STAT253/317 Lecture 25

Yibi Huang

10.5 The Maximum of Brownian Motion with Drift (11th edition only, not in 10th edition)

Maximum of a Brownian Motion with drift

Let $\{X(t), t \geq 0\}$ be a Brownian Motion with drift coefficient μ and variance parameter σ^{2}. Consider the maximum of the process up to time t

$$
M(t)=\max _{0 \leq s \leq t} X(s)
$$

Also consider the hitting time to the value $a>0$

$$
T_{a}=\min \{t: X(t)=a\}
$$

- It remains true that $P\left(T_{a}<t\right)=P(M(t) \geq a)$.
- Recall for Brownian motion without drift, we use the Reflection principle to find $P\left(T_{a}<t\right)$
- Reflection principle doesn't apply to Brownian motion with drift. We need other tools.

Theorem 10.2

Let $X(t)$ be the Brownian motion process $\{B(t), t \geq 0\}$ with drift coefficient μ and variance parameter σ^{2}. Given that $X(t)=x$, the conditional distribution of $\{X(s): 0 \leq s \leq t\}$ does not depend on the value of μ.

Proof. Given $X(t)=x,\{X(s): 0 \leq s \leq t\}$ remains a Gaussian process. As a Gaussian process is uniquely determined by its mean function and the covariance function, it suffices to show that the mean function

$$
m(s)=\mathbb{E}[X(s) \mid X(t)=x], \quad 0 \leq s \leq t
$$

and covariance

$$
C(s, u)=\operatorname{Cov}(X(s), X(u) \mid X(t)=x), \quad 0 \leq s, u \leq t
$$

do not depend on the value of μ.

For jointly normal random variables, zero covariance implies independence. If we can find a scalar c such that

$$
\operatorname{Cov}(X(s)-c X(t), X(t))=0
$$

then $X(s)-c X(t)$ and $X(t)$ would be indep.. The conditional distribution of of $X(s)-c X(t)$ given $X(t)=x$ would simply be its unconditional distribution

$$
\begin{aligned}
X(s) & =c \underbrace{X(t)}_{x}+\underbrace{X(s)-c X(t)}_{\sim N\left(\mu s-c \mu t, \sigma^{2}\left(s-2 c s+c^{2} t\right)\right)} \\
& \sim N\left(c x+\mu s-c \mu t, \sigma^{2}\left(s-2 c s+c^{2} t\right)\right) .
\end{aligned}
$$

To make

$$
\begin{aligned}
\operatorname{Cov}(X(s)-c X(t), X(t)) & =\operatorname{Cov}(X(s), X(t))-\operatorname{Cov}(c X(t), X(t)) \\
& =\sigma^{2} s-c \sigma^{2} t=\sigma^{2}(s-c t)=0
\end{aligned}
$$

we must let $c=s / t$. Thus given $X(t)=x$ for $s<t$,

$$
X(s) \sim N(\frac{s x}{t}+\underbrace{\mu s-(s / t) \mu t}_{=\mu s-\mu s=0}, \sigma^{2} \frac{s(t-s)}{t})=N\left(\frac{s x}{t}, \sigma^{2} \frac{s(t-s)}{t}\right)
$$

So the mean function $m(s)=\mathbb{E}[X(s) \mid X(t)=x]=\frac{s X}{t}$ and the covariance function $C(s, u)=\operatorname{Cov}(X(s), X(u) \mid X(t)=x)=\sigma^{2} \frac{s(t-s)}{t}$ don't depend on the drift coefficient μ. Lecture 25-4

Theorem 10.3 on p.626-627

$$
P(M(t) \geq y \mid X(t)=x)= \begin{cases}1 & \text { if } x \geq y \geq 0 \\ e^{-2 y(y-x) / t \sigma^{2}} & \text { if } x<y, y \geq 0\end{cases}
$$

Proof.

- The equality is trivial when $x \geq y$ as $M(t) \geq X(t)=x \geq y$.
- When $x<y$, as Theorem 10.2 implies the conditional distribution of $M(t)=\max _{0 \leq s \leq t} X(s)$ given $X(t)=x$ is identical for all values of μ, we just need to show the identity for the case with drift $\mu=0$, to which the Reflection Principle is applicable.
- For $h>0$ small enough that $y-x-h>0$, by the Reflection Principle,

$$
\begin{aligned}
& P(M(t) \geq y, x \leq X(t) \leq x+h) \\
= & P(M(t) \geq y, 2 y-x-h \leq X(t) \leq 2 y-x) \\
= & P(2 y-x-h \leq X(t) \leq 2 y-x)
\end{aligned}
$$

where the last equality is valid since

$$
M(t) \geq X(t) \geq 2 y-x-h>y \text { as } y-x-h>0 .
$$

$$
\begin{aligned}
P(M(t) \geq y \mid X(t)=x) & =\lim _{h \rightarrow 0} \frac{P(M(t) \geq y, x \leq X(t) \leq x+h)}{P(x \leq X(t) \leq x+h)} \\
& =\lim _{h \rightarrow 0} \frac{P(2 y-x-h \leq X(t) \leq 2 y-x)}{P(x \leq X(t) \leq x+h)} \\
& =\frac{f(2 y-x)}{f(x)}
\end{aligned}
$$

where

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2} t}} \exp \left(-\frac{x^{2}}{2 \sigma^{2} t}\right)
$$

is the density function of $X(t) \sim N\left(0, \sigma^{2} t\right)$ with drift $\mu=0$. So

$$
\begin{aligned}
P(M(t) \geq y \mid X(t)=x) & =\frac{f(2 y-x)}{f(x)}=\frac{\exp \left(-(2 y-x)^{2} /\left(2 \sigma^{2} t\right)\right)}{\exp \left(-x^{2} /\left(2 \sigma^{2} t\right)\right)} \\
& =\exp \left(-\frac{(2 y-x)^{2}-x^{2}}{2 \sigma^{2} t}\right)=e^{-\frac{2 y(y-x)}{t \sigma^{2}}}
\end{aligned}
$$

Corollary 10.1 on p.627-628

Conditioning on $X(t)$ and using Theorem 10.3 yields

$$
\begin{aligned}
& P(M(t) \geq y)=\int_{-\infty}^{\infty} P(M(t) \geq y \mid X(t)=x) f_{X(t)}(x) d x \\
&=\int_{-\infty}^{y} \underbrace{e^{-\frac{2 y(y-x)}{t \sigma^{2}}} f_{X(t)}(x)}_{\text {see below }} d x+\underbrace{\int_{y}^{\infty} 1 \cdot f_{X(t)}(x) d x}_{y} \\
& e^{-\frac{2 y(y-x)}{t \sigma^{2}}} f_{X(t)}(x)=e^{-\frac{2 y(y-x)}{t \sigma^{2}}} \frac{1}{\sqrt{2 \pi \sigma^{2} t}} e^{-\frac{(x-\mu t)^{2}}{2 \sigma^{2} t}}=\frac{1}{\sqrt{2 \pi \sigma^{2} t}} e^{-\frac{(x-\mu t)^{2}+4 y(y-x)}{2 \sigma^{2} t}}
\end{aligned}
$$

in which

$$
\begin{aligned}
(x-\mu t)^{2}+4 y(y-x) & =x^{2}-2 \mu t x+\mu^{2} t^{2}+4 y^{2}-4 x y \\
& =x^{2}-2(\mu t+y) x+\underbrace{\mu^{2} t^{2} \overbrace{+4 \mu t y}^{\text {add a term }}+4 y^{2}}_{=(\mu t+2 y)^{2}} \overbrace{-4 \mu t y}^{\text {subtract a term }} \\
& =\underbrace{x^{2}-2(\mu t+y) x+(\mu t+2 y)^{2}}_{=(x-(\mu t+2 y))^{2}}-4 \mu t y
\end{aligned}
$$

Lecture 25-7

Corollary 10.1 on p.627-628 (Cont'd)

Putting everything together, we get

$$
P(M(t) \geq y)=e^{\frac{2 \mu t y}{\sigma^{2} t}} \int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi \sigma^{2} t}} e^{-\frac{(x-(\mu t+2 y))^{2}}{2 \sigma^{2} t}} d x+P(X(t)>y)
$$

Making the change of variable $u=x-2 y$ gives

$$
\begin{aligned}
P(M(t) \geq y) & =e^{\frac{2 \mu y t}{\sigma^{2} t}} \int_{-\infty}^{-y} \underbrace{\frac{1}{\sqrt{2 \pi \sigma^{2} t}} e^{-\frac{(u-\mu t)^{2}}{2 \sigma^{2} t}}}_{\text {density of } X(t)} d u+P(X(t)>y) \\
& =e^{\frac{2 \mu y}{\sigma^{2}}} P(X(t)<-y)+P(X(t)>y) \\
& =e^{\frac{2 \mu y}{\sigma^{2}}} \Phi\left(\frac{-y-\mu t}{\sigma \sqrt{t}}\right)+1-\Phi\left(\frac{y-\mu t}{\sigma \sqrt{t}}\right)
\end{aligned}
$$

since $X(t) \sim N\left(\mu t, \sigma^{2} t\right)$.
Note that for $\mu=0$, we get
$P(M(t) \geq y)=P(X(t)<-y)+P(X(t)>y)=P(|X(t)|>y)$,
which agrees with our calculation before.
Lecture 25-8

Hitting Time for Brownian Motion with drift

Also consider the hitting time to the value $y>0$

$$
T_{y}=\min \{t: X(t)=y\}
$$

It remains true that $T_{y}<t$ if and only if $M(t) \geq y$. So

$$
P\left(T_{y}<t\right)=e^{\frac{2 \mu y}{\sigma^{2}}} \Phi\left(\frac{-y-\mu t}{\sigma \sqrt{t}}\right)+1-\Phi\left(\frac{y-\mu t}{\sigma \sqrt{t}}\right)
$$

