STAT253/317 Lecture 17

Yibi Huang

7.4 Renewal Reward Processes
7.5.1 Alternating Renewal Processes

Lecture 17-1

7.4 Renewal Reward Processes

Let $\{N(t), t \geq 0\}$ be a renewal process with i.i.d. interarrival times $\left\{X_{i}, i \geq 1\right\}$. Let $R_{i}, i=1,2, \ldots$ be i.i.d random variables. R_{i} may depend on the i th interarrival time X_{i}, but $\left(X_{i}, R_{i}\right)$ are i.i.d. random variable pairs. The compound process

$$
R(t)=\sum_{i=1}^{N(t)} R_{i}
$$

is called a renewal reward process. R_{i} may be considered as reward earned during the i th cycle, and $R(t)$ represents the total reward earned up to time t.

Proposition 7.3 If $\mathbb{E}\left[R_{1}\right]<\infty$ and $\mathbb{E}\left[X_{1}\right]<\infty$, then
(a) $\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{\mathbb{E}\left[R_{1}\right]}{\mathbb{E}\left[X_{1}\right]}$ with probability 1
(b) $\lim _{t \rightarrow \infty} \frac{\mathbb{E}[R(t)]}{t}=\frac{\mathbb{E}\left[R_{1}\right]}{\mathbb{E}\left[X_{1}\right]}$

Proof of Proposition 7.3(a)

We give the proof for (a) only. To prove this, write

$$
\frac{R(t)}{t}=\frac{\sum_{i=1}^{N(t)} R_{i}}{t}=\frac{\sum_{i=1}^{N(t)} R_{i}}{N(t)} \frac{N(t)}{t}
$$

By the Strong Law of Large Numbers (SLLN) and that $\lim _{t \rightarrow \infty} N(t)=\infty \mathrm{w} /$ prob. 1, we know

$$
\frac{\sum_{i=1}^{N(t)} R_{i}}{N(t)} \rightarrow \mathbb{E}\left[R_{1}\right] \quad \text { as } t \rightarrow \infty \quad \mathrm{w} / \text { prob. } 1
$$

By Proposition 7.1

$$
\frac{N(t)}{t} \rightarrow \frac{1}{\mathbb{E}\left[X_{1}\right]} \quad \text { as } t \rightarrow \infty
$$

The result thus follows.

Example 7.12 (A Car Buying Model)

- Mr. Brown buys a new car whenever his old one breaks down or reaches the age of T years
- Let Y_{i} be the lifetime of his i th car. Suppose Y_{i} 's are i.i.d with CDF

$$
H(y)=P(Y \leq y), \quad \text { and density } h(y)=H^{\prime}(y)
$$

- Cost to by a new car $=C_{1}$;
- If the car breaks down, an additional cost of C_{2} is incurred.
- What is Mr. Brown's long run average cost (per unit of time, not per car)?

Example 7.12 (A Car Buying Model) Solutions

- An event occurs whenever Mr. Brown buys a new car
- Interarrival times: $X_{i}=\min \left(Y_{i}, T\right)$
- Cost incurred in the ith cycle: $R_{i}=C_{1}+C_{2} \mathbf{1}_{\left\{Y_{i} \leq T\right\}}$
- Are $\left(X_{i}, R_{i}\right), i=1,2, \ldots$ i.i.d?
- Total cost up to time $t: R(t)=\sum_{i=1}^{N(t)} R_{i}$

$$
\begin{aligned}
& \mathbb{E}\left[X_{i}\right]=\int_{0}^{\infty} \min (y, T) h(y) d y=\int_{0}^{T} y h(y) d y+T(1-H(T)) \\
& \mathbb{E}\left[R_{i}\right]=C_{1}+C_{2} \mathrm{P}\left(Y_{i} \leq T\right)=C_{1}+C_{2} H(T)
\end{aligned}
$$

- average cost per car $=\mathbb{E}\left[R_{i}\right]=C_{1}+C_{2} H(T)$
- long-run average cost (per unit of time)

$$
\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{C_{1}+C_{2} H(T)}{\int_{0}^{T} y h(y) d y+T(1-H(T))}
$$

Lecture $17-5$

Example 7.18 Current Age

Let $\{N(t), t \geq 0\}$ be a renewal process with i.i.d. interarrival times $\left\{X_{i}, i \geq 1\right\}$. Consider the current age of the item in use at time t

$$
A(t)=t-S_{N(t)}
$$

What is the long-run average of age $\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} A(s) d s}{t}$?
Lecture 17-6

Example 7.19 Residual Life of a Renewal Process

Consider the residual life or excess of the item in use at time t

$$
Y(t)=S_{N(t)+1}-t
$$

What is the long-run average of residual life

$$
\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} Y(s) d s}{t} ?
$$

Lecture 17-7

Example 7.18 Age of a Reward Renewal Process (Cont'd)

Observe that $\int_{0}^{t} A(s) d s$ is the area of the shaded regions below.

Observe that $\sum_{i=1}^{N(t)} \frac{X_{i}^{2}}{2}$ is a renewal reward process $R(t)=\sum_{i=1}^{N(t)} R_{i}$ with reward $R_{i}=X_{i}^{2} / 2$.

Example 7.18 Current Age (Cont'd)

Since

$$
R(t) \leq \int_{0}^{t} A(s) d s<R(t)+\frac{X_{N(t)+1}^{2}}{2}
$$

and

$$
\frac{X_{N(t)+1}^{2}}{2 t} \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

by Proposition 7.3, the long-run average age of the item in use is

$$
\frac{\int_{0}^{t} A(s) d s}{t}=\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{\mathbb{E}\left[R_{1}\right]}{\mathbb{E}\left[X_{1}\right]}=\frac{\mathbb{E}\left[X_{1}^{2}\right]}{2 \mathbb{E}\left[X_{1}\right]}
$$

Example 7.19 Residual Life (Cont'd)

Similarly, for the residual life, $\int_{0}^{t} Y(s) d s$ is the area of the shaded regions below.

By the same argument, the long-run average of residual life of the item in use is

$$
\frac{\int_{0}^{t} Y(s) d s}{t}=\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{\mathbb{E}\left[R_{1}\right]}{\mathbb{E}\left[X_{1}\right]}=\frac{\mathbb{E}\left[X_{1}^{2}\right]}{2 \mathbb{E}\left[X_{1}\right]}
$$

7.5.1 Alternating Renewal Processes

Considers a system that can be in one of two states: ON or OFF. Initially it is ON, and remains ON for a time Z_{1}; it then goes OFF and remains OFF for a time Y_{1}. It then goes ON for a time Z_{2}; then OFF for a time Y_{2}; then on, and so on. Suppose

- $\left(Z_{k}, Y_{k}\right)$ are i.i.d random vectors, though Z_{k} and Y_{k} might depend on each other
- Y_{k}, Z_{k} are non-negative with finite means.

Then a renewal process $\{N(t), t \geq 0\}$ with interarrival times

$$
X_{k}=Z_{k}+Y_{k}, \quad k \geq 1
$$

is called an alternating renewal process. Let

$$
U(t)= \begin{cases}1 & \text { if the system is ON at time } t \\ 0 & \text { otherwise }\end{cases}
$$

Q: What is the long-run proportion of time that the system is ON?

$$
\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} U(s) d s}{t} ?
$$

Lecture 17-11

Alternating Renewal Processes (Cont'd)

An alternating renewal process can be regarded as a renewal reward process with reward $R_{i}=Z_{i}$,

$$
R(t)=\sum_{i=1}^{N(t)} Z_{i}
$$

Then

$$
R(t) \leq \int_{0}^{t} U(s) d s<R(t)+Z_{N(t)+1}
$$

By Proposition 7.3, with probability 1,

$$
\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{\mathbb{E}\left[Z_{1}\right]}{E\left[X_{1}\right]}=\frac{\mathbb{E}\left[Z_{1}\right]}{\mathbb{E}\left[Z_{1}\right]+\mathbb{E}\left[Y_{1}\right]}
$$

and hence
$\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} U(s) d s}{t}=\lim _{t \rightarrow \infty} \frac{R(t)}{t}=\frac{\mathbb{E}\left[Z_{1}\right]}{\mathbb{E}\left[Z_{1}\right]+\mathbb{E}\left[Y_{1}\right]}=\frac{\mathbb{E}[\mathrm{ON}]}{\mathbb{E}[\mathrm{ON}]+\mathbb{E}[\mathrm{OFF}]}$.

Definition: Lattice Distribution

A random variable X is said to have a lattice distribution if there is an $h>0$ for which

$$
\sum_{k=-\infty}^{\infty} P(X=k h)=1
$$

i.e., X is lattice if it only takes on integral multiples of some nonnegative number h. The largest h having this property is called the period of X.

Examples.

- Continuous distributions, mixtures of discrete and continuous distributions are both non-lattice.
- Integer-valued random variables are lattice, e.g., Poisson, binomial
- A lattice distribution must be discrete, but a discrete distribution may not be lattice, e.g., if

$$
\mathrm{P}(X=1 / n)=1 / 2^{n}, \quad n=1,2,3, \ldots
$$

then X is discrete but non-lattice because we cannot find an $h>0$ such that all $1 / n$'s are all multiples of h.

Lecture 17-13

Theorem

If the interarrival distribution is non-lattice, then

$$
\lim _{t \rightarrow \infty} \mathrm{P}(\mathrm{ON} \text { at time } t)=\lim _{t \rightarrow \infty} \mathrm{P}(U(t)=1)=\frac{\mathbb{E}\left[Z_{1}\right]}{\mathbb{E}\left[Z_{1}\right]+\mathbb{E}\left[Y_{1}\right]}
$$

Remark. If interarrival distribution is lattice, $\lim _{t \rightarrow \infty} \mathrm{P}(U(t)=1)$ may not exist.

Exercise 7.39

- Two machines work independently, each functions for an exponential time with rate λ and then fails
- A single repairmen. All repair times are independent with distribution function G
- If the repairmen is free when a machine fails, he will begin repairing that machine immediately; Otherwise, then that machine must wait until the other machine has been repaired.
- Once repaired, a machine is as good as a new one.
- What proportion of time is the repairmen idle?

Solution.

- ON when the repairmen is idle, OFF when busy
- length of ON (idle) time: $Z \sim \operatorname{Exp}(2 \lambda), \mathbb{E}[Z]=1 /(2 \lambda)$
- length of OFF (busy) time Y; want to find $\mathbb{E}[Y]$

Exercise 7.39 Solutions

- $T=$ length of time to repair the first failing machine $\sim G$
- $U=$ the time the working machine can function after the first machine failed. By the memoryless property, $U \sim \operatorname{Exp}(\lambda)$
- Note that

$$
\begin{aligned}
Y & = \begin{cases}T & \text { if } U>T \\
T+Y^{\prime} & \text { if } U<T\end{cases} \\
& =T+Y^{\prime} \mathbf{1}_{\{U<T\}}
\end{aligned}
$$

where Y^{\prime} is the time the repairmen remains busy after the first failing machine is fixed. Note Y^{\prime} is independent of T and U, and has the same distribution as Y. Thus

$$
\mathbb{E}[Y]=\mathbb{E}[T]+\mathbb{E}[Y] \mathrm{P}(T>U) \Rightarrow \mathbb{E}[Y]=\frac{\mathbb{E}[T]}{\mathrm{P}(T<U)}
$$

- long-run proportion of ON (idle) time

$$
\frac{\mathbb{E}[Z]}{\mathbb{E}[Z]+\mathbb{E}[Y]}=\frac{1 /(2 \lambda)}{1 /(2 \lambda)+\mathbb{E}[Y]}
$$

Lecture 17-16

Example 7.23 \& 7.24

Let $\{N(t), t=0\}$ be a renewal process with i.i.d. interarrival times $X_{i}, i=1,2, \ldots$, where $\mu=\mathbb{E}\left[X_{i}\right]$ and $F(x)=P\left(X_{i} \leq x\right)$.
Consider the current age of the item in use at time t

$$
A(t)=t-S_{N(t)}
$$

and the residual life of the item in use at time t

$$
Y(t)=S_{N(t)+1}-t
$$

Proposition. The long-run proportion of time that $A(t) \leq x$ is the same as the long-run proportion of time that $Y(t) \leq x$, and is equal to

$$
F_{e}(x)=\frac{1}{\mu} \int_{0}^{x}(1-F(u)) d u
$$

Furthermore, if F is non-lattice, then

$$
\lim _{t \rightarrow \infty} \mathrm{P}(A(t) \leq x)=\lim _{t \rightarrow \infty} \mathrm{P}(Y(t) \leq x)=F_{e}(x)
$$

Example 7.23 Current Age(Con'd)

- let's say the system is ON at time t if $A(t) \leq x$
- length of ON time $Y_{i}=\min \left(X_{i}, x\right)$

$$
\mathbb{E}\left[Y_{i}\right]=\mathbb{E}\left[\min \left(X_{i}, x\right)\right]=\int_{0}^{\infty} \mathrm{P}\left(\min \left(X_{i}, x\right)>u\right) d u
$$

$=$ lint_0^\{linfty\} $\min (u, x) f(u) d u{ }^{x}$

$$
=\int_{0}^{x}(1-F(u)) d u
$$

- length of a cycle $=X_{i}, \mathbb{E}[\mathrm{ON}]+\mathbb{E}[\mathrm{OFF}]=\mathbb{E}\left[X_{i}\right]=\mu$
- long-run proportion of time that $A(t) \leq x$ is

$$
\frac{\mathbb{E}[\mathrm{ON}]}{\mathbb{E}[\mathrm{ON}]+\mathbb{E}[\mathrm{OFF}]}=\frac{1}{\mu} \int_{0}^{x}(1-F(u)) d u
$$

Lecture 17-18

Example 7.24 Residual Life (Con'd)

- let's say the system is OFF at time t if $Y(t) \leq x$
- length of OFF time $Z_{i}=\min \left(X_{i}, x\right)$

$$
\mathbb{E}\left[Z_{i}\right]=\mathbb{E}\left[\min \left(X_{i}, x\right)\right]=\int_{0}^{x}(1-F(u)) d u
$$

- length of a cycle $=X_{i}, \mathbb{E}[\mathrm{ON}]+\mathbb{E}[\mathrm{OFF}]=\mathbb{E}\left[X_{i}\right]=\mu$
- long-run proportion of time that $Y(t) \leq x$ is

$$
\frac{\mathbb{E}[\mathrm{OFF}]}{\mathbb{E}[\mathrm{ON}]+\mathbb{E}[\mathrm{OFF}]}=\frac{1}{\mu} \int_{0}^{x}(1-F(u)) d u
$$

Remark: The ON time in Example 7.23 is not the same as the ON time in Example 7.24

The density and k th moment of the distribution F_{e} is

$$
f_{e}(x)=\frac{1}{\mu}(1-F(x)), \quad \text { and } \quad \int_{0}^{\infty} x^{k} f_{e}(x) d x=\frac{\mathbb{E}\left[X^{k+1}\right]}{(k+1) \mathbb{E}[X]}
$$

where X is an interarrival time.
Recall that

$$
\frac{m(t)}{t}=\frac{1}{\mu}-\frac{1}{t}+\frac{\mathbb{E}[Y(t)]}{t \mu}
$$

If F is non-lattice, since the limiting distribution of $Y(t)$ is F_{e}, we have

$$
\lim _{t \rightarrow \infty}=\mathbb{E}[Y(t)]=\frac{\mu^{2}+\sigma^{2}}{2 \mu}
$$

Thus

$$
m(t)=\frac{t}{\mu}-1+\frac{\mu^{2}+\sigma^{2}}{2 \mu^{2}}+o(t)=\frac{t}{\mu}+\frac{\sigma^{2}-\mu^{2}}{2 \mu^{2}}+o(t)
$$

