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Chapter 10 Brownian Motion

• Brownian Motion as a Limit of Random Walk
• Brownian Motion as a Gaussian Process
10.2 Hitting Time, Maximum Value, Reflection Principle
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Generalized Random Walk

The symmetric simple random walk {Yn, n ≥ 1} can be defined
alternatively as a sum of i.i.d. random variables

Yn = X1 + X2 + · · ·+ Xn, n ≥ 1

where Xi ’s are i.i.d. with distribution

Xi =

{
1 w/ prob. 0.5

−1 w/ prob. 0.5

Generally, for any sequence of i.i.d random variables X1,X2, . . .
from an arbitrary distribution with E[Xi ] = 0, Var(Xi ) = σ2, the
partial sum process

Yn = X1 + X2 + · · ·+ Xn, n ≥ 1

is also called a (generalized) random walk.
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10.1 Brownian Motion as a Limit of Random Walk
The Browian motion is in fact a limit of rescaled generalized
random walk.
Let X1,X2, . . . be i.i.d. random variables, E[Xi ] = 0, Var(Xi ) = σ2.
Define

X (t) = ∆x(X1 + . . .+ Xbt/∆tc)

where bt/∆tc is the integer part of t/∆t.

We’d like to find the limit of X (t) as ∆t and ∆x both → 0.
Observe

E[X (t)] = 0, Var(X (t)) = σ2(∆x)2
⌊ t

∆t

⌋
,

To have a non-trivial limit, ∆t and ∆x must maintain the
relationship

∆t = c(∆x)2.

as they approach 0. Let’s take c = 1. In this case, as ∆t → 0,
∆x → 0, and ∆t = (∆x)2, we have

E[X (t)] = 0, Var(X (t))→ σ2t,
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Moreover, since ∆x =
√

∆t, by CLT

X (t) = ∆x(X1 + . . .+Xb t
∆t
c) ≈

√
tσ

X1 + . . .+ Xb t
∆t
c√

bt/∆tcσ
→ N(0, σ2t)

in distribution.

Observe that the discrete-time process

{X (t), t = n∆t, n = 0, 1, 2 . . .}

has independent and stationary increments since

X (s) = ∆x(X1 + . . .+ Xb s
∆t
c), and

X (t)− X (s) = ∆x(Xb s
∆t
c+1 + . . .+ Xb t

∆t
c)

are independent, and for t = l∆t > s = m∆t, the distribution of
X (t)− X (s) depends on the number of terms b t

∆t c − b
s

∆t c
= (l −m) = (t − s)/(∆t) in the sum, but not s.

Thus the limit of X (t) is a process with independent and
stationary increments.
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Definition of a Brownian Motion

Definition 1 A stochastic process {B(t), t ≥ 0} is said to be a
Brownian Motion if

(i) B(0) = 0;

(ii) {B(t), t ≥ 0} has stationary and independent increments;

(iii) for every t, s > 0, B(t + s)− B(s) ∼ N(0, σ2t)

A Brownian motion with σ = 1 is called a standard Brownian
motion process

In fact, we can show that, as a function of t, the path of B(t) is
continuous w/ prob. 1.
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Covariance Function of a Brownian Motion

For t > s

Cov[B(t),B(s)] = Cov[B(t)− B(s) + B(s),B(s)]

= Cov[B(t)− B(s),B(s)] + Cov[B(s),B(s)]

= 0 + Var[B(s)] (by indep. increment)

= σ2s

The function

C (s, t) = Cov(B(t),B(s)) = σ2 min(s, t)

is called the covariance function of the Brownian motion process.
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10.6 Gaussian Processes
Definition 10.2. A stochastic process {X (t), t ≥ 0} is called a
Gaussian process if X (t1), . . . ,X (tn) has a multivariate normal
distribution for all t1, . . . , tn.

Because a multivariate normal distribution is completely
determined by the marginal mean values and the covariance values
it follows that the properties of a Gaussian process is completely
determined by its mean function

m(t) = E[X (t)]

and covariance function

C (s, t) = Cov(X (s),X (t)).

That is, two Gaussian processes are the same if

their mean functions and covariance functions are identical.
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Brownian Motion as a Gaussian Process
Alternatively, a Brownian motion can be defined as a Gaussian
process with mean function

m(t) = E[B(t)] = 0

and covariance function

C (s, t) = Cov(B(s),B(t)) = σ2 min(s, t).

Properties of a Brownian Motion

Let {B(t), t ≥ 0} be a standard Brownian motion. One can prove
each of the following processes below is also a standard Brownian
motion by showing they are all Gaussian processes with the same
mean function and covariance function as the standard Brownian
motion.

(i) {−B(t), t ≥ 0} (ii) {B(t + s)− B(s), t ≥ 0}
(iii) {aB(t/a2), t ≥ 0} (iv) {tB(1/t), t ≥ 0}
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Properties of a Brownian Motion (Proofs)

We’ll prove (iv) only. The proofs for the rest are similar. Clearly
{tB(1/t), t ≥ 0} is a Gaussian process since it is a linear function
of a Brownian motion process.

E[tB(1/t)] = tE[B(1/t)] = 0 since B(1/t) ∼ N(0, 1/t)

Cov[tB(1/t), sB(1/s)] = tsCov[B(1/t),B(1/s)]

= ts min
(1

t
,

1

s

)
=

{
ts(1/t) = s if t > s

ts(1/s) = t if t ≤ s

= min(s, t)

As the Gaussian process {tB(1/t), t ≥ 0} has the same mean
function and variance function as a standard Brownian motion, it
is also a standard Brownian motion.
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Conditional Distribution

Given B(t) = x , what is the conditional distribution of B(s)?

If t < s, since Brownian motion has independent increments,
B(s)− B(t) is independent of B(t), and hence given B(t) = x ,
the condition distribution of B(s)− B(t) is the same as its
unconditional distribution.

(B(s)|B(t)=x) = B(t) + [B(s)− B(t)]

= x + B(s)− B(t)︸ ︷︷ ︸
∼N(0, σ2(s−t))

∼ N(x , σ2(s − t)).
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What if s < t?

If we can find a scalar c such that Cov(B(s)− cB(t),B(t)) = 0,
then

B(s)− cB(t) and B(t) are independent.

Thus the conditional distribution of of B(s)− cB(t) given B(t) is
the same as its unconditional distribution N(0, σ2(s − 2cs + c2t)).
Given B(t) = x ,

B(s) = c B(t)︸︷︷︸
x

+ B(s)− cB(t)︸ ︷︷ ︸
∼N(0,σ2(s−2cs+c2t))

∼ N
(
cx , σ2(s − 2cs + c2t)

)
.

Because

Cov(B(s)− cB(t),B(t)) = Cov(B(s),B(t))− Cov(cB(t),B(t))

= σ2s − cσ2t = σ2(s − ct)

we know c = s/t. Thus the conditional distribution of B(s) given
B(t) = x for s < t is

N

(
sx

t
, σ2 s(t − s)

t

)
.
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Hitting Times (First Passage Times)
Let Ta = min{t : B(t) = a} be the first time the standard
Brownian motion process hits a.

1 2 3 4 5
−1

0

1

2

t

B(t)
a

Ta

For a > 0, consider

P(B(t) ≥ a) = P(B(t) ≥ a|Ta ≤ t)P(Ta ≤ t)

+ P(B(t) ≥ a|Ta > t)︸ ︷︷ ︸
=0

P(Ta > t)

The 2nd term on the right is clearly 0, since by continuity, the
process value cannot be > a without having yet hit a.
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For the 1st term, note if Ta ≤ t , then the process hits a at some
point in [0, t] and, by symmetry, it is just as likely to be above or
below a at time t. That is

P(B(t) ≥ a|Ta ≤ t) =
1

2

Thus
P(Ta ≤ t) = 2P(B(t) ≥ a) = 2− 2Φ(a/

√
t),

where Φ(x) =
∫ x
−∞

1√
2π
e−u

2/2du is the CDF of N(0, 1).

By symmetry, T−a and Ta are identically distributed. Hence

P(Ta ≤ t) =
2√
2π

∫ ∞
|a|/
√
t
e−y

2/2dy .

HW: Show that P(Ta <∞) = 1 and E[Ta] =∞ for a > 0.
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Maximum
Another random variable of interest is

max
0≤s≤t

B(s).

By the continuity of Brownian motion, we know

max
0≤s≤t

B(s) ≥ a ⇔ Ta ≤ t

Thus the distribution of for max0≤s≤t B(s) can be derived via Ta.
For a > 0

P

(
max

0≤s≤t
B(s) ≥ a

)
= P(Ta ≤ t)

= 2P(B(t) ≥ a) = P(|B(t)| ≥ a)

= 2− 2Φ(a/
√
t)

Note this means max
0≤s≤t

B(s) have the same distribution as |B(t)|.

Lecture 22&23 - 14



Stopping Time
For a continuous time stochastic process {X (t), t ≥ 0}, a stopping
time T with respect to {X (t), t ≥ 0} is a nonnegative random
variable, such that the event {T ≤ t} depends only on
{X (s), 0 ≤ s ≤ t}.

Example

The hitting time Ta = min{t : B(t) = a} is a stopping time since

the event {Ta ≤ t} is identical to the event
{

max
0≤s≤t

B(s) ≥ a
}

1 2 3 4 5
−1

0

1

2

t

B(t)
a

Ta
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Strong Markov Property

Let {B(t), t ≥ 0} be a standard Brownian Motion, and let T be a
stopping time respective to {B(t), t ≥ 0}. Then

(a) Define Z (t) = B(t + T )− B(T ), t ≥ 0.
Then {Z (t), t ≥ 0} is also a standard Brownian Motion

(b) For each t > 0, {Z (s), 0 ≤ s ≤ t} is independent of
{B(u), 0 ≤ u ≤ T}

1 2 3 4 5
−1

0

1

2

t

B(t)

T

0

Z(t)
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Reflection Principle

Let Ta be the first passage time to the value a of a standard
Brownian Motion {B(t), t ≥ 0}. Define a new process

B(t) =

{
B(t) for t ≤ Ta

2a− B(t) for t > Ta

Then {B(t), t ≥ 0} is also a standard Brownian Motion.

1 2 3 4 5 t

B(t)

a

Ta
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Reflection Principle

Let Ta be the first passage time to the value a of a standard
Brownian Motion {B(t), t ≥ 0}. Define a new process
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Proof of the Reflection Principle

1 2 3 4 5 t

B(t)

a

Ta
For t > Ta, note

B(t) = a + B(t)− a = B(Ta) + B(t)− B(Ta).

I By Strong Markov Property,
B(s + Ta)− B(Ta) = B(s + Ta)− a is also a Brownian
Motion, independent of {B(s), 0 ≤ s ≤ Ta}.

I Also note that if {B(t), t ≥ 0} is a standard Brownian
motion, so is {−B(t), t ≥ 0}. Hence {a− B(s + Ta), s ≥ 0}
is also a Brownian Motion.

So {B(t), t > Ta} = {a + B(t)− a, t > Ta}
∼ {a + a− B(t), t > Ta} = {2a− B(t), t > Ta}.
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Brownian Motion Absorbed at a Value
Let {B(t)} be a Brownian Motion.
For a > 0, a Brownian Motion absorbed at a value a is defined as

Ba(t) =

{
B(t) if max0≤s≤t B(s) < a

a if max0≤s≤t B(s) ≥ a

What is the distribution of Ba(t)? For x < a,

P(Ba(t) ≤ x) = P
(
B(t) ≤ x , max

0≤s≤t
B(s) < a

)
= P(B(t) ≤ x)− P

(
B(t) ≤ x , max

0≤s≤t
B(s) ≥ a

)
= P(B(t) ≤ x)− P(B(t) ≤ x ,Ta ≤ t)

where the last equality comes from the fact{
max

0≤s≤t
B(s) ≥ a

}
⇔ {Ta ≤ t}.
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Brownian Motion Absorbed at a Value

t

B(t)

a
x

TaBy the Reflection principle,

P(B(t) ≤ x ,Ta ≤ t)

= P(B(t) ≥ 2a− x ,Ta ≤ t) = P(B(t) ≥ 2a− x)

since x ≤ a, B(t) ≥ 2a− x > a implies Ta ≤ t.

In summary, the CDF of Ba(t) is

P(Ba(t) ≤ x) = P
(
B(t) ≤ x , max

0≤s≤t
B(s) < a

)
= P(B(t) ≤ x)− P(B(t) ≥ 2a− x)

= Φ

(
x√
t

)
− 1 + Φ

(
2a− x√

t

)
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Brownian Motion Absorbed at a Value

t

B(t)
2a − x

a − x

a − xa
x
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t
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t

)
Lecture 22&23 - 20



More on the Reflection Principle
Let {B(t), t ≥ 0} be a standard Brownian motion. Let’s try to find
the joint distribution of

W (t) = max
0≤s≤t

B(s) and Y (t) = W (t)− B(t)

By the Reflection Principle,

P(W (t) ≥ w , B(t) ≤ x) = P(Tw ≤ t, B(t) ≤ x) = P(B(t) ≥ 2w−x)

The joint CDF of W (t) and B(t) is hence,

P(W (t) ≤ w , B(t) ≤ x) = P(B(t) ≤ x)− P(W (t) ≥ w , B(t) ≤ x)

= P(B(t) ≤ x)− P(B(t) ≥ 2w − x)

= Φ
( x√

t

)
−
[

1− Φ
(2w − x√

t

)]
.

where Φ(x) =
∫ x
−∞

1√
2π
e−u

2/2du is the CDF of N(0, 1).
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Let φ(x) =
d

dx
Φ(x) =

1√
2π

e−x
2/2 be the density of N(0, 1),

Observe that the derivative of φ(x) is

φ′(x) =
d

dx
φ(x) =

−x√
2π

e−x
2/2 = −xφ(x).

Take the derivative of the joint CDF of W (t) and B(t) on the
previous slide with respect to w and x we get the joint density of
W (t) and B(t) below

f (w , x) =
d

dx

d

dw

{
Φ
( x√

t

)
− 1 + Φ

(2w − x√
t

)]}
=

d

dx

[
0 +

2√
t
φ
(2w − x√

t

)]
(since

d

dw

(
Φ
( x√

t

)
− 1

)
= 0)

=
2w − x

t

2√
t
φ
(2w − x√

t

)
(since φ′(x) = −xφ(x))

=

√
2

πt3
(2w − x) exp

(
− (2w − x)2

2t

)
, w ≥ 0, x ≤ w
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Thus the joint density of W (t) and B(t) is

f (w , x) =

√
2

πt3
(2w − x) exp

(
− (2w − x)2

2t

)
, w ≥ 0, x ≤ w

By a change of variable of W (t), Y (t) = W (t)− B(t), we can
find the desired joint density of W (t), and Y (t)

g(w , y) = f (w ,w − y)

=

√
2

πt3
(w + y) exp

(
− (w + y)2

2t

)
, w ≥ 0, y ≥ 0

Note that the density is symmetric in w and y .
Thus Y (t) has the same marginal distribution as W (t), which is
also same as |B(t)|.
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