, it’s equally like to take any of its legal moves.
E.g., at the corner, it has prob. 1/2 each to move to either of
the two red squares, from which it has prob. 1/6 each to
move to any of the 6 possible squares.

I Each move is indep. of the history of moves up to that time.

I The position of on knight after nth move is a Markov chain
where states are the 64 squares on the chessboard.
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Random Knight on a Chessboard

The Knight’s random walk on a Chessboard is also a random walk
on weighted graph where

I the vertices are the 64 squares on the chessboard;

I there is an arc between any two squares that Knight can move
in 1 step;

I all the arcs have weight wij = 1.

The transition probability of a random walk on weighted graph
from square i to square j is

Pij =
wij∑
k wik

=
1

# of squares that connected with square i with an arc

=
1

# of legal moves from square i

which is exactly the random walk of the knight.
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Random Knight on a Chessboard

Using the property of random walks on a graph, the stationary
distribution of the Knight’s random walk is

πi =

∑
k wik∑

j

∑
k wjk

=
# of legal moves from square i∑
j(# of legal moves from square j)

The numbers of legal moves from the squares are as follows:

2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2

The sum of the number of possible
moves over all squares is

2× 4 + 3× 8 + 4× 20

+ 6× 16 + 8× 16 = 336.

The long run proportion of time that the Knight is in a specific
square is simply the counts in the table above divided by 336.
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Return Time of a Random Knight

Recall that 1/πi = E[Ti ] is the expected time between two visits of
the Markov chain to state i .

Starting from one of the four corners, it takes
1/πi = 336/2 = 168 moves on average for a
Knight to return to its initial position.

Starting from the center of the chessboard, it
takes 1/πi = 336/8 = 42 moves on average for
a Knight to return to its initial position
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More Questions

I Is this Markov chain irreducible? That is, can the Knight visit
every square from every square?

I What is the period of this Markov chain?

Every “L” move can only from a gray square to a white square
or a white square to a gray square.
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