STAT253/317 Winter 2019 Lecture 22\&23

Yibi Huang

Chapter 10 Brownian Motion

- Brownian Motion as a Limit of Random Walk
- Brownian Motion as a Gaussian Process
10.2 Hitting Time, Maximum Value, Reflection Principle

Generalized Random Walk

The symmetric simple random walk $\left\{Y_{n}, n \geq 1\right\}$ can be defined alternatively as a sum of i.i.d. random variables

$$
Y_{n}=X_{1}+X_{2}+\cdots+X_{n}, \quad n \geq 1
$$

where X_{i} 's are i.i.d. with distribution

$$
X_{i}= \begin{cases}1 & \text { w/ prob. } 0.5 \\ -1 & \text { w/ prob. } 0.5\end{cases}
$$

Generally, for any sequence of i.i.d random variables X_{1}, X_{2}, \ldots from an arbitrary distribution with $\mathbb{E}\left[X_{i}\right]=0, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, the partial sum process

$$
Y_{n}=X_{1}+X_{2}+\cdots+X_{n}, \quad n \geq 1
$$

is also called a (generalized) random walk.

10.1 Brownian Motion as a Limit of Random Walk

 The Browian motion is in fact a limit of rescaled generalized random walk.Let X_{1}, X_{2}, \ldots be i.i.d. random variables, $\mathbb{E}\left[X_{i}\right]=0, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$. Define

$$
X(t)=\Delta x\left(X_{1}+\ldots+X_{\lfloor t / \Delta t\rfloor}\right)
$$

where $\lfloor t / \Delta t\rfloor$ is the integer part of $t / \Delta t$.
We'd like to find the limit of $X(t)$ as Δt and Δx both $\rightarrow 0$.
Observe

$$
\mathbb{E}[X(t)]=0, \quad \operatorname{Var}(X(t))=\sigma^{2}(\Delta x)^{2}\left\lfloor\frac{t}{\Delta t}\right\rfloor
$$

To have a non-trivial limit, Δt and Δx must maintain the relationship

$$
\Delta t=c(\Delta x)^{2}
$$

as they approach 0 . Let's take $c=1$. In this case, as $\Delta t \rightarrow 0$, $\Delta x \rightarrow 0$, and $\Delta t=(\Delta x)^{2}$, we have

$$
\mathbb{E}[X(t)]=0, \quad \operatorname{Var}(X(t)) \rightarrow \sigma^{2} t
$$

Lecture 22\&23-3

Moreover, since $\Delta x=\sqrt{\Delta t}$, by CLT
$X(t)=\Delta x\left(X_{1}+\ldots+X_{\left\lfloor\frac{t}{\Delta t}\right\rfloor}\right) \approx \sqrt{t} \sigma \frac{X_{1}+\ldots+X_{\left\lfloor\frac{t}{\Delta t}\right\rfloor}}{\sqrt{\lfloor t / \Delta t\rfloor} \sigma} \rightarrow N\left(0, \sigma^{2} t\right)$
in distribution.
Observe that the discrete-time process

$$
\{X(t), t=n \Delta t, n=0,1,2 \ldots\}
$$

has independent and stationary increments since

$$
\begin{aligned}
X(s) & =\Delta x\left(X_{1}+\ldots+X_{\left\lfloor\frac{s}{\Delta \Delta\rfloor}\right.}\right), \text { and } \\
X(t)-X(s) & =\Delta x\left(X_{\left\lfloor\frac{s}{\Delta t}\right\rfloor+1}+\ldots+X_{\left\lfloor\frac{t}{\Delta t}\right\rfloor}\right)
\end{aligned}
$$

are independent, and for $t=I \Delta t>s=m \Delta t$, the distribution of $X(t)-X(s)$ depends on the number of terms $\left\lfloor\frac{t}{\Delta t}\right\rfloor-\left\lfloor\frac{s}{\Delta t}\right\rfloor$ $=(I-m)=(t-s) /(\Delta t)$ in the sum, but not s.
Thus the limit of $X(t)$ is a process with independent and stationary increments.
Lecture 22\&23-4

Definition of a Brownian Motion

Definition 1 A stochastic process $\{B(t), t \geq 0\}$ is said to be a Brownian Motion if
(i) $B(0)=0$;
(ii) $\{B(t), t \geq 0\}$ has stationary and independent increments;
(iii) for every $t, s>0, B(t+s)-B(s) \sim N\left(0, \sigma^{2} t\right)$

A Brownian motion with $\sigma=1$ is called a standard Brownian motion process

In fact, we can show that, as a function of t, the path of $B(t)$ is continuous w/ prob. 1.

Covariance Function of a Brownian Motion

For $t>s$

$$
\begin{aligned}
\operatorname{Cov}[B(t), B(s)] & =\operatorname{Cov}[B(t)-B(s)+B(s), B(s)] \\
& =\operatorname{Cov}[B(t)-B(s), B(s)]+\operatorname{Cov}[B(s), B(s)] \\
& =0+\operatorname{Var}[B(s)] \quad \text { (by indep. increment) } \\
& =\sigma^{2} s
\end{aligned}
$$

The function

$$
C(s, t)=\operatorname{Cov}(B(t), B(s))=\sigma^{2} \min (s, t)
$$

is called the covariance function of the Brownian motion process.

10.6 Gaussian Processes

Definition 10.2. A stochastic process $\{X(t), t \geq 0\}$ is called a Gaussian process if $X\left(t_{1}\right), \ldots, X\left(t_{n}\right)$ has a multivariate normal distribution for all t_{1}, \ldots, t_{n}.

Because a multivariate normal distribution is completely determined by the marginal mean values and the covariance values it follows that the properties of a Gaussian process is completely determined by its mean function

$$
m(t)=\mathbb{E}[X(t)]
$$

and covariance function

$$
C(s, t)=\operatorname{Cov}(X(s), X(t))
$$

That is, two Gaussian processes are the same if
their mean functions and covariance functions are identical.

Brownian Motion as a Gaussian Process

Alternatively, a Brownian motion can be defined as a Gaussian process with mean function

$$
m(t)=\mathbb{E}[B(t)]=0
$$

and covariance function

$$
C(s, t)=\operatorname{Cov}(B(s), B(t))=\sigma^{2} \min (s, t)
$$

Properties of a Brownian Motion

Let $\{B(t), t \geq 0\}$ be a standard Brownian motion. One can prove each of the following processes below is also a standard Brownian motion by showing they are all Gaussian processes with the same mean function and covariance function as the standard Brownian motion.

$$
\begin{array}{ll}
\text { (i) }\{-B(t), t \geq 0\} & \text { (ii) }\{B(t+s)-B(s), t \geq 0\} \\
\text { (iii) }\left\{a B\left(t / a^{2}\right), t \geq 0\right\} & \text { (iv) }\{t B(1 / t), t \geq 0\}
\end{array}
$$

Properties of a Brownian Motion (Proofs)

We'll prove (iv) only. The proofs for the rest are similar. Clearly $\{t B(1 / t), t \geq 0\}$ is a Gaussian process since it is a linear function of a Brownian motion process.

$$
\mathbb{E}[t B(1 / t)]=t \mathbb{E}[B(1 / t)]=0 \quad \text { since } B(1 / t) \sim N(0,1 / t)
$$

$\operatorname{Cov}[t B(1 / t), s B(1 / s)]=t s \operatorname{Cov}[B(1 / t), B(1 / s)]$

$$
\begin{aligned}
& =t s \min \left(\frac{1}{t}, \frac{1}{s}\right)= \begin{cases}t s(1 / t)=s & \text { if } t>s \\
t s(1 / s)=t & \text { if } t \leq s\end{cases} \\
& =\min (s, t)
\end{aligned}
$$

As the Gaussian process $\{t B(1 / t), t \geq 0\}$ has the same mean function and variance function as a standard Brownian motion, it is also a standard Brownian motion.

Conditional Distribution

Given $B(t)=x$, what is the conditional distribution of $B(s)$?
If $t<s$, since Brownian motion has independent increments, $B(s)-B(t)$ is independent of $B(t)$, and hence given $B(t)=x$, the condition distribution of $B(s)-B(t)$ is the same as its unconditional distribution.

$$
\begin{aligned}
\left(\left.B(s)\right|_{B(t)=x}\right) & =B(t)+[B(s)-B(t)] \\
& =x+\underbrace{B(s)-B(t)}_{\sim N\left(0, \sigma^{2}(s-t)\right)} \\
& \sim N\left(x, \sigma^{2}(s-t)\right) .
\end{aligned}
$$

What if $s<t$?

If we can find a scalar c such that $\operatorname{Cov}(B(s)-c B(t), B(t))=0$, then

$$
B(s)-c B(t) \text { and } B(t) \text { are independent. }
$$

Thus the conditional distribution of of $B(s)-c B(t)$ given $B(t)$ is the same as its unconditional distribution $N\left(0, \sigma^{2}\left(s-2 c s+c^{2} t\right)\right)$. Given $B(t)=x$,

$$
B(s)=c \underbrace{B(t)}_{x}+\underbrace{B(s)-c B(t)}_{\sim N\left(0, \sigma^{2}\left(s-2 c s+c^{2} t\right)\right)} \sim N\left(c x, \sigma^{2}\left(s-2 c s+c^{2} t\right)\right) .
$$

Because

$$
\begin{aligned}
\operatorname{Cov}(B(s)-c B(t), B(t)) & =\operatorname{Cov}(B(s), B(t))-\operatorname{Cov}(c B(t), B(t)) \\
& =\sigma^{2} s-c \sigma^{2} t=\sigma^{2}(s-c t)
\end{aligned}
$$

we know $c=s / t$. Thus the conditional distribution of $B(s)$ given $B(t)=x$ for $s<t$ is

$$
N\left(\frac{s x}{t}, \sigma^{2} \frac{s(t-s)}{t}\right)
$$

Hitting Times (First Passage Times)

Let $T_{a}=\min \{t: B(t)=a\}$ be the first time the standard Brownian motion process hits a.

For $a>0$, consider

$$
\begin{aligned}
\mathrm{P}(B(t) \geq a)= & \mathrm{P}\left(B(t) \geq a \mid T_{a} \leq t\right) \mathrm{P}\left(T_{a} \leq t\right) \\
& +\underbrace{\mathrm{P}\left(B(t) \geq a \mid T_{a}>t\right)}_{=0} \mathrm{P}\left(T_{a}>t\right)
\end{aligned}
$$

The 2nd term on the right is clearly 0 , since by continuity, the process value cannot be $>a$ without having yet hit a.

Lecture 22\&23-12

For the 1st term, note if $T_{a} \leq t$, then the process hits a at some point in $[0, t]$ and, by symmetry, it is just as likely to be above or below a at time t. That is

$$
\mathrm{P}\left(B(t) \geq a \mid T_{a} \leq t\right)=\frac{1}{2}
$$

Thus

$$
\mathrm{P}\left(T_{a} \leq t\right)=2 \mathrm{P}(B(t) \geq a)=2-2 \Phi(a / \sqrt{t})
$$

where $\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u$ is the CDF of $N(0,1)$. By symmetry, T_{-a} and T_{a} are identically distributed. Hence

$$
\mathrm{P}\left(T_{a} \leq t\right)=\frac{2}{\sqrt{2 \pi}} \int_{|a| / \sqrt{t}}^{\infty} e^{-y^{2} / 2} d y
$$

HW: Show that $\mathrm{P}\left(T_{a}<\infty\right)=1$ and $\mathbb{E}\left[T_{a}\right]=\infty$ for $a>0$.

Maximum

Another random variable of interest is

$$
\max _{0 \leq s \leq t} B(s)
$$

By the continuity of Brownian motion, we know

$$
\max _{0 \leq s \leq t} B(s) \geq a \quad \Leftrightarrow \quad T_{a} \leq t
$$

Thus the distribution of for $\max _{0 \leq s \leq t} B(s)$ can be derived via T_{a}. For $a>0$

$$
\begin{aligned}
\mathrm{P}\left(\max _{0 \leq s \leq t} B(s) \geq a\right) & =\mathrm{P}\left(T_{a} \leq t\right) \\
& =2 \mathrm{P}(B(t) \geq a)=\mathrm{P}(|B(t)| \geq a) \\
& =2-2 \Phi(a / \sqrt{t})
\end{aligned}
$$

Note this means $\max _{0 \leq s \leq t} B(s)$ have the same distribution as $|B(t)|$.
Lecture 22\&23-14

Stopping Time

For a continuous time stochastic process $\{X(t), t \geq 0\}$, a stopping time T with respect to $\{X(t), t \geq 0\}$ is a nonnegative random variable, such that the event $\{T \leq t\}$ depends only on $\{X(s), 0 \leq s \leq t\}$.

Example

The hitting time $T_{a}=\min \{t: B(t)=a\}$ is a stopping time since the event $\left\{T_{a} \leq t\right\}$ is identical to the event $\left\{\max _{0 \leq s \leq t} B(s) \geq a\right\}$

Lecture 22\&23-15

Strong Markov Property

Let $\{B(t), t \geq 0\}$ be a standard Brownian Motion, and let T be a stopping time respective to $\{B(t), t \geq 0\}$. Then
(a) Define $Z(t)=B(t+T)-B(T), t \geq 0$. Then $\{Z(t), t \geq 0\}$ is also a standard Brownian Motion
(b) For each $t>0,\{Z(s), 0 \leq s \leq t\}$ is independent of $\{B(u), 0 \leq u \leq T\}$

Strong Markov Property

Let $\{B(t), t \geq 0\}$ be a standard Brownian Motion, and let T be a stopping time respective to $\{B(t), t \geq 0\}$. Then
(a) Define $Z(t)=B(t+T)-B(T), t \geq 0$. Then $\{Z(t), t \geq 0\}$ is also a standard Brownian Motion
(b) For each $t>0,\{Z(s), 0 \leq s \leq t\}$ is independent of $\{B(u), 0 \leq u \leq T\}$

Reflection Principle

Let T_{a} be the first passage time to the value a of a standard Brownian Motion $\{B(t), t \geq 0\}$. Define a new process

$$
\bar{B}(t)= \begin{cases}B(t) & \text { for } t \leq T_{a} \\ 2 a-B(t) & \text { for } t>T_{a}\end{cases}
$$

Then $\{\bar{B}(t), t \geq 0\}$ is also a standard Brownian Motion.
$B(t)$

Lecture 22\&23-17

Reflection Principle

Let T_{a} be the first passage time to the value a of a standard Brownian Motion $\{B(t), t \geq 0\}$. Define a new process

$$
\bar{B}(t)= \begin{cases}B(t) & \text { for } t \leq T_{a} \\ 2 a-B(t) & \text { for } t>T_{a}\end{cases}
$$

Then $\{\bar{B}(t), t \geq 0\}$ is also a standard Brownian Motion. $B(t)$

Proof of the Reflection Principle

For $t>T_{a}$, note

$$
B(t)=a+B(t)-a=B\left(T_{a}\right)+B(t)-B\left(T_{a}\right) .
$$

- By Strong Markov Property, $B\left(s+T_{a}\right)-B\left(T_{a}\right)=B\left(s+T_{a}\right)-a$ is also a Brownian Motion, independent of $\left\{B(s), 0 \leq s \leq T_{a}\right\}$.
- Also note that if $\{B(t), t \geq 0\}$ is a standard Brownian motion, so is $\{-B(t), t \geq 0\}$. Hence $\left\{a-B\left(s+T_{a}\right), s \geq 0\right\}$ is also a Brownian Motion.

$$
\text { So } \begin{aligned}
\left\{B(t), t>T_{a}\right\} & =\left\{a+B(t)-a, t>T_{a}\right\} \\
& \sim\left\{a+a-B(t), t>T_{a}\right\}=\left\{2 a-B(t), t>T_{a}\right\} .
\end{aligned}
$$

Brownian Motion Absorbed at a Value

Let $\{B(t)\}$ be a Brownian Motion.
For $a>0$, a Brownian Motion absorbed at a value a is defined as

$$
B_{a}(t)= \begin{cases}B(t) & \text { if } \max _{0 \leq s \leq t} B(s)<a \\ a & \text { if } \max _{0 \leq s \leq t} B(s) \geq a\end{cases}
$$

What is the distribution of $B_{a}(t)$? For $x<a$,

$$
\begin{aligned}
\mathrm{P}\left(B_{a}(t) \leq x\right) & =\mathrm{P}\left(B(t) \leq x, \max _{0 \leq s \leq t} B(s)<a\right) \\
& =\mathrm{P}(B(t) \leq x)-\mathrm{P}\left(B(t) \leq x, \max _{0 \leq s \leq t} B(s) \geq a\right) \\
& =\mathrm{P}(B(t) \leq x)-\mathrm{P}\left(B(t) \leq x, T_{a} \leq t\right)
\end{aligned}
$$

where the last equality comes from the fact

$$
\left\{\max _{0 \leq s \leq t} B(s) \geq a\right\} \Leftrightarrow\left\{T_{a} \leq t\right\}
$$

Brownian Motion Absorbed at a Value

$$
\begin{aligned}
& \mathrm{P}\left(B(t) \leq x, T_{a} \leq t\right) \\
= & \mathrm{P}\left(B(t) \geq 2 a-x, T_{a} \leq t\right)=\mathrm{P}(B(t) \geq 2 a-x)
\end{aligned}
$$

since $x \leq a, B(t) \geq 2 a-x>a$ implies $T_{a} \leq t$.
In summary, the CDF of $B_{a}(t)$ is

$$
\begin{aligned}
\mathrm{P}\left(B_{a}(t) \leq x\right) & =\mathrm{P}\left(B(t) \leq x, \max _{0 \leq s \leq t} B(s)<a\right) \\
& =\mathrm{P}(B(t) \leq x)-\mathrm{P}(B(t) \geq 2 a-x) \\
& =\Phi\left(\frac{x}{\sqrt{t}}\right)-1+\Phi\left(\frac{2 a-x}{\sqrt{t}}\right)
\end{aligned}
$$

Lecture 22\&23-20

Brownian Motion Absorbed at a Value

$$
\begin{aligned}
& \mathrm{P}\left(B(t) \leq x, T_{a} \leq t\right) \\
= & \mathrm{P}\left(B(t) \geq 2 a-x, T_{a} \leq t\right)=\mathrm{P}(B(t) \geq 2 a-x)
\end{aligned}
$$

since $x \leq a, B(t) \geq 2 a-x>a$ implies $T_{a} \leq t$.
In summary, the CDF of $B_{a}(t)$ is

$$
\begin{aligned}
\mathrm{P}\left(B_{a}(t) \leq x\right) & =\mathrm{P}\left(B(t) \leq x, \max _{0 \leq s \leq t} B(s)<a\right) \\
& =\mathrm{P}(B(t) \leq x)-\mathrm{P}(B(t) \geq 2 a-x) \\
& =\Phi\left(\frac{x}{\sqrt{t}}\right)-1+\Phi\left(\frac{2 a-x}{\sqrt{t}}\right)
\end{aligned}
$$

Lecture 22\&23-20

More on the Reflection Principle

Let $\{B(t), t \geq 0\}$ be a standard Brownian motion. Let's try to find the joint distribution of

$$
W(t)=\max _{0 \leq s \leq t} B(s) \quad \text { and } \quad Y(t)=W(t)-B(t)
$$

By the Reflection Principle,
$\mathrm{P}(W(t) \geq w, B(t) \leq x)=\mathrm{P}\left(T_{w} \leq t, B(t) \leq x\right)=\mathrm{P}(B(t) \geq 2 w-x)$
The joint CDF of $W(t)$ and $B(t)$ is hence,

$$
\begin{aligned}
\mathrm{P}(W(t) \leq w, B(t) \leq x) & =\mathrm{P}(B(t) \leq x)-\mathrm{P}(W(t) \geq w, B(t) \leq x) \\
& =\mathrm{P}(B(t) \leq x)-\mathrm{P}(B(t) \geq 2 w-x) \\
& =\Phi\left(\frac{x}{\sqrt{t}}\right)-\left[1-\Phi\left(\frac{2 w-x}{\sqrt{t}}\right)\right]
\end{aligned}
$$

where $\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u$ is the CDF of $N(0,1)$.
Lecture 22\&23-21

Let $\phi(x)=\frac{d}{d x} \Phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ be the density of $N(0,1)$,
Observe that the derivative of $\phi(x)$ is

$$
\phi^{\prime}(x)=\frac{d}{d x} \phi(x)=\frac{-x}{\sqrt{2 \pi}} e^{-x^{2} / 2}=-x \phi(x) .
$$

Take the derivative of the joint CDF of $W(t)$ and $B(t)$ on the previous slide with respect to w and x we get the joint density of $W(t)$ and $B(t)$ below

$$
\begin{aligned}
f(w, x) & \left.=\frac{d}{d x} \frac{d}{d w}\left\{\Phi\left(\frac{x}{\sqrt{t}}\right)-1+\Phi\left(\frac{2 w-x}{\sqrt{t}}\right)\right]\right\} \\
& =\frac{d}{d x}\left[0+\frac{2}{\sqrt{t}} \phi\left(\frac{2 w-x}{\sqrt{t}}\right)\right] \quad\left(\text { since } \frac{d}{d w}\left(\Phi\left(\frac{x}{\sqrt{t}}\right)-1\right)=0\right) \\
& =\frac{2 w-x}{t} \frac{2}{\sqrt{t}} \phi\left(\frac{2 w-x}{\sqrt{t}}\right) \quad\left(\text { since } \phi^{\prime}(x)=-x \phi(x)\right) \\
& =\sqrt{\frac{2}{\pi t^{3}}}(2 w-x) \exp \left(-\frac{(2 w-x)^{2}}{2 t}\right), w \geq 0, x \leq w
\end{aligned}
$$

Thus the joint density of $W(t)$ and $B(t)$ is

$$
f(w, x)=\sqrt{\frac{2}{\pi t^{3}}}(2 w-x) \exp \left(-\frac{(2 w-x)^{2}}{2 t}\right), w \geq 0, x \leq w
$$

By a change of variable of $W(t), Y(t)=W(t)-B(t)$, we can find the desired joint density of $W(t)$, and $Y(t)$

$$
\begin{aligned}
g(w, y) & =f(w, w-y) \\
& =\sqrt{\frac{2}{\pi t^{3}}}(w+y) \exp \left(-\frac{(w+y)^{2}}{2 t}\right), w \geq 0, y \geq 0
\end{aligned}
$$

Note that the density is symmetric in w and y.
Thus $Y(t)$ has the same marginal distribution as $W(t)$, which is also same as $|B(t)|$.

