STAT253/317 Winter 2017 Lecture 21

Yibi Huang

Section 8.7 The Model G/M/1

Lecture 21-1

8.7 The Model G/M/1

The $G / M / 1$ model assumes

- i.i.d times between successive arrivals with an arbitrary distribution G
- i.i.d service times $\sim \operatorname{Exp}(\mu)$
- a single server; and
- first come, first serve

Just like $M / G / 1$ system, there is also a discrete-time Markov chain embedded in an $G / M / 1$ system. Let
$Y_{n}=\#$ of customers in the system seen by the nth arrival, $n \geq 1$
$D_{n}=\#$ of customers the server can possibly serve between the $(n-1)$ st and the nth arrival, $n \geq 1$

Observed that $\left\{Y_{n}, n \geq 0\right\}$ and $\left\{D_{n}, n \geq 1\right\}$ are related as follows

$$
Y_{n+1}=\left\{\begin{array}{ll}
Y_{n}+1-D_{n+1} & \text { if } Y_{n}+1 \geq D_{n+1} \\
0 & \text { if } Y_{n}+1<D_{n+1}
\end{array}, \quad n \geq 1\right.
$$

Lecture 21-2

A Markov Chain embedded in $G / M / 1$ (Cont'd)

- By the memoryless property of the exponential service time, the remaining service time of the customer being served at an arrival is also $\sim \operatorname{Exp}(\mu)$.
- Thus starting from the $(n-1)$ st arrival, the events of completion of servicing a customer constitute a Poisson process of rate μ.
- Let G_{n} be the time elapsed between the $(n-1)$ st and the nth arrival.
- Then given G_{n}, D_{n} is Poisson with mean μG_{n}.
- As G_{n} 's are i.i.d $\sim G$, we can conclude that D_{1}, D_{2}, \ldots are i.i.d. with distribution

$$
\begin{aligned}
\delta_{k}=\mathrm{P}\left(D_{n}=k\right) & =\int_{0}^{\infty} \mathrm{P}\left(D_{n}=k \mid G_{n}=y\right) G(d y) \\
& =\int_{0}^{\infty} \frac{(\mu y)^{k}}{k!} e^{-\mu y} G(d y)
\end{aligned}
$$

Lecture 21-3

A Markov Chain embedded in $G / M / 1$ (Cont'd)

The transition probabilities $P_{i j}$ for the Markov chain $\left\{Y_{n}, n \geq 0\right\}$ are thus:

$$
\begin{aligned}
P_{i j} & =\mathrm{P}\left(Y_{n+1}=j \mid Y_{n}=i\right) \\
& = \begin{cases}\mathrm{P}\left(D_{n+1} \geq i+1\right)=\sum_{k=i+1}^{\infty} \delta_{k} & \text { if } j=0 \\
\mathrm{P}\left(D_{n+1}=i+1-j\right)=\delta_{i+1-j}, & \text { if } j \geq 1, i+1 \geq j \\
0 & \text { if } i+1<j\end{cases}
\end{aligned}
$$

i.e., the transition probability matrix is

$$
\mathbb{P}=\begin{gathered}
0 \\
0 \\
1 \\
2 \\
3 \\
\vdots
\end{gathered}\left(\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & \cdots \\
\sum_{k=1}^{\infty} \delta_{k} & \delta_{0} & 0 & 0 & 0 & \cdots \\
\sum_{k=2}^{\infty=3} \delta_{k} & \delta_{1} & \delta_{0} & 0 & 0 & \cdots \\
\sum_{k=4}^{\infty} \delta_{k} & \delta_{2} & \delta_{1} & \delta_{0} & 0 & \cdots \\
\vdots & \vdots & \delta_{2} & \delta_{1} & \delta_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

A Markov Chain embedded in $G / M / 1$ (Cont'd)

To find the stationary distribution $\pi_{i}=\lim _{n \rightarrow \infty} \mathrm{P}\left(Y_{n}=i\right)$,
$i=0,1,2, \ldots$, we have to solve the equations

$$
\pi_{j}=\sum_{i=0}^{\infty} \pi_{i} P_{i j}=\sum_{i=j-1}^{\infty} \pi_{i} \delta_{i+1-j}, j \geq 1 \quad \text { and } \quad \sum_{j=0}^{\infty} \pi_{j}=1
$$

Let us try a solution of the form $\pi_{j}=c \beta^{j}, j \geq 0$. Substituting into the equation above leads to

$$
\begin{aligned}
c \beta^{j} & =\sum_{i=j-1}^{\infty} c \beta^{i} \delta_{i+1-j} \quad \text { (Divide both sides by } c \beta^{j-1} \text {) } \\
\Rightarrow \quad \beta & =\sum_{i=j-1}^{\infty} \beta^{i+1-j} \delta_{i+1-j}=\sum_{i=0}^{\infty} \beta^{i} \delta_{i}
\end{aligned}
$$

Observe that $\sum_{i=0}^{\infty} \beta^{i} \delta_{i}$ is exactly the generating function of D_{n} $g(s)=\mathbb{E}\left[s^{D_{n}}\right]$ taking value at $s=\beta$.
Thus if we can find $0<\beta<1$ such that $\beta=g(\beta)$, then

$$
\pi_{j}=(1-\beta) \beta^{j}, \quad j \geq 0
$$

is a stationary distribution of $\left\{Y_{n}\right\}$.

A Markov Chain embedded in $G / M / 1$ (Cont'd)

The equation

$$
\beta=g(\beta)
$$

has a solution between 0 and 1 iff $g^{\prime}(1)=E\left[D_{n}\right]=\mu \mathbb{E}\left[G_{n}\right]>1$ since

This condition is intuitive since if
the average service time $1 / \mu$
$<$ the average interarrival time of customers $\mathbb{E}\left[G_{n}\right]$,
the queue will become longer and longer and the system will ultimately explode.

PASTA Principle Does Not Apply to G/M/1

With the stationary distribution $\left\{\pi_{j}, j \geq 0\right\}$, one might attempt to calculate L, the average number of customers in the system as

$$
\mathbb{E}\left[Y_{n}\right]=\sum_{k=0}^{\infty} \pi_{k}=\sum_{k=0}^{\infty} k(1-\beta) \beta^{k}=\frac{\beta}{1-\beta}
$$

However, the PASTA principle does not apply as the arrival process is not Poisson. Recall

$$
\begin{aligned}
a_{k}= & \pi_{k}=\text { proportion of arrivals see } k \text { in the system } \\
& P_{k}=\text { proportion of time having } k \text { customers in the system },
\end{aligned}
$$

W of $G / M / 1$

Though we cannot use $\left\{\pi_{j}\right\}$ to find L, we can use it to find W. Let W_{n} be the waiting time of nth customer in the system. If he/she see k customers at arrival, then W_{n} is the total service time of $k+1$ customers. That is,

$$
\begin{aligned}
\mathbb{E}\left[W_{n} \mid Y_{n}=k\right] & =\mathbb{E}[\text { sum of } k+1 \text { i.i.d. } \operatorname{Exp}(\mu) \text { service times }] \\
& =\frac{k+1}{\mu}
\end{aligned}
$$

Thus

$$
\begin{aligned}
W & =\sum_{k=0}^{\infty} \mathbb{E}\left[W_{n} \mid Y_{n}=k\right] \mathrm{P}\left(Y_{n}=k\right)=\sum_{k=0}^{\infty} \mathbb{E}\left[W_{n} \mid Y_{n}=k\right] \pi_{k} \\
& =\sum_{k=0}^{\infty} \frac{k+1}{\mu}(1-\beta) \beta^{k}=\frac{1}{\mu(1-\beta)} \quad \operatorname{sum}_{\infty}\{\mathrm{k}=0\}^{\wedge}\{\mathrm{int} \\
& =1 /(1-\mathrm{x})
\end{aligned}
$$

Here we use the identity $\sum_{k=0}^{\infty}(k+1) x^{k}=\frac{1}{(1-x)^{2}}$.
Lecture 21-8

L, W_{Q}, L_{Q} of $G / M / 1$

By the Little's Formula, we know $L=\lambda W$, in which λ is the arrival rate of customers, which is the reciprocal of the mean interarrival time $\mathbb{E}\left[G_{n}\right]$

$$
\lambda=\frac{1}{\mathbb{E}\left[G_{n}\right]}
$$

Thus

$$
L=\lambda W=\frac{1}{\mathbb{E}\left[G_{n}\right]} \frac{1}{\mu(1-\beta)}=\frac{1}{\mu \mathbb{E}\left[G_{n}\right](1-\beta)}
$$

Moreover,

$$
\begin{aligned}
W_{Q} & =W-\mathbb{E}[\text { Service Time }]=W-\frac{1}{\mu}=\frac{\beta}{\mu(1-\beta)} \\
L_{Q} & =\lambda W_{Q}=\frac{\beta}{\mu \mathbb{E}\left[G_{n}\right](1-\beta)}
\end{aligned}
$$

8.9.3 G/M/k

Just like $G / M / 1$ system, $G / M / k$ system can also be analyzed as a Markov Chain. Let
$Y_{n}=\#$ of customers in the system seen by the nth arrival, $n \geq 1$ $D_{n}=\#$ of customers the k servers can possibly serve between the $(n-1)$ st and the nth arrival, $n \geq 1$

Observed again that $\left\{Y_{n}, n \geq 0\right\}$ and $\left\{D_{n}, n \geq 1\right\}$ are related as follows

$$
Y_{n+1}=\left\{\begin{array}{ll}
Y_{n}+1-D_{n+1} & \text { if } Y_{n}+1 \geq D_{n+1} \\
0 & \text { if } Y_{n}+1<D_{n+1}
\end{array}, \quad n \geq 1\right.
$$

One can show that the distribution of D_{n+1} depends on Y_{n} but not Y_{n-1}, Y_{n-2}, \ldots and hence $\left\{Y_{n}\right\}$ is a Markov chain. The transition probabilities are given in p.544-545 (p.565-566 in 10ed)

8.9.4 M/G/k

Unlike $G / M / k$, the method to analyze $M / G / 1$ cannot be used to analyze $M / G / k$. If we follow the lines as we do in $M / G / 1$
$Y_{n}=\#$ of customers in the system leaving behind at the nth departure, $n \geq 1$
$D_{n}=\#$ of customers entered the system during the service time of the nth customer, $n \geq 1$

As there are more than one server, the service times are not disjoint, and hence D_{n} 's are not independent.

In fact, there is NO known exact formula for L, W, L_{Q}, W_{Q} of an $M / G / k$ system.

