STAT253/317 Winter 2019 Lecture 18

Yibi Huang

Section 7.7 The Inspection Paradox Chapter 8 Queueing Models

Section 7.7 The Inspection Paradox

Given a renewal process $\{N(t), t \geq 0\}$ with interarrival times $\left\{X_{i}, i \geq 1\right\}$, the length of the current cycle,

$$
X_{N(t)+1}=S_{N(t)+1}-S_{N(t)}
$$

tend to be longer than X_{i}, the length of an ordinary cycle.
Precisely speaking, $X_{N(t)+1}$ is stochastically greater than X_{i}, which means

$$
\mathrm{P}\left(X_{N(t)+1}>x\right) \geq \mathrm{P}\left(X_{i}>x\right), \quad \text { for all } x \geq 0
$$

Heuristic Explanation of the Inspection Paradox

Suppose we pick a time t uniformly in the range $[0, T$], and then select the cycle that contains t.

- Possible cycles that can be selected: $X_{1}, X_{2}, \ldots, X_{N(T)+1}$
- These cycles are not equally likely to be selected.

The longer the cycle, the greater the chance.

$$
\mathrm{P}\left(X_{i} \text { is selected }\right)=X_{i} / T, \quad \text { for } 1 \leq i \leq N(T)
$$

- So the expected length of the selected cycle $X_{N(t)+1}$ is roughly

$$
\left.E\left[X^{\wedge} 2\right]=(E(X))^{\wedge} 2+t\right)+1 \quad \operatorname{tar}(X)>=(E(X))^{\wedge} 2
$$

$$
\sum_{i=1}^{N(T)} X_{i} \times \frac{X_{i}}{T}=\frac{\sum_{i=1}^{N(T)} X_{i}^{2}}{T} \rightarrow \frac{\mathbb{E}\left[X_{i}^{2}\right]}{\mathbb{E}\left[X_{i}\right]} \geq \mathbb{E}\left[X_{i}\right] \quad \text { as } T \rightarrow \infty
$$

- Last time we have shown that if F is non-lattice,

$$
\lim _{t \rightarrow \infty} \mathbb{E}[Y(t)]=\lim _{t \rightarrow \infty} \mathbb{E}[A(t)]=\frac{\mathbb{E}\left[X_{i}^{2}\right]}{2 \mathbb{E}\left[X_{i}\right]}
$$

Since $X_{N(t)+1}=A(t)+Y(t), \lim _{t \rightarrow \infty} \mathbb{E}\left[X_{N(t)+1}\right]=\frac{\mathbb{E}\left[X_{i}^{2}\right]}{\mathbb{E}\left[X_{i}\right]}$
Lecture 18-3

Example: Waiting Time for Buses

- Passengers arrive at a bus station at Poisson rate λ
- Buses arrive one after another according to a renewal process with interarrival times $X_{i}, i \geq 1$, independent of the arrival of customers.
- If X_{i} is deterministic, always equals 10 mins, then on average passengers has to wait 5 mins
- If X_{i} is random with mean 10 min , then a passenger arrives at time t has to wait $Y(t)$ minutes. Here $Y(t)$ is the residual life of the bus arrival process. We know that

$$
\mathbb{E}[Y(t)] \rightarrow \frac{\mathbb{E}\left[X_{i}^{2}\right]}{2 \mathbb{E}\left[X_{i}\right]} \geq \frac{\mathbb{E}\left[X_{i}\right]}{2}=5 \mathrm{~min}
$$

Passengers on average have to weight more than half the mean length of interarrival times of buses.

Class Size in U of Chicago

University of Chicago is known for its small class size, but a majority of students feel most classes they enroll are big.
Suppose U of Chicago have five classes of size

$$
10,10,10,10,100
$$

respectively.

- Mean size of the 5 classes: $(10+10+10+10+100) / 5=28$.
- From students' point of view, only the 40 students in the first four classes feel they are in a small class, the 100 students in the big class feel they are in a large class.
Average class size students feel

$$
\frac{\overbrace{10+\cdots+10}^{40 \text { students }}+\overbrace{100+\ldots+100}^{100 \text { students }}}{140}=\frac{10 \times 40+100 \times 100}{140} \approx 74.3 .
$$

Proof of the Inspection Paradox
 For $s>x$,

s

$$
\mathrm{P}\left(X_{N(t)+1}>x \mid S_{N(t)}=t-s, N(t)=i\right)=1 \geq \mathrm{P}\left(X_{i}>x\right)
$$

For $s<x$,

$$
\begin{aligned}
& \mathrm{P}\left(X_{N(t)+1}>x \mid S_{N(t)}=t-s, N(t)=i\right) \\
= & \mathrm{P}\left(X_{i+1}>x \mid S_{i}=t-s\right) \\
= & \mathrm{P}\left(X_{i+1}>x \mid X_{i+1}>s\right) \\
= & \frac{\mathrm{P}\left(X_{i+1}>x, X_{i+1}>s\right)}{\mathrm{P}\left(X_{i+1}>s\right)} \\
= & \frac{\mathrm{P}\left(X_{i+1}>x\right)}{\mathrm{P}\left(X_{i+1}>s\right)} \\
\geq & \mathrm{P}\left(X_{i+1}>x\right)=\mathrm{P}\left(X_{i}>x\right)
\end{aligned}
$$

Thus $\mathrm{P}\left(X_{N(t)+1}>x \mid S_{N(t)}=t-s, N(t)=i\right) \geq \mathrm{P}\left(X_{i}>x\right)$ for all $N(t)$ and $S_{N(t)}$. The claim is validated

Lecture 18-6

Limiting Distribution of $X_{N(t)+1}$

If the distribution F of the interarrival times is non-lattice, we can use an alternating renewal process argument to determine

$$
G(x)=\lim _{t \rightarrow \infty} \mathrm{P}\left(X_{N(t)+1} \leq x\right)
$$

We say the renewal process is ON at time t iff $X_{N(t)+1} \leq x$, and OFF otherwise. Thus in the ith cycle,

$$
\text { the length of ON time is } \begin{cases}X_{i} & \text { if } X_{i} \leq x, \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

and hence

$$
\begin{aligned}
G(x)=\lim _{t \rightarrow \infty} \mathrm{P}\left(X_{N(t)+1} \leq x\right) & =\frac{\mathbb{E}[\text { On time in a cycle }]}{\mathbb{E}[\text { cycle time }]} \\
& =\frac{\mathbb{E}\left[X_{i} \mathbf{1}_{\left\{X_{i} \leq x\right\}}\right]}{\mathbb{E}\left[X_{i}\right]}=\frac{\int_{0}^{x} z f(z) d z}{\mu}
\end{aligned}
$$

In fact $G(x)=-\frac{x(1-F(x))}{\mu}+F_{e}(x)<F_{e}(x)$.
Lecture 18-7

Chapter 8 Queueing Models

A queueing model consists "customers" arriving to receive some service and then depart. The mechanisms involved are

- input mechanism: the arrival pattern of customers in time
- queueing mechanism: the number of servers, order of the service
- service mechanism: the time to serve one or a batch of customers
We consider queueing models that follow the most common rule of service: first come, first served.

Common Queueing Processes

It is often reasonable to assume

- the interarrival times of customers are i.i.d. (the arrival of customers follows a renewal process),
- the service times for customers are i.i.d. and are independent of the arrival of customers.

Notation: $M=$ memoryless, or Markov, $G=$ General

- $M / M / 1$: Poisson arrival, service time $\sim \operatorname{Exp}(\mu), 1$ server $=$ a birth and death process with birth rates $\lambda_{j} \equiv \lambda$, and death rates $\mu_{j} \equiv \mu$
- $M / M / \infty$: Poisson arrival, service time $\sim \operatorname{Exp}(\mu), \infty$ servers $=$ a birth and death process with birth rates $\lambda_{j} \equiv \lambda$, and death rates $\mu_{j} \equiv j \mu$
- $M / M / k$: Poisson arrival, service time $\sim \operatorname{Exp}(\mu), k$ servers $=\mathrm{a}$ birth and death process with birth rates $\lambda_{j} \equiv \lambda$, and death rates $\mu_{j} \equiv \min (j, k) \mu$

Common Queueing Processes (Cont'd)

- $M / G / 1$: Poisson arrival, General service time $\sim G, 1$ server
- $M / G / \infty$: Poisson arrival, General service time $\sim G, \infty$ server
- $M / G / k$: Poisson arrival, General service time $\sim G, k$ server
- G/M/1: General interarrival time, service time $\sim \operatorname{Exp}(\mu), 1$ server
- G/G/k: General interarrival time $\sim F$, General service time $\sim G, k$ servers

Quantities of Interest for Queueing Models

Let
$X(t)=$ number of customers in the system at time t
$Q(t)=$ number of customers waitng in queue at time t
Assume that $\{X(t), t \geq 0\}$ and $\{Q(t), t \geq 0\}$ has a stationary distribution.

- $L=$ the average number of customers in the system

$$
L=\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} X(t) d t}{t}
$$

- $L_{Q}=$ the average number of customers waiting in queue (not being served);

$$
L_{Q}=\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} Q(t) d t}{t}
$$

- $W=$ the average amount of time, including the time waiting in queue and service time, a customer spends in the system;
- $W_{Q}=$ the average amount of time a customer spends waiting in queue (not being served).

Little's Formula

Let
$N(t)=$ number of customers enter the system at or before time t.
We define λ_{a} be the arrival rate of entering customers,

$$
\lambda_{a}=\lim _{t \rightarrow \infty} \frac{N(t)}{t}
$$

Little's Formula:

$$
\begin{aligned}
L & =\lambda_{a} W \\
L_{Q} & =\lambda_{a} W_{Q}
\end{aligned}
$$

