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8.2.2. Steady-State Probabilities
For a general queueing model, we are interested in three different
limiting probabilities:

Pn = lim
t→∞

P(X (t) = n),

where X (t) = # of customers in the system at time t

an = proportion of customers arrive finding n in the system

dn = proportion of customers depart leaving n behind in the system

Here we assume they exist.
Though the three are defined differently, the latter two are
identical in most of the queueing models.

Proposition 8.1 In any system in which customers arrive and
depart one at a time

the rate at which arrivals find n = the rate at which departures leave n

and
an = dn
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Proof of Proposition 8.1
Let

Ni ,j(t) = number of times the number of customers in the system

goes from i to j by time t

A(t) = number of customers arrived by time t

D(t) = number of customers departed by time t

Note that an arrival will see n in the system whenever the number
in the system goes from n to n + 1; similarly, a departure will leave
behind n whenever the number in the system goes from n + 1 to n.
Thus we know

the rate at which arrivals find n = lim
t→∞

Nn,n+1(t)

t

the rate at which departures leave n = lim
t→∞

Nn+1,n(t)

t

an = lim
t→∞

Nn,n+1(t)

A(t)
, dn = lim

t→∞

Nn+1,n(t)

D(t)
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Proof of Proposition 8.1 (Cont’d)

Since between any two transitions from n to n + 1, there must be
one from n + 1 to n, and vice versa, we have

Nn,n+1(t) = Nn+1,n(t)± 1 for all t.

Thus

rate at which arrivals find n = lim
t→∞

Nn,n+1(t)

t

= lim
t→∞

Nn+1,n(t)± 1

t
= rate at which departures leave n
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Proof of Proposition 8.1 (Cont’d)

For an and dn, obviously A(t) ≥ D(t) and hence

lim
t→∞

A(t)

t
≥ lim

t→∞

D(t)

t

Combining with the fact limt→∞
Nn,n+1(t)

t = limt→∞
Nn+1,n(t)

t we
just shown, we get

an = lim
t→∞

Nn,n+1(t)

/t

A(t)

/t

≤ lim
t→∞

Nn+1,n(t)

/t

D(t)

/t

= dn

There are two possibilities:

I if lim
t→∞

A(t)/t = lim
t→∞

D(t)/t, then obviously an = dn for all n

I if lim
t→∞

A(t)/t > lim
t→∞

D(t)/t, then the queue size will go to

infinity, implying that an = dn = 0. The equality is still valid.
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Example 8.1
Here is an example where Pn 6= an. Consider a queueing model in
which

I service times = 1, always
I interarrival times are always > 1 [e.g., Uniform(1.5,2)].

Hence, as every arrival finds the system empty and every departure
leaves it empty, we have

a0 = d0 = 1

However, P0 6= 1 as the system is not always empty of customers.

Proposition 8.2 (PASTA Principle)

Poisson Arrivals See Time Averages

If the arrival process is Poisson, then

Pn = an,

and hence Pn = dn.
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Why is PASTA True?

I By time T , the total amount of time there are n customers in
the system is about PnT

I Regardless of how many customers in the system, Poisson
arrivals always arrive at rate λ. Thus by time T , the total
number of arrivals that find n in the system is ≈ λPnT .

I the overall number of customers arrived by time T is ≈ λT
I the proportion of arrivals that find the system in state n is

an =
λPnT

λT
= Pn
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M/G/1
The M/G/1 model assumes

I Poisson arrivals at rate λ;

I i.i.d service times with a general distribution G, Si ∼ G ;

I a single server; and

I first come, first serve

A necessary condition for an M/G/1 to be stable is that the mean
of service time E[Sn] must satisfies

λE[Sn] < 1.

This condition is necessary. Otherwise if

the average service time E[Sn]

> the average interarrival time of customers 1/λ,

the queue will become longer and longer and the system will
ultimately explode.
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A Markov Chain embedded in M/G/1
Let X (t) = # of customers in the system at time t.
Unlike M/M/k or M/M/∞ systems, the process {X (t), t ≥ 0} in
a M/G/1 system is NOT a continuous time Markov chain.

Fortunately, there is a discrete-time Markov chain embedded in an
M/G/1 system. Let

Y0 = 0

Yn = # of customers in the system

leaving behind at the nth departure, n ≥ 1

An = # of customers that enter the system

during the service time of the nth customer, n ≥ 1

Observed that {Yn, n ≥ 0} and {An, n ≥ 1} are related as follows

Yn+1 = An+1 + (Yn − 1)+ =

{
Yn − 1 + An+1 if Yn > 0

An+1 if Yn = 0
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A Markov Chain embedded in M/G/1 (Cont’d)

Recall that Sn denotes the length of time to serve the nth
customer.

Given Sn, An is Poisson with mean λSn. From this we can
conclude that A1,A2, . . . are i.i.d. since

I the service times S1, S2, . . . are i.i.d., and

I there is only 1 server, the service times of different customers
are disjoint, and the number of events occurred in disjoint
intervals are independent in a Poisson process.

That {An, n ≥ 1} are i.i.d. and Yn is independent of An+1 implies
that

{Yn, n ≥ 0} is a Markov chain.

Recall we have seen this Markov chain in Lecture 1 and in HW4.
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A Markov Chain Embedded in M/G/1 (Cont’d)
Moreover, as An given Sn is Poisson with mean λSn, we can find
the distribution of An

αk = P(An = k) =

∫ ∞
0

P(An = k |Sn = y)G (dy)

=

∫ ∞
0

(λy)k

k!
e−λyG (dy)

from which we can find the transition probability Pij for the
Markov chain {Yn, n ≥ 0}:

Pij = P(Yn+1 = j |Yn = i) = P(An+1 = j − (i − 1)+)

=


αj , if i = 0

αj−i+1, if i ≥ 1, j ≥ i − 1

0 if i ≥ 1, j < i − 1

We can show that the Markov chain is irreducible and aperiodic
and has a limiting distribution if and only if λE[S1] < 1.
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Idle Periods in M/G/1
Using the equation Yn+1 = An+1 + (Yn − 1)+, we can find many
properties of the Markov chain. First write the equation as

Yn+1 = An+1 + Yn − 1 + 1{Yn=0}

Taking expectations we get

E[Yn+1] = E[An+1]︸ ︷︷ ︸
=λE[S]

+E[Yn]− 1 + P(Yn = 0)

where E[An+1] = λE[Sn+1] since An+1 given Sn+1 is Poisson with
mean λSn+1 and E[Sn+1] = E[S ] since Si ’s are i.i.d.

Let n→∞, since the MC has a limiting distribution, we have
limn→∞ E[Yn+1] = limn→∞ E[Yn] and from which we can get

lim
n→∞

P(Yn = 0) = 1− λE[S ]

By the PASTA principle, limn→∞ P(Yn = 0) = d0 = P0 is also the
long-run proportion of time that the system is idle.
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Length of Busy Periods in M/G/1
As in a birth & death queueing model, there is a alternating
renewal process embedded in an M/G/1 system. We say a renewal
occurs if the system become empty, then the system idles for a
period of time until the next customer enters the system, and then
a busy period begins until the system become empty again.
Using the alternating renewal theory, the long-run proportion of
time that the system is empty is

E[Idle]

E[Idle] + E[Busy]
,

and we just derived that it is limt→∞ P(X (t) = 0) = 1− λE[S ].
Since the length of an idle period ∼ Exp(λ), we have
E[Idle] = 1/λ. In summary, we have that

1− λE[S ] =
1/λ

(1/λ) + E[Busy]
⇒ E[Busy] =

E[S ]

1− λE[S ]
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L of M/G/1 (Cont’d)
From the equation Yn+1 = An+1 − 1 + Yn + 1{Yn=0}, we have

Var(Yn+1)

= Var(An+1 − 1 + Yn + 1{Yn=0})

= Var(An+1) + Var(Yn + 1{Yn=0}) (An+1 and Yn are indep.)

= Var(An+1) + Var(Yn)

+ 2Cov(Yn, 1{Yn=0}) + Var(1{Yn=0}), (1)

in which

Var(1{Yn=0}) = P(Yn = 0)(1− P(Yn = 0)) (2)

Cov(Yn, 1{Yn=0}) = E[Yn1{Yn=0}︸ ︷︷ ︸
=0

]− E[Yn]P(Yn = 0)

= −E[Yn]P(Yn = 0) (3)

Var(An) = E[Var(An|Sn)] + Var(E[An|Sn])

= E[λSn] + Var(λSn)

= λE[S ] + λ2Var(S) (4)
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L of M/G/1 (Cont’d)
Plugging in (??) (??) (??) into (??), letting n→∞, we have

lim
n→∞

Var(Yn+1) = λE[S ] + λ2Var(S) + lim
n→∞

Var(Yn)

− 2 lim
n→∞

E[Yn]P(Yn = 0)

+ lim
n→∞

P(Yn = 0)(1− P(Yn = 0))

= λE[S ] + λ2Var(S) + lim
n→∞

Var(Yn)

− 2 lim
n→∞

E[Yn](1− λE[S ]) + (1− λE[S ])λE[S ]

Again since the MC has a limiting distribution, we have
limn→∞Var[Yn+1] = limn→∞Var[Yn], and can get

lim
n→∞

E[Yn] =
λE[S ] + λ2Var(S)

2(1− λE[S ])
+
λE[S ]

2

=
λ2E[S2]

2(1− λE[S ])
+ λE[S ] (since Var(S) = E[S2]− (E[S ])2)
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L of M/G/1 (Cont’d)
By the PASTA principle, we know lim

n→∞
E[Yn] = lim

n→∞
E[X (t)] = L.

From the cost identity L = λaW and LQ = λaWQ , and that
λa = λ, we have

L =
λ2E[S2]

2(1− λE[S ])
+ λE[S ]

W = L/λ =
λE[S2]

2(1− λE[S ])
+ E[S ]

WQ = W − E[S ] =
λE[S2]

2(1− λE[S ])

LQ = λWQ =
λ2E[S2]

2(1− λE[S ])

Since E[S2] = (E[S ])2 + Var(S), from the equations above we see
for fixed mean service time E[S ],

L, LQ , W , and WQ all increase as Var(S) increases.
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Example
For an M/M/1 system, we have shown that if the service time is
exponential with mean 1/µ that the average waiting time is

W =
1

µ− λ
If the service time is exactly 1/µ, the average waiting time can be
reduced to

W =
λE[S2]

2(1− λE[S ])
+ E[S ] =

λ/µ2

2(1− λ/µ)
+ 1/µ =

1

µ− λ
− λ/µ

2(µ− λ)

For example, for λ = 1/12, µ = 1/8

W =

{
24 for M/M/1

16 if service time is exactly 1/µ = 8

For λ = 1/10, µ = 1/8

W =

{
40 for M/M/1

24 if service time is exactly 1/µ = 8
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