
STAT253/317 Lecture 3: 4.3 Classification of States

Definition. Consider a Markov chain {Xn, n ≥ 0} with state space
X. For two states i , j ∈ X, we say state j is accessible from state i

if P
(n)
ij > 0 for some n, and we denote it as

i → j .

Note that accessibility is transitive: for i , j , k ∈ X,
if i → j and j → k , then i → k .

Proof.

i → j ⇒ P
(m)
ij > 0 for some m

j → k ⇒ P
(n)
jk > 0 for some n

By Chapman-Kolmogorov Equation:

P
(m+n)
ik =

∑
l∈X

P
(m)
il P

(n)
lk ≥ P

(m)
ij P

(n)
jk > 0,

which shows i → k .
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Communicability

Definition. Consider a Markov chain {Xn, n ≥ 0} chain with state
space X. Two states i , j ∈ X are said to communicate if i → j ,
and j → i . We denote it as

i ←→ j .

Fact. Communicability is also transitive, meaning that

if i ←→ j and j ←→ k , then i ←→ k.

The proof is straight forward from the transitivity of accessibility.
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Communicative Class

Definition. Two states that communicate with each other are in
the same class. A state that communicates with no other states
itself is a class.

Fact. Two classes are either identical or disjoint.

Proof. If two classes A and B have one state i in common, then all
states in A communicate with i and all states in B do too.
Consequently, all states with A can communicate with states in B
(through state i). Class A and Class B must be identical.

i
j k

Class A
Class B
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Example 1. Specify the classes of the following Markov chains.

P1 =


1 2 3 4

1 0.5 0.5 0 0
2 0.3 0.6 0.1 0
3 0 0 0.2 0.8
4 0 0 0.9 0.1

 P2 =


1 2 3 4

1 1/2 1/2 0 0
2 1/2 1/2 0 0
3 1/4 1/4 1/4 1/4
4 0 0 0 1



For P1, 1↔ 2→ 3↔ 4. Classes: {1,2}, {3,4}.

For P2,

1 ←→ 2
↖ ↑

4 ← 3
	 	

. Classes: {1,2}, {3}, {4}.

Example 2. How many classes does the Ehrenfest diffusion model
with K balls have?

All states communicate. Only one class.

Lecture 3 - 4



Example 1. Specify the classes of the following Markov chains.

P1 =


1 2 3 4

1 0.5 0.5 0 0
2 0.3 0.6 0.1 0
3 0 0 0.2 0.8
4 0 0 0.9 0.1

 P2 =


1 2 3 4

1 1/2 1/2 0 0
2 1/2 1/2 0 0
3 1/4 1/4 1/4 1/4
4 0 0 0 1


For P1, 1↔ 2→ 3↔ 4. Classes: {1,2}, {3,4}.

For P2,

1 ←→ 2
↖ ↑

4 ← 3
	 	

. Classes: {1,2}, {3}, {4}.

Example 2. How many classes does the Ehrenfest diffusion model
with K balls have?

All states communicate. Only one class.

Lecture 3 - 4



Example 1. Specify the classes of the following Markov chains.

P1 =


1 2 3 4

1 0.5 0.5 0 0
2 0.3 0.6 0.1 0
3 0 0 0.2 0.8
4 0 0 0.9 0.1

 P2 =


1 2 3 4

1 1/2 1/2 0 0
2 1/2 1/2 0 0
3 1/4 1/4 1/4 1/4
4 0 0 0 1


For P1, 1↔ 2→ 3↔ 4. Classes: {1,2}, {3,4}.

For P2,

1 ←→ 2
↖ ↑

4 ← 3
	 	

. Classes: {1,2}, {3}, {4}.

Example 2. How many classes does the Ehrenfest diffusion model
with K balls have?

All states communicate. Only one class.

Lecture 3 - 4



Example 1. Specify the classes of the following Markov chains.

P1 =


1 2 3 4

1 0.5 0.5 0 0
2 0.3 0.6 0.1 0
3 0 0 0.2 0.8
4 0 0 0.9 0.1

 P2 =


1 2 3 4

1 1/2 1/2 0 0
2 1/2 1/2 0 0
3 1/4 1/4 1/4 1/4
4 0 0 0 1


For P1, 1↔ 2→ 3↔ 4. Classes: {1,2}, {3,4}.

For P2,

1 ←→ 2
↖ ↑

4 ← 3
	 	

. Classes: {1,2}, {3}, {4}.

Example 2. How many classes does the Ehrenfest diffusion model
with K balls have?
All states communicate. Only one class.

Lecture 3 - 4



Closed Classes

Definition. A class C is said to be closed if

Pij = 0 for all i in C and j not in C .

Once the process gets into a closed class. It will never leave the
class since the outgoing probabilities from the class are all 0.

Examples.

I For P1 in the previous slide, the class {1,2} is not closed
because it has a non-zero outgoing probability P23 = 0.1 > 0.
The class {3, 4} is closed.

I For P2 in the previous slide, the classes {1, 2} and {4} are
closed, and {3} is not closed.
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A Markov Chain Restricted to a Closed Class is Also a
Markov Chain

Example.

P1 =


1 2 3 4

1 0.5 0.5 0 0
2 0.3 0.6 0.1 0
3 0 0 0.2 0.8
4 0 0 0.9 0.1


I For P1 above, the Markov chain restricted to the class {3,4}

is also a Markov chain, with transition matrix

( 3 4

3 0.2 0.8
4 0.9 0.1

)
I The Markov chain for P1 can not be restricted to {1,2} as it

may transit out of the state space from 2 to 3.
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Irreducibility

A Markov chain is said to be irreducible if it has only 1 class.

Lecture 3 - 7



Recurrence & Transience

Consider a Markov chain {Xn, n ≥ 0} chain with state space X.
For i ∈ X, define

fi = P(Xn = i for some n > 0|X0 = i)

If fi = 1, we say state i is recurrent
If fi < 1, we say state i is transient

I It’s generally difficult to compute fi directly.
We need other tools to determine whether a state is recurrent
or transient.
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States in a Non-Closed Class Are Always Transient
For a class A that is NOT closed, there must exists some state k
not in A such that

Pi0,k > 0, for some state i0 in class A

but
P
(n)
ki = 0 for all state i in class A and for all n.

Otherwise, state i would be accessible from state k (k −→ i). As i
and i0 are in the same class, we know i ←→ i0. Combining all the
above, we have

k −→ i ←→ i0
Pi0,k

>0
−→ k .

and hence k would communicate with i0, contradicting to the
assumption that k is not in A.

Starting from a state j in a non-closed class A, there is a positive
probability that the Markov chain will move to state k and never
comes back to the class. Hence state j must be transient.

Are states in an closed class always recurrent?
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Fact 1 If state i is recurrent, then starting from state i , the process
will revisit state i infinitely often.

Fact 2 If state i is transient, then starting from state i , the number
of times the process revisits state i is finite, with expected
value 1/(1− fi ).
Reason: Let Ni be the number of times the process revisits
state i after starting from i . Observe that

P(Ni = k) = P(returns to i after 1st departure)

× · · · × P(returns to i after kth departure)

× P(never returns to i after k+1st departure)

= f ki (1− fi ), k = 0, 1, 2, . . .

i.e., Ni has a geometric distribution with mean 1/(1− fi ).
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Claim:

E(# of visit to state i |X0 = i) =
∑∞

n=1
P
(n)
ii

Proof. Define

Ini =

{
1 if Xn = i

0 if Xn 6= i
, n ≥ 0, i ∈ X.

Observe that
∑∞

n=1 Ini is the number of visits to state i .

E
[∑∞

n=1
Ini

∣∣∣X0 = i
]

=
∑∞

n=1
E[Ini |X0 = i ]

=
∑∞

n=1
P(Xn = i |X0 = i)

=
∑∞

n=1
P
(n)
ii

Conclusion from Fact 1, Fact 2 and the Claim Above:

State i is recurrent ⇐⇒ E(# of visit to state i |X0 = i) =∞.

⇐⇒
∑∞

n=1
P
(n)
ii =∞
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Proposition 4.1

State i is

{
recurrent if

∑∞
n=1 P

(n)
ii =∞

transient if
∑∞

n=1 P
(n)
ii <∞

Implication of Proposition 4.1:

States in a finite-state Markov chain CANNOT be all transient.

Reason. Observe that
∑

i∈X Ini = 1 for all n since Xn must be in
one of the states. Thus∑∞

n=1

∑
i∈X

Ini =
∑∞

n=1
1 =∞.

Since X is finite, there exists at least one state i such that∑∞

n=1
Ini =∞.

Such states are recurrent. Otherwise
∑∞

n=1

∑
i∈X Ini will be <∞.
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Corollary 4.2
If i ←→ j , and i is recurrent, then j is also recurrent.

Proof.

i → j ⇒ P
(k)
ij > 0 for some k

j → i ⇒ P
(l)
ji > 0 for some l

By Chapman-Kolmogorov Equation:

P
(l+n+k)
jj ≥ P

(l)
ji P

(n)
ii P

(k)
ij , for all k = 0, 1, 2, . . .

Thus∑∞

n=1
P
(n)
jj ≥

∑∞

n=1
P
(l+n+k)
jj ≥ P

(l)
ji︸︷︷︸
>0

∑∞

n=1
P
(n)
ii︸ ︷︷ ︸

=∞

P
(k)
ij︸︷︷︸
>0

=∞

Corollary 4.2 implies that all states of a finite irreducible Markov
chain are recurrent.
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Example: One-Dimensional Random Walk

Xn+1 =

{
Xn + 1 with prob. p

Xn − 1 with prob. 1− p

I State space {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }
I All states communicate

· · · ←→ −2←→ −1←→ 0←→ 1←→ 2←→ · · ·

Only one class⇒ Irreducible

⇒ States are all transient or all recurrent.

It suffices to check whether 0 is recurrent or transient, i.e.,
whether

∞∑
n=1

P
(n)
00 =∞ or <∞

Lecture 3 - 14



Example: One-Dimensional Random Walk (Cont’d)

P
(2n+1)
00 = 0 (Why?)

P
(2n)
00 =

(
2n

n

)
pn(1− p)n

=
(2n)!

n! n!
pn(1− p)n Stirlin’s Formula: n! ≈ nn+0.5e−n

√
2π

≈ (2n)2n+0.5e−2n
√

2π

(nn+0.5e−n
√

2π)2
pn(1−p)n

=
1√
πn

[4p(1− p)]n

Thus
∞∑
n=1

P2n
ii ≈

∞∑
n=1

1√
πn

[4p(1− p)]n

{
<∞ if p 6= 1/2

=∞ if p = 1/2

Conclusion: One-dimensional random walk is recurrent if p = 1/2,
and transient otherwise.
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Example: Two-Dimensional Symmetric Random Walk

Irreducible. Just check if 0 is recurrent.

P
(2n)
00 =

n∑
i=0

(2n)!

i !i !(n − i)!(n − i)!

(
1

4

)2n

=

(
2n

n

) n∑
i=0

(
n

i

)(
n

n − i

)
︸ ︷︷ ︸

=(2nn )

(
1

4

)2n

=

(
2n

n

)2(1

4

)2n

≈ 1

πn
by Stirlin’s Formula

Thus
∑∞

n=1 P
(2n)
00 =∞.

Two-dimensional symmetric random walk is recurrent.
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Example: d-Dimensional Symmetric Random Walk

In general, for a d-dimensional symmetric random walk, it can be
shown that

P
(2n)
00 ≈ (1/2)d−1

(
d

nπ

)d/2

Thus
∞∑
n=1

P
(2n)
00

{
=∞ for d = 1 or 2

<∞ for d ≥ 3
.

“A drunken man will find his way home.
A drunken bird might be lost forever.”
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