STAT253/317 Lecture 5: 4.4 Limiting Distribution II

Positive Recurrence and Null Recurrence
For a Markov chain, consider the return time to a recurrent state i

$$
T_{i}=\min \left\{n>0: X_{n}=i \mid X_{0}=i\right\}
$$

We say a state i is

- positive recurrent if $\mathbb{E}\left[T_{i}\right]<\infty$.
- null recurrent if $\mathrm{P}\left(T_{i}<\infty\right)=1$ but $\mathbb{E}\left[T_{i}\right]=\infty$.
- transient if $\mathrm{P}\left(T_{i}<\infty\right)<1$

We say a state is ergodic if it is aperiodic and positive recurrent.

The Fundamental Limit Theorem of Markov Chains I

Consider a recurrent irreducible aperiodic Markov chain. Then

$$
\lim _{n \rightarrow \infty} P_{i j}^{(n)}=\frac{1}{\mathbb{E}\left[T_{j}\right]}
$$

Moreover, if a Markov chain is irreducible and ergodic,

$$
\pi_{j}=\lim _{n \rightarrow \infty} P_{i j}^{(n)}=\frac{1}{\mathbb{E}\left[T_{j}\right]}
$$

is uniquely determined by the set of equations

$$
\pi_{j} \geq 0, \quad \sum_{j \in \mathfrak{X}} \pi_{j}=1, \quad \pi_{j}=\sum_{i \in \mathfrak{X}} \pi_{i} P_{i j}
$$

Proof. See Theorem 1.1, 1.2, 1.3 on p.81-86 in Karlin \& Taylor (1975).

Why $\pi_{i}=1 / \mathbb{E}\left(T_{i}\right)$?

Consider a Markov chain started from state j. Let S_{k} be the time till the k-th visit to state i. Then

$$
S_{k}=T_{j i}+T_{i i}(1)+\ldots+T_{i i}(k-1)
$$

Here

- $T_{j i}=$ the first time the process visits state i from state j, and
- $T_{i i}(m)=$ the time between the m th and $(m+1)$ st visit to state i.
Observe that $T_{i i}(1), T_{i i}(2), \ldots T_{i i}(k-1)$ are i.i.d. and have the same distribution as T_{i}.
For k large, the Law of Large Numbers tells us

$$
\frac{1}{k}\left[T_{j i}+T_{i i}(1)+T_{i i}(2)+\cdots+T_{i i}(k-1)\right] \approx \mathbb{E}\left(T_{i}\right)
$$

i.e., the chain visits state i about k times in $k \mathbb{E}\left(T_{i}\right)$ steps.

We have just seen that in n steps, we expect about $n \pi(i)$ visits to the state i. Hence setting $n=k \mathbb{E}\left(T_{i}\right)$, we get the relation

$$
\begin{gathered}
\pi_{i}=1 / \mathbb{E}\left(T_{i}\right) \\
\text { Lecture } 5-3
\end{gathered}
$$

Remark

From the result in the previous page, we can see that a state i is null recurrent, i.e., $\mathbb{E}\left(T_{i}\right)=\infty$, if and only if

$$
\lim _{n \rightarrow \infty} P_{j i}^{(n)}=0, \quad \text { for all } j \in \mathfrak{X}
$$

Proposition 4.5 Positive Recurrence is a Class Property

- From the Fundamental Limit Theorem of Markov Chains I

$$
\pi_{i}=1 / \mathbb{E}\left[T_{i}\right]
$$

and that a state i is positive recurrent if and only if $\mathbb{E}\left[T_{i}\right]<\infty$ it follows that a state i is positive current if and only if $\pi_{i}>0$

- If a state j communicate with a positive recurrent state i, then state j is also positive recurrent.
Proof. Since $i \leftrightarrow j$, there exists n such that $P_{i j}^{(n)}>0$. Along with the fact that i is positive recurrent, $\pi_{i}>0$, we know $\pi_{j}=\sum_{k} \pi_{k} P_{k j}^{(n)} \geq \pi_{i} P_{i j}^{(n)}>0$. So j is also positive recurrent.

Corollary: Null Recurrence is a Class Property

If state i is null recurrent and $i \leftrightarrow j$, then state j is also null recurrent.
Proof. Since recurrence is a class property, state j can only be positive or null recurrent as it communicates with a null recurrent state i. Suppose state j is positive recurrent. As positive recurrence is a class property, state i must also be positive recurrent not null recurrent if it communicates with state j. So state j can only be null recurrent.

Finite-State Markov Chains Have No Null Recurrent States

In a finite-state Markov chain all recurrent states are positive recurrent.
Proof.
It suffices to consider irreducible Markov chains only since a Markov chain restricted to one of its recurrent class is also a Markov chain.
Recall an irreducible Markov chain must be recurrent. Also recall that positive/null recurrence is a class property. Thus if one state is null recurrent, then all states are null recurrent. However, since $\sum_{j \in \mathfrak{X}} P_{i j}^{(n)}=1$. As there are only finite number of states, it is impossible that $\lim _{n \rightarrow \infty} P_{i j}^{(n)}=0$ for all $j \in \mathfrak{X}$. Thus no state can be null recurrent.

Remark. For a finite state Markov chain, a limiting distribution exists if it is irreducible and aperiodic
Lecture 5-7

The Fundamental Limit Theorem of Markov Chain II

($\star \star \star \star \star$)
If a Markov chain is irreducible, then the Markov chain is positive recurrent if and only if there exists a solution to the set of equations:

$$
\pi_{i} \geq 0, \quad \sum_{i \in \mathfrak{X}} \pi_{i}=1, \quad \pi_{j}=\sum_{i \in \mathfrak{X}} \pi_{i} P_{i j}
$$

If a solution exists then

- it will be unique, and

$$
\pi_{j}= \begin{cases}\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} P_{i j}^{(k)} & \text { if the chain is periodic } \\ \lim _{n \rightarrow \infty} P_{i j}^{(n)} & \text { if the chain is aperiodic }\end{cases}
$$

Remark. When a Markov chain is periodic, though its limiting distribution $\lim _{n \rightarrow \infty} P_{i j}^{(n)}$ doesn't exist, another limit $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} P_{i j}^{(k)}$ exists and is equal to the stationary distribution. The later limit can be interpret as the long run proportion of time that the Markov chain is in state j.

Example 1: One-Dimensional Random Walk

In Lecture 4, we have shown that 1-dim symmetric random walk has no stationary distribution.

- Conclusion: 1-dim symmetric random walk is null recurrent, i.e.

$$
\mathbb{E}\left[T_{i}\right]=\infty \quad \text { for all state } i
$$

In fact, in Lecture 3 we have shown that

$$
P_{i i}^{(n)}= \begin{cases}0 & \text { if } n \text { is odd } \\ \binom{n}{n / 2}\left(\frac{1}{2}\right)^{n} \approx \sqrt{\frac{2}{\pi n}} & \text { if } n \text { is even }\end{cases}
$$

Thus $\pi_{i}=\lim _{n \rightarrow \infty} P_{i i}^{(n)}=0$, and hence $\mathbb{E}\left[T_{i}\right]=1 / \pi_{i}=\infty$.

Ex 2: 1-D Random Walk w/ Partially Reflective Boundary

$$
\begin{aligned}
P_{i, i+1} & =p \quad \text { for all } i=0,1,2, \ldots \\
P_{i, i-1} & =1-p \quad \text { for all } i=1,2, \ldots \\
p_{00} & =1-p
\end{aligned}
$$

Try to solve $\pi_{j}=\sum_{i \in \mathfrak{X}} \pi_{i} P_{i j}$

$$
\begin{aligned}
& \pi_{0}=\pi_{0} P_{00}+\pi_{1} P_{10}=(1-p)\left(\pi_{0}+\pi_{1}\right) \Rightarrow \pi_{1}=\frac{p}{1-p} \pi_{0} \\
& \pi_{1}=\pi_{0} P_{01}+\pi_{2} P_{21}=p \pi_{0}+(1-p) \pi_{2} \Rightarrow \pi_{2}=\left(\frac{p}{1-p}\right)^{2} \pi_{0} \\
& \pi_{2}=\pi_{0} P_{12}+\pi_{3} P_{32}=p \pi_{1}+(1-p) \pi_{3} \Rightarrow \pi_{3}=\left(\frac{p}{1-p}\right)^{3} \pi_{0}
\end{aligned}
$$

$$
\pi_{j}=p \pi_{j-1}+(1-p) \pi_{j+1} \quad \Rightarrow \pi_{j+1}=\left(\frac{p}{1-p}\right)^{j+1} \pi_{0}
$$

Ex 2: 1-D Random Walk w/ Partially Reflective Boundary

$$
\sum_{i=0}^{\infty} \pi_{i}=\pi_{0} \sum_{i=0}^{\infty}\left(\frac{p}{1-p}\right)^{i}= \begin{cases}\pi_{0}\left(\frac{1-p}{1-2 p}\right) & \text { if } p<1 / 2 \\ \infty & \text { if } p \geq 1 / 2\end{cases}
$$

Conclusion: The process is positive recurrent iff $p<1 / 2$, in which case

$$
\pi_{i}=\frac{1-2 p}{1-p}\left(\frac{p}{1-p}\right)^{i}, \quad i=0,1,2, \ldots
$$

Ex 3: Ehrenfest Diffusion Model with N Balls

Recall that in Lecture 4, we show that Ehrenfest Diffusion Model is irreducible, has period $=2$, and there exists a solution to the set of equations

$$
\pi_{i} \geq 0, \quad \sum_{i \in \mathfrak{X}} \pi_{i}=1, \quad \pi_{j}=\sum_{i \in \mathfrak{X}} \pi_{i} P_{i j}
$$

which is

$$
\pi_{i}=\binom{N}{i}\left(\frac{1}{2}\right)^{N} \quad \text { for } i=0,1,2, \ldots, N
$$

Though the limiting distribution $\lim _{n \rightarrow \infty} P_{i j}^{(n)}$ does not exist, we can show that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P_{i j}^{(2 n)}=2\binom{N}{j}\left(\frac{1}{2}\right)^{N}, \quad \lim _{n \rightarrow \infty} P_{i j}^{(2 n+1)}=0 \quad \text { if } i+j \text { is even } \\
& \lim _{n \rightarrow \infty} P_{i j}^{(2 n)}=0, \quad \lim _{n \rightarrow \infty} P_{i j}^{(2 n+1)}=2\binom{N}{j}\left(\frac{1}{2}\right)^{N} \quad \text { if } i+j \text { is odd }
\end{aligned}
$$

From the above, one can verify that
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} P_{i j}^{(k)}=\binom{N}{j}\left(\frac{1}{2}\right)^{N}=\pi_{j}$.
Lecture 5-12

Exercise 4.50 on p. 284

A Markov chain has transition probability matrix

$$
P=\begin{aligned}
& \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6
\end{aligned}\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0.2 & 0.4 & 0 & 0.3 & 0 & 0.1 \\
0.1 & 0.3 & 0 & 0.4 & 0 & 0.2 \\
0 & 0 & 0.3 & 0.7 & 0 & 0 \\
0 & 0 & 0.6 & 0.4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0 & 0 & 0.2 & 0.8
\end{array}\right)
$$

Communicating classes:

Find $\lim _{n \rightarrow \infty} P^{(n)}$.

Exercise 4.50 on p. 284 (Cont'd)

Observe that $\lim _{n \rightarrow \infty} P_{i j}^{(n)}=0$ if j is transient, hence,

$$
\left.\lim _{n \rightarrow \infty} P^{(n)}=\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & ? & ? & ? \\
2 \\
3 & 0 & ? & ? & ? & ? \\
4 & 0 & 0 & ? & ? & ? \\
5 \\
5 & 0 & ? & ? & ? & ? \\
6 & 0 & 0 & ? & ? & ? \\
0 & 0 & ? & ? & ? & ?
\end{array}\right)
$$

Exercise 4.50 on p. 284 (Cont'd)

Observe that $\lim _{n \rightarrow \infty} P_{i j}^{(n)}=0$ if j is NOT accessible from i

$$
\lim _{n \rightarrow \infty} P^{(n)}=\begin{gathered}
1 \\
1 \\
2 \\
3 \\
3 \\
4 \\
5 \\
5 \\
0
\end{gathered}\left(\begin{array}{llllll}
1 & 3 & ? & ? & ? & 6 \\
0 & ? & ? & ? & ? \\
0 & 0 & ? & ? & 0 & 0 \\
0 & 0 & ? & ? & 0 & 0 \\
0 & 0 & 0 & 0 & ? & ? \\
0 & 0 & 0 & 0 & ? & ?
\end{array}\right)
$$

The two classes $\{3,4\}$ and $\{5,6\}$ do not communicate and hence the transition probabilities in between are all 0 .

Exercise 4.50 on p. 284 (Cont'd)

Recall we have shown that the limiting distribution of a two-state Markov chain with the transition matrix $\left(\begin{array}{cc}1-\alpha & \alpha \\ \beta & 1-\beta\end{array}\right)$ is
$\left(\frac{\beta}{\alpha+\beta}, \frac{\alpha}{\alpha+\beta}\right)$. As the Markov chain restricted to the closed class $\{3,4\}$ is also a Markov chain with the transition matrix 34
$3\left(\begin{array}{ll}0.3 & 0.7 \\ 0.6 & 0.4\end{array}\right)$. Hence,

$$
\lim _{n \rightarrow \infty} P^{(n)}=\begin{gathered}
\\
1 \\
2 \\
3 \\
3 \\
4 \\
5 \\
6
\end{gathered}\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & ? & ? & ? & ? \\
0 & 0 & ? & ? & ? & ? \\
0 & 0 & 6 / 13 & 7 / 13 & 0 & 0 \\
0 & 0 & 6 / 13 & 7 / 13 & 0 & 0 \\
0 & 0 & 0 & 0 & ? & ? \\
0 & 0 & 0 & 0 & ? & ?
\end{array}\right)
$$

Lecture 5-16

Exercise 4.50 on p. 284 (Cont'd)

$P=$| 1 |
| :--- |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |\(\left(\begin{array}{cccccc}1 \& 2 \& 3 \& 4 \& 5 \& 6

0.2 \& 0.4 \& 0 \& 0.3 \& 0 \& 0.1

0.1 \& 0.3 \& 0 \& 0.4 \& 0 \& 0.2

0 \& 0 \& 0.3 \& 0.7 \& 0 \& 0

0 \& 0 \& 0.6 \& 0.4 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0.5 \& 0.5

0 \& 0 \& 0 \& 0 \& 0.2 \& 0.8\end{array}\right)\)

For the same reason,

Lecture 5-17

