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8.7 The Model G/M/1
The G/M/1 model assumes

I i.i.d times between successive arrivals with an arbitrary
distribution G

I i.i.d service times ∼ Exp(µ)
I a single server; and
I first come, first serve

Just like M/G/1 system, there is also a discrete-time Markov chain
embedded in an G/M/1 system. Let

Yn = # of customers in the system seen by the nth arrival, n ≥ 1

Dn = # of customers the server can possibly serve

between the (n − 1)st and the nth arrival, n ≥ 1

Observed that {Yn, n ≥ 0} and {Dn, n ≥ 1} are related as follows

Yn+1 =

{
Yn + 1− Dn+1 if Yn + 1 ≥ Dn+1

0 if Yn + 1 < Dn+1

, n ≥ 1
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A Markov Chain embedded in G/M/1 (Cont’d)

I By the memoryless property of the exponential service time,
the remaining service time of the customer being served at an
arrival is also ∼ Exp(µ).

I Thus starting from the (n − 1)st arrival, the events of
completion of servicing a customer constitute a Poisson
process of rate µ.

I Let Gn be the time elapsed between the (n − 1)st and the nth
arrival.

I Then given Gn, Dn is Poisson with mean µGn.

I As Gn’s are i.i.d ∼ G , we can conclude that D1,D2, . . . are
i.i.d. with distribution

δk = P(Dn = k) =

∫ ∞
0

P(Dn = k|Gn = y)G (dy)

=

∫ ∞
0

(µy)k

k!
e−µyG (dy)
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A Markov Chain embedded in G/M/1 (Cont’d)
The transition probabilities Pij for the Markov chain {Yn, n ≥ 0}
are thus:

Pij = P(Yn+1 = j |Yn = i)

=


P(Dn+1 ≥ i + 1) =

∑∞
k=i+1 δk if j = 0

P(Dn+1 = i + 1− j) = δi+1−j , if j ≥ 1, i + 1 ≥ j

0 if i + 1 < j

i.e., the transition probability matrix is

P =



0 1 2 3 4 · · ·
0

∑∞
k=1 δk δ0 0 0 0 · · ·

1
∑∞

k=2 δk δ1 δ0 0 0 · · ·
2

∑∞
k=3 δk δ2 δ1 δ0 0 · · ·

3
∑∞

k=4 δk δ3 δ2 δ1 δ0 · · ·
...

...
...

...
...

...
. . .
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A Markov Chain embedded in G/M/1 (Cont’d)
To find the stationary distribution πi = limn→∞ P(Yn = i),
i = 0, 1, 2, . . ., we have to solve the equations

πj =
∞∑
i=0

πiPij =
∞∑

i=j−1
πiδi+1−j , j ≥ 1 and

∞∑
j=0

πj = 1

Let us try a solution of the form πj = cβj , j ≥ 0. Substituting into
the equation above leads to

cβj =
∑∞

i=j−1
cβiδi+1−j (Divide both sides by cβj−1)

⇒ β =
∑∞

i=j−1
βi+1−jδi+1−j =

∑∞

i=0
βiδi

Observe that
∑∞

i=0 β
iδi is exactly the generating function of Dn

g(s) = E[sDn ] taking value at s = β.
Thus if we can find 0 < β < 1 such that β = g(β), then

πj = (1− β)βj , j ≥ 0

is a stationary distribution of {Yn}.
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A Markov Chain embedded in G/M/1 (Cont’d)
The equation

β = g(β)

has a solution between 0 and 1 iff g ′(1) = E [Dn] = µE[Gn] > 1
since

This condition is intuitive since if

the average service time 1/µ

< the average interarrival time of customers E[Gn],

the queue will become longer and longer and the system will
ultimately explode. Lecture 21 - 6

yibih
Arrow

yibih
Arrow

yibih
Pencil

yibih
Typewriter
g(beta)

yibih
Line

yibih
Line

yibih
Typewriter
1

yibih
Typewriter
1

yibih
Typewriter
1=g(1)

yibih
Line

yibih
Pencil

yibih
Pencil



PASTA Principle Does Not Apply to G/M/1

With the stationary distribution {πj , j ≥ 0}, one might attempt to
calculate L, the average number of customers in the system as

E[Yn] =
∑∞

k=0
πk =

∑∞

k=0
k(1− β)βk =

β

1− β
.

However, the PASTA principle does not apply as the arrival process
is not Poisson. Recall

ak = πk = proportion of arrivals see k in the system

Pk = proportion of time having k customers in the system,
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W of G/M/1
Though we cannot use {πj} to find L, we can use it to find W .
Let Wn be the waiting time of nth customer in the system. If
he/she see k customers at arrival, then Wn is the total service time
of k + 1 customers. That is,

E[Wn|Yn = k] = E[sum of k + 1 i.i.d. Exp(µ) service times]

=
k + 1

µ
.

Thus

W =
∞∑
k=0

E[Wn|Yn = k]P(Yn = k) =
∞∑
k=0

E[Wn|Yn = k]πk

=
∞∑
k=0

k + 1

µ
(1− β)βk =

1

µ(1− β)

Here we use the identity
∞∑
k=0

(k + 1)xk =
1

(1− x)2
.
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L, WQ , LQ of G/M/1

By the Little’s Formula, we know L = λW , in which λ is the
arrival rate of customers, which is the reciprocal of the mean
interarrival time E[Gn]

λ =
1

E[Gn]

Thus

L = λW =
1

E[Gn]

1

µ(1− β)
=

1

µE[Gn](1− β)

Moreover,

WQ = W − E[Service Time] = W − 1

µ
=

β

µ(1− β)

LQ = λWQ =
β

µE[Gn](1− β)
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8.9.3 G/M/k

Just like G/M/1 system, G/M/k system can also be analyzed as a
Markov Chain. Let

Yn = # of customers in the system seen by the nth arrival, n ≥ 1

Dn = # of customers the k servers can possibly serve

between the (n − 1)st and the nth arrival, n ≥ 1

Observed again that {Yn, n ≥ 0} and {Dn, n ≥ 1} are related as
follows

Yn+1 =

{
Yn + 1− Dn+1 if Yn + 1 ≥ Dn+1

0 if Yn + 1 < Dn+1

, n ≥ 1

One can show that the distribution of Dn+1 depends on Yn but not
Yn−1,Yn−2, . . . and hence {Yn} is a Markov chain. The transition
probabilities are given in p.544-545 (p.565-566 in 10ed)
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8.9.4 M/G/k

Unlike G/M/k, the method to analyze M/G/1 cannot be used to
analyze M/G/k. If we follow the lines as we do in M/G/1

Yn = # of customers in the system

leaving behind at the nth departure, n ≥ 1

Dn = # of customers entered the system

during the service time of the nth customer, n ≥ 1

As there are more than one server, the service times are not
disjoint, and hence Dn’s are not independent.

In fact, there is NO known exact formula for L, W , LQ , WQ of an
M/G/k system.
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