STAT253/317 Lecture 4: 4.4 Limiting Distribution I

Stationary Distribution

Define $\pi_{i}^{(n)}=\mathrm{P}\left(X_{n}=i\right), i \in \mathfrak{X}$ to be the marginal distribution of $X_{n}, n=1,2, \ldots$, and let $\pi^{(n)}$ be the row vector

$$
\pi^{(n)}=\left(\pi_{0}^{(n)}, \pi_{1}^{(n)}, \pi_{2}^{(n)}, \ldots\right)
$$

From Chapman-Kolmogrov Equation, we know that

$$
\pi^{(n)}=\pi^{(n-1)} \mathbb{P} \quad \text { i.e. } \quad \pi_{j}^{(n)}=\sum_{i \in \mathfrak{X}} \pi_{i}^{(n-1)} P_{i j} \text { for all } j \in \mathfrak{X}
$$

If π is a distribution on \mathfrak{X} satisfying

$$
\pi \mathbb{P}=\pi \quad \text { i.e. } \quad \pi_{j}=\sum_{i \in \mathfrak{X}} \pi_{i} P_{i j} \text { for all } j \in \mathfrak{X}
$$

then $\pi^{(0)}=\pi$ implies $\pi^{(n)}=\pi$ for all n.
We say π is a stationary distribution of the Markov chain.
Lecture 4-1

Example 1: 2-state Markov Chain

$$
\begin{gathered}
\mathfrak{X}=\{0,1\}, \quad \mathbb{P}=\begin{array}{cc}
0 & 1 \\
1
\end{array}\left(\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right) \\
\pi \mathbb{P}=\pi \Rightarrow \begin{cases}\pi_{0} & =(1-\alpha) \pi_{0}+\beta \pi_{1} \\
\pi_{1} & =\alpha \pi_{0}+(1-\beta) \pi_{1}\end{cases} \\
\Rightarrow \begin{cases}\alpha \pi_{0} & =\beta \pi_{1} \\
\beta \pi_{1} & =\alpha \pi_{0}\end{cases}
\end{gathered}
$$

Need one more constraint: $\pi_{0}+\pi_{1}=1$

$$
\Rightarrow \pi=\left(\pi_{0}, \pi_{1}\right)=\left(\frac{\beta}{\alpha+\beta}, \frac{\alpha}{\alpha+\beta}\right)
$$

Example 2: Ehrenfest Diffusion Model with N Balls

$$
P_{i j}= \begin{cases}\frac{i}{N} & \text { if } j=i-1 \\ \frac{N-i}{N} & \text { if } j=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& \pi_{0}=\quad \pi_{1} P_{10}=\quad \frac{1}{N} \pi_{1} \Rightarrow \pi_{1}=N \pi_{0}=\binom{N}{1} \pi_{0} \\
& \pi_{1}=\pi_{0} P_{01}+\pi_{2} P_{21}=\quad \pi_{0}+\frac{2}{N} \pi_{2} \Rightarrow \pi_{2}=\frac{N(N-1)}{2} \pi_{0}=\binom{N}{2} \pi_{0} \\
& \pi_{2}=\pi_{1} P_{12}+\pi_{3} P_{32}=\frac{N-1}{N} \pi_{1}+\frac{3}{N} \pi_{3} \Rightarrow \pi_{3}=\frac{N(N-1)(N-2)}{6} \pi_{0}=\binom{N}{3} \pi_{0}
\end{aligned}
$$

In general, you'll get $\pi_{i}=\binom{N}{i} \pi_{0}$.
As $1=\sum_{i=0}^{N} \pi_{i}=\pi_{0} \sum_{i=0}^{N}\binom{N}{i}$ and $\sum_{i=0}^{N}\binom{N}{i}=2^{N}$, we have

$$
\pi_{i}=\binom{N}{i}\left(\frac{1}{2}\right)^{N} \quad \text { for } i=0,1,2, \ldots, N
$$

Stationary Distribution May Not Be Unique

Consider a Markov chain with transition matrix \mathbb{P} of the form

$$
\mathbb{P}=\begin{gathered}
0 \\
0 \\
1 \\
2 \\
3 \\
4
\end{gathered}\left(\begin{array}{ccccc}
* & * & 2 & 3 & 4 \\
* & * & 0 & 0 & 0 \\
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & * & * & *
\end{array}\right)=\left(\begin{array}{cc}
\mathbb{P}_{x} & 0 \\
0 & \mathbb{P}_{y}
\end{array}\right)
$$

This Markov chain has 2 classes $\{0,1\}$ and $\{2,3,4\}$, both closed and recurrent. So this Markov chain can be reduced to two sub-Markov chains, one with state space $\{0,1\}$ and the other $\{2,3$, $4\}$. Their transition matrices are respectively \mathbb{P}_{x} and \mathbb{P}_{y}.
Say $\pi_{x}=\left(\pi_{0}, \pi_{1}\right)$ and $\pi_{y}=\left(\pi_{2}, \pi_{3}, \pi_{4}\right)$ be respectively the stationary distributions of the two sub-Markov chains, i.e.,

$$
\pi_{x} \mathbb{P}_{x}=\pi_{x}, \quad \pi_{y} \mathbb{P}_{y}=\pi_{y}
$$

Verify that $\pi=\left(c \pi_{0}, c \pi_{1},(1-c) \pi_{2},(1-c) \pi_{3},(1-c) \pi_{4}\right)$ is a stationary distribution of $\left\{X_{n}\right\} \begin{aligned} & \text { for any } c \text { between } 0 \text { and } 1 . \\ & \text { Lecture } 4-4\end{aligned}$ be

Not All Markov Chains Have a Stationary Distribution

For one-dimensional symmetric random walk, the transition probabilities are

$$
P_{i, i+1}=P_{i, i-1}=1 / 2
$$

The stationary distribution $\left\{\pi_{j}\right\}$ would satisfy the equation:

$$
\pi_{j}=\sum_{i \in \mathfrak{X}} \pi_{i} P_{i j}=\frac{1}{2} \pi_{j-1}+\frac{1}{2} \pi_{j+1}
$$

Once π_{0} and π_{1} are determined, all π_{j} 's can be determined from the equations as

$$
\pi_{j}=\pi_{0}+\left(\pi_{1}-\pi_{0}\right) j, \quad \text { for all integer } j
$$

As $\pi_{j} \geq 0$ for all integer $j, \Rightarrow \pi_{1}=\pi_{0}$. Thus

$$
\pi_{j}=\pi_{0} \quad \text { for all integer } j
$$

Impossible to make $\sum_{j=-\infty}^{\infty} \pi_{j}=1$.
Conclusion: 1-dim symmetric random walk does not have a stationary distribution.
Lecture 4-5

Limiting Distribution

A Markov chain is said to have a limiting distribution if for all $i, j \in \mathfrak{X}, \pi_{j}=\lim _{n \rightarrow \infty} P_{i j}^{(n)}$ exists, independent of the initial state X_{0}, and π_{j} 's satisfy $\sum_{j \in \mathfrak{X}} \pi_{j}=1$.

$$
\text { i.e., } \quad \lim _{n \rightarrow \infty} \mathbb{P}^{(n)}=\left(\begin{array}{ccccc}
\pi_{0} & \pi_{1} & \pi_{2} & \pi_{3} & \cdots \\
\pi_{0} & \pi_{1} & \pi_{2} & \pi_{3} & \cdots \\
\pi_{0} & \pi_{1} & \pi_{2} & \pi_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Limiting Distribution is a Stationary Distribution

The limiting distribution of a Markov chain is a stationary distribution of the Markov chain.

Proof (not rigorous). By Chapman Kolmogorov Equation,

$$
P_{i j}^{(n+1)}=\sum_{k \in \mathfrak{X}} P_{i k}^{(n)} P_{k j}
$$

Letting $n \rightarrow \infty$, we get

$$
\begin{aligned}
\pi_{j}=\lim _{n \rightarrow \infty} P_{i j}^{(n+1)} & =\lim _{n \rightarrow \infty} \sum_{k \in \mathfrak{X}} P_{i k}^{(n)} P_{k j} \\
& ={ }^{*} \sum_{k \in \mathfrak{X}} \lim _{n \rightarrow \infty} P_{i k}^{(n)} P_{k j} \quad \text { (needs justification) } \\
& =\sum_{k \in \mathfrak{X}} \pi_{k} P_{k j}
\end{aligned}
$$

Thus the limiting distribution π_{j} 's satisfies the equations $\pi_{j}=\sum_{k \in \mathfrak{X}} \pi_{k} P_{k j}$ for all $j \in \mathfrak{X}$ and is a stationary distribution.
See Karlin \& Taylor (1975), Theorem 1.3 on p.85-86 for a rigorous proof. Lecture 4-7

Limiting Distribution is Unique

If a Markov chain has a limiting distribution π, then

$$
\lim _{n \rightarrow \infty} \pi_{j}^{(n)}=\pi_{j} \text { for all } j \in \mathfrak{X}, \text { whatever } \pi^{(0)} \text { is }
$$

Proof (not rigorous). Since

$$
\pi_{j}^{(n)}=\sum_{k \in \mathfrak{X}} \pi_{k}^{(0)} P_{k j}^{(n)}
$$

Letting $n \rightarrow \infty$, we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \pi_{j}^{(n)} & =\lim _{n \rightarrow \infty} \sum_{k \in \mathfrak{X}} \pi_{k}^{(0)} P_{k j}^{(n)} \\
& ={ }^{*} \sum_{k \in \mathfrak{X}} \pi_{k}^{(0)} \lim _{n \rightarrow \infty} P_{k j}^{(n)} \quad \text { (needs justification) } \\
& =\underbrace{\sum_{k \in \mathfrak{X}} \pi_{k}^{(0)}}_{=1} \pi_{j}=\pi_{j}
\end{aligned}
$$

i.e., if a limiting distribution exists, it is the unique stationary distribution.

Example: Two-State Markov Chain

$$
\mathfrak{X}=\{0,1\}, \quad \mathbb{P}=\begin{array}{cc}
0 & 1 \\
0 \\
1
\end{array}\left(\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right)
$$

By induction, one can show that

$$
\begin{aligned}
\mathbb{P}^{(n)} & =\left(\begin{array}{ll}
\frac{\beta}{\alpha+\beta}+\frac{\alpha}{\alpha+\beta}(1-\alpha-\beta)^{n} & \frac{\alpha}{\alpha+\beta}-\frac{\alpha}{\alpha+\beta}(1-\alpha-\beta)^{n} \\
\frac{\beta}{\alpha+\beta}+\frac{\beta}{\alpha+\beta}(1-\alpha-\beta)^{n} & \frac{\alpha}{\alpha+\beta}-\frac{\beta}{\alpha+\beta}(1-\alpha-\beta)^{n}
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cc}
\frac{\beta}{\alpha+\beta} & \frac{\alpha}{\alpha+\beta} \\
\frac{\beta}{\alpha+\beta} & \frac{\alpha}{\alpha+\beta}
\end{array}\right) \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

The limiting distribution π is $\left(\frac{\beta}{\alpha+\beta}, \frac{\alpha}{\alpha+\beta}\right)$.

Not All Markov Chains Have Limiting Distributions

Consider the simple random walk X_{n} on $\{0,1,2,3,4\}$ with absorbing boundary at 0 and 4 . That is,

$$
X_{n+1}= \begin{cases}X_{n}+1 & \text { with probability } 0.5 \text { if } 0<X_{n}<4 \\ X_{n}-1 & \text { with probability } 0.5 \text { if } 0<X_{n}<4 \\ X_{n} & \text { if } X_{n}=0 \text { or } 4\end{cases}
$$

The transition matrix is hence

$$
\mathbb{P}=\begin{aligned}
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
1 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0.5 & 0 & 0.5 & 0 \\
0 & 0 & 0.5 & 0 & 0.5 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Not All Markov Chains Have Limiting Distributions

The n-step transition matrix of the simple random walk X_{n} on $\{0,1,2,3,4\}$ with absorbing boundary at 0 and 4 can by shown by induction using the Chapman-Kolmogorov Equation to be

Not All Markov Chains Have Limiting Distributions

The limit of the n-step transition matrix as $n \rightarrow \infty$ is

$$
\mathbb{P}^{(n)} \rightarrow \begin{aligned}
& \\
& \\
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
1 & 0 & 0 & 0 & 0 \\
0.75 & 0 & 0 & 0 & 0.25 \\
0.5 & 0 & 0 & 0 & 0.5 \\
0.25 & 0 & 0 & 0 & 0.75 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Though $\lim _{n \rightarrow \infty} P_{i j}^{(n)}$ exists but the limit depends on the initial state i, this Markov chain has no limiting distribution.
This Markov chain has two distinct absorbing states 0 and 4. Other transient states may be absorbed to either 0 or 4 with different probabilities depending how close those states are to 0 or 4 .

Periodicity

A state of a Markov chain is said to have period d if

$$
P_{i i}^{(n)}=0, \quad \text { whenever } n \text { is not a multiple of } d
$$

In other words, d is the greatest common divisor of all the n 's such that

$$
P_{i i}^{(n)}>0
$$

We say a state is aperiodic if $d=1$, and periodic if $d>1$.
Fact: Periodicity is a class property.
That is, all states in the same class have the same period.
For a proof, see Problem $2 \& 3$ on p. 77 of Karlin \& Taylor (1975).

Examples (Periodicity)

- All states in the Ehrenfest diffusion model are of period $d=2$ since it's impossible to move back to the initial state in odd number of steps.
- 1-D (2-D) Simple random walk on all integers (grids on a 2-d plane) are of period $d=2$
- Suppose a 2-D random walk can move to the nearest grid point in any direction, horizontally, vertically or diagonally, each with probability $1 / 8$.

What is the period of this Markov chain?

Example (Periodicity)

Specify the classes of a Markov chain with the following transition matrix, and find the periodicity for each state.
1
1
2
3
4
5
6
7
7 \(\left(\begin{array}{ccccccc}1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7

0 \& 0.5 \& 0 \& 0.5 \& 0 \& 0 \& 0

0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0

0.5 \& 0 \& 0 \& 0 \& 0 \& 0.5 \& 0

0 \& 0 \& 0.5 \& 0 \& 0.5 \& 0 \& 0

1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0.1 \& 0.9

0 \& 0 \& 0 \& 0 \& 0 \& 0.7 \& 0.3\end{array}\right) \quad\)	5	\rightarrow	1	\rightarrow	2
\uparrow	\swarrow	\uparrow	\swarrow		

Classes: $\{1,2,3,4,5\},\{6,7\}$.
Period is $d=1$ for state 6 and 7 .
Period is $d=3$ for state $1,2,3,4,5$ since
$\{1\} \rightarrow\{2,4\} \rightarrow\{3,5\} \rightarrow\{1\}$.

Periodic Markov Chains Have No Limiting Distributions

For example, in the Ehrenfest diffusion model with 4 balls, it can be shown by induction that the $(2 n-1)$-step transition matrix is

Periodic Markov Chains Have No Limiting Distributions

 and the $2 n$-step transition matrix is$$
\begin{aligned}
& \begin{array}{r}
\\
\mathbb{P}^{(2 n)}=\begin{array}{c}
0 \\
0 \\
1 \\
2 \\
4
\end{array}\left(\begin{array}{ccccc}
1 / 8+1 / 2^{2 n+1} & 0 & 2 & 3 & 4 \\
0 & 1 / 2+1 / 2^{2 n+1} & 0 & 1 / 2-1 / 2^{2 n+1} & 0 \\
1 / 8 & 0 & 3 / 4 & 0 & 1 / 8-1 / 2^{2 n+1} \\
1 / 8-1 / 2^{2 n+1} & 0 & 1 / 2-1 / 2^{2 n+1} & 0 & 1 / 2+1 / 2^{2 n+1}
\end{array}\right] 0 \\
0
\end{array} \\
& \begin{array}{rl}
\\
\\
0 \\
1 & 2 \\
& 3 \\
4
\end{array}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
1 / 8 & 0 & 3 / 4 & 0 & 1 / 8 \\
0 & 1 / 2 & 0 & 1 / 2 & 0 \\
1 / 8 & 0 & 3 / 4 & 0 & 1 / 8 \\
0 & 1 / 2 & 0 & 1 / 2 & 0 \\
1 / 8 & 0 & 3 / 4 & 0 & 1 / 8
\end{array}\right) \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Periodic Markov Chains Have No Limiting Distributions

In general for Ehrenfest diffusion model with N balls, as $n \rightarrow \infty$,

$$
\begin{aligned}
P_{i j}^{(2 n)} & \rightarrow \begin{cases}2\binom{N}{j}\left(\frac{1}{2}\right)^{N} & \text { if } i+j \text { is even } \\
0 & \text { if } i+j \text { is odd }\end{cases} \\
P_{i j}^{(2 n+1)} & \rightarrow \begin{cases}0 & \text { if } i+j \text { is even } \\
2\binom{N}{j}\left(\frac{1}{2}\right)^{N} & \text { if } i+j \text { is odd }\end{cases}
\end{aligned}
$$

$\lim _{n \rightarrow \infty} P_{i j}^{(n)}$ doesn't exist for all $i, j \in \mathfrak{X}$

Summary

- Stationary distribution may not be unique if the Markov chain is not irreducible
- Stationary distribution may not exist
- A limiting distribution is always a stationary distribution
- If it exists, limiting distribution is unique
- Limiting distribution do not exist if the Markov chain is periodic

