
Chapter 8 Queueing Models

A queueing model consists “customers” arriving to receive some
service and then depart. The mechanisms involved are

I input mechanism: the arrival pattern of customers in time

I queueing mechanism: the number of servers, order of the
service

I service mechanism: the time to serve one or a batch of
customers

We consider queueing models that follow the most common rule of
service: first come, first served.

Lecture 19 - 1



Common Queueing Processes

It is often reasonable to assume

I the interarrival times of customers are i.i.d. (the arrival of
customers follows a renewal process),

I the service times for customers are i.i.d. and are independent
of the arrival of customers.

Notation: M = memoryless, or Markov, G = General

I M/M/1: Poisson arrival, service time ∼ Exp(µ), 1 server
= a birth and death process with birth rates λj ≡ λ, and
death rates µj ≡ µ

I M/M/∞: Poisson arrival, service time ∼ Exp(µ), ∞ servers
= a birth and death process with birth rates λj ≡ λ, and
death rates µj ≡ jµ

I M/M/k: Poisson arrival, service time ∼ Exp(µ), k servers
= a birth and death process with birth rates λj ≡ λ, and
death rates µj ≡ min(j , k)µ
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Common Queueing Processes (Cont’d)

I M/G/1: Poisson arrival, General service times ∼ G , 1 server

I M/G/∞: Poisson arrival, General service time ∼ G , ∞
servers

I M/G/k : Poisson arrival, General service times ∼ G , k servers

I G/M/1: General interarrival times, service times ∼ Exp(µ), 1
server

I G/G/k: General interarrival times ∼ F , General service times
∼ G , k servers

I . . .

Lecture 19 - 3



Quantities of Interest for Queueing Models

Let

X (t) = # of customers in the system at time t

Q(t) = # of customers waitng in queue at time t

Assume that {X (t), t ≥ 0} and {Q(t), t ≥ 0} has a stationary
distribution.

L = lim
t→∞

∫ t
0 X (t)dt

t
= the average # of customers in the system

LQ = lim
t→∞

∫ t
0 Q(t)dt

t
= the average # of customers waiting in queue

W = the average amount of time, including waiting time

and service time, a customer spends in the system;

WQ = the average amount of time a customer waiting in queue.
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Little’s Formula

Let

N(t) = # of customers enter the system at or before time t.

We define λa be the arrival rate of entering customers,

λa = lim
t→∞

N(t)

t

Little’s Formula:

L = λaW

LQ = λaWQ
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Cost Identity
Many interesting and useful relationships between quantities in
Queueing models can be obtained by using the cost identity.

Imagine that entering customers are forced to pay money
(according to some rule) to the system. We would then have the
following basic cost identity:

average rate at which the system earns

= λa × average amount an entering customer pays

Proof. Let R(t) be the amount of money the system has earned by
time t. Then we have

average rate at which the system earns

= lim
t→∞

R(t)

t
= lim

t→∞

N(t)

t

R(t)

N(t)
= λa lim

t→∞

R(t)

N(t)

= λa × average amount an entering customer pays,

provided that the limits exist.
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Proof of Little’s Formula
To prove L = λaW :

I we use the payment rule:

each customer pays $1 per unit time while in the system.

I the average amount a customer pay = W , the average
waiting time of customers.

I the amount of money the system earns during the time
interval (t, t + ∆t) is X (t)∆t, where X (t) is the number of
customers in the system at time t ,

I and the rate the system earns is thus lim
t→∞

∫ t
0 X (s)ds

t
= L, the

formula follows from the cost identity.

To prove LQ = λaWQ , we use the payment rule:

each customer pays $1 per unit time while in queue.

The argument is similar.
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8.3.1 M/M/1 Model
Let X (t) be number of customers in the system at time t.
{X (t), t ≥ 0} is a birth and death process with

birth rates λj ≡ λ, and death rates µj ≡ µ.

Recall in Example 6.14 we have showed that the stationary
distribution exists when λ < µ, and the stationary distribution is

Pn = lim
t→∞

P(X (t) = n) =

(
1− λ

µ

)(
λ

µ

)n

, n = 0, 1, . . .

Thus

L= lim
t→∞

E[X (t)]=
∞∑
n=1

nPn =
λ

µ− λ
=

1/µ

1/λ− 1/µ

=
E[service time]

E[interarrival time]−E[service time]
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8.3.1 M/M/1 Model (Cont’d)
Let T be the time of a customer spend in the system.
If there are n customers in the system while this customer arrives,
thenT is the sum of the service times of the n + 1 customers
∼ Gamma(n + 1, µ). That is,

P(T ≤ t) =
∑∞

n=0
Pn

∫ t

0

µn+1

n!
sne−µsds

=
∑∞

n=0

(
1− λ

µ

)(
λ

µ

)n ∫ t

0

µn+1

n!
sne−µsds

= (µ− λ)

∫ t

0

(∑∞

n=0

(λs)n

n!︸ ︷︷ ︸
=eλs

)
e−µsds

= (µ− λ)

∫ t

0
e−(µ−λ)sds = 1− e−(µ−λ)t

Therefore, T ∼ Exp(µ− λ) ⇒ W = E[T ] =
1

µ− λ
.

This verifies Little’s formula, L = λW .
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8.3.1 M/M/1 Model (Cont’d)

WQ = W − E[service time] = W − 1/µ =
λ

µ(µ− λ)

Note that

# of customers in queue = max(0, # of customers in system−1).

So

LQ =
∑∞

n=1
(n − 1)Pn =

∑∞

n=1
nPn︸ ︷︷ ︸

L

−(
∑∞

n=1
Pn︸ ︷︷ ︸

1−P0

)

= L− 1 + P0

=
λ

µ− λ
− 1 +

(
1− λ

µ

)
=

λ2

µ(µ− λ)
= λWQ
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Example 8.2

Suppose customers arrive at a Poisson rate of 1 in 12 minutes, and
that the service time is exponential at a rate of one service per 8
minutes. What are L and W ?
Solution. Since λ = 1/12, µ = 1/8, we have

L =
1/µ

1/λ− 1/µ
=

8

12− 8
= 2, W =

1

µ− λ
= 24

Observe if the arrival rate increases 20% to λ = 1/10, then

L = 4,W = 40

When λ/µ ≈ 1, a slight increase in λ/µ will lead to a large
increase in L and W .
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M/M/∞ Model
In this case, customers will be served immediately upon arrival.
Nobody will be in queue. We have

WQ = LQ = 0, W = average service time = 1/µ,

and hence L = λW = λ/µ.

As a verification, observe that {X (t), t ≥ 0} is a birth and death
process with

birth rates λj ≡ λ, and death rates µj ≡ jµ.

The stationary distribution is

Pn =
λn

n!µn
P0 =

λn

n!µn
1∑∞

n=0
λn

n!µn

= e−λ/µ
(λ/µ)n

n!
, n = 0, 1, . . .

Therefore X (t) ∼ Poisson(λ/µ) as t →∞,

L = E[X (t)] = λ/µ.
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Birth & Death Queueing Models
In addition to M/M/1 and M/M/∞ models, a more general
family of birth & death queueing models is the following:

M/M/k Queueing System with Balking
Consider a M/M/k system, but suppose a customer arrives finding
n others in the system will only join the system with probability
αn, i.e., he balks (walks away) w/ prob. 1− αn. This system is a
birth and death process with

λn = λαn, n ≥ 0

µn = min(n, k)µ, n ≥ 1

A special case of M/M/k queueing system with balking is the
M/M/k system with finite capacity N, where

αn =

{
1 if n < N

0 if n ≥ N
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Birth & Death Queueing Models

For a birth & death queueing model, the stationary distribution of
the number of customers in the system is given by

Pk = lim
t→∞

P(X (t) = k) =
λ0λ1 · · ·λk−1/(µ1µ2 · · ·µk)

1 +
∑∞

n=1
λ0λ1···λn−1

µ1µ2···µn

, k ≥ 1

The necessary and sufficient condition for such a stationary
distribution to exists is that

∞∑
n=1

λ0λ1 · · ·λn−1
µ1µ2 · · ·µn

<∞.

With {Pn}, the average number of customers in the system is
simply

L =
∑∞

n=0
nPn.
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Birth & Death Queueing Models (Cont’d)

With balking, the rate that customers enter the system is not λ
(since not all customers enter the system), but

λa =
∑∞

n=0
λnPn.

Consequently, the average waiting time is

W = L/λa =

∑∞
n=0 nPn∑∞
n=0 λnPn

,

and the average amount of time waiting in queue (WQ) and
average number of customers in queue (LQ) are respectively

WQ = W − E[service time] = W − (1/µ),

LQ = λaWQ
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Busy Period in a Birth & Death Queueing Model
There is a alternating renewal process embedded in a birth &
death queueing model.
We say a renewal occurs if the system become empty.
Using the alternating renewal theory, the long-run proportion of

time that the system is empty is
E[Idle]

E[Idle] + E[Busy]
, where

E[Idle] = expected length of an idle period

E[Busy] = expected length of a busy period

Also note that the long-run proportion of time that the system is
empty is simply P0 = limt→∞ P(X (t) = 0). Since the length of an
idle period ∼ Exp(λ0), we have E[Idle] = 1/λ0. In summary, we
have that

P0 =
1/λ0

(1/λ0) + E[Busy]
or

E[Busy] =
1− P0

λ0P0
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