STAT253/317 Lecture 16

Yibi Huang

7.3 Limit Theorems

Lecture 16-1

Revision of Example 7.7

A coin with probability p to land heads (and $q=1-p$ to land tails) is tossed continually.

- What is the probability to get k heads in a row before getting k tails in a row?
- How many tosses is expected to get k heads in a row or k tails in a row?

Solution.

- Suppose the coin is tossed at every integer time points $t=1,2,3 \ldots$
- An event occurs whenever getting k heads in a row. Here we required the rows of heads for different events must be non-overlapping.
- Define $N_{H}(t)=\#$ of events occurred at or before time t. $\left\{N_{H}(t), t \geq 0\right\}$ is a renewal processes (why?).
- What is the mean length of the interarrival times for $\left\{N_{H}(t) t \geq 0\right\} ?$
Lecture 16-2

Revision of Example 7.7 (Cont'd)

Let $T_{k}=$ the $\#$ of tosses required to get k heads in a row.
To get k consecutive heads, one must first get $k-1$ consecutive heads, which takes T_{k-1} steps. So

$$
T_{k}= \begin{cases}T_{k-1}+1 & \mathrm{w} / \text { prob. } p, \quad \text { (if heads in the next toss) } \\ T_{k-1}+1+T_{k}^{\prime} & \mathrm{w} / \text { prob. } 1-p \text { (if tails in the next toss) }\end{cases}
$$

Here $T_{k}^{\prime} \sim T_{k}$ and T_{k}^{\prime} is independent of the past, and hence is independent of T_{k-1}. So

$$
\begin{aligned}
\mathbb{E}\left[T_{k} \mid T_{k-1}\right] & =T_{k-1}+1+(1-p) \mathbb{E}\left[T_{k}^{\prime} \mid T_{k-1}\right] \\
& =T_{k-1}+1+(1-p) \mathbb{E}\left[T_{k}^{\prime}\right] \quad \text { (since } T_{k}^{\prime}, T_{k-1} \text { are indep.) } \\
& \left.=T_{k-1}+1+(1-p) \mathbb{E}\left[T_{k}\right] \quad \text { (since } T_{k}^{\prime} \sim T_{k}\right)
\end{aligned}
$$

and hence

$$
\mathbb{E}\left[T_{k}\right]=\mathbb{E}\left[\mathbb{E}\left[T_{k} \mid T_{k-1}\right]\right]=\mathbb{E}\left[T_{k-1}\right]+1+(1-p) \mathbb{E}\left[T_{k}\right]
$$

Subtracting $(1-p) \mathbb{E}\left[T_{k}\right]$ from both sides we get

$$
p \mathbb{E}\left[T_{k}\right]=\mathbb{E}\left[\begin{array}{c}
\left.T_{k-1}\right]+1, \quad k \\
\text { Lecture 16-3 }
\end{array}=2,3,4, \ldots\right.
$$

Revision of Example 7.7 (Cont'd)

Observe that T_{1} has a geometric distribution and hence $\mathbb{E}\left[T_{1}\right]=1 / p$. Using the iterative relation, we get that
$\mathbb{E}\left[T_{2}\right]=\left(\mathbb{E}\left[T_{1}\right]+1\right) / p=1 / p^{2}+1 / p$
$\mathbb{E}\left[T_{3}\right]=\left(\mathbb{E}\left[T_{2}\right]+1\right) / p=1 / p^{3}+1 / p^{2}+1 / p$
$\mathbb{E}\left[T_{k}\right]=\left(\mathbb{E}\left[T_{k-1}\right]+1\right) / p=1 / p^{k}+\ldots+1 / p^{2}+1 / p=\frac{1-p^{k}}{p^{k}(1-p)}$
By Proposition 7.1, we know

$$
\lim _{t \rightarrow \infty} \frac{N_{H}(t)}{t}=\frac{1}{\mathbb{E}\left[T_{k}\right]}=\frac{p^{k}(1-p)}{1-p^{k}}=\frac{p^{k} q}{1-p^{k}}
$$

Similarly, considering the renewal process

$$
N_{T}(t)=\# \text { of times to see } k \text { tails in a row by time } t .
$$

By Proposition 7.1, we also have $\lim _{t \rightarrow \infty} \frac{N_{T}(t)}{t}=\frac{q^{k} p}{1-q^{k}}$. Lecture 16-4

Example 7.7 Solution (Cont'd)

Consider the counting process $N(t)=N_{H}(t)+N_{T}(t)$.

- $\{N(t): t \geq 0\}$ is also a renewal process (Why?) Here an event occurs whenever one gets k heads in a row or k tails in a row.
- As $t \rightarrow \infty$,

$$
\frac{N(t)}{t}=\frac{N_{H}(t)}{t}+\frac{N_{T}(t)}{t} \rightarrow \frac{p^{k} q}{1-p^{k}}+\frac{q^{k} p}{1-q^{k}}
$$

which is the reciprocal of mean length $\mathbb{E}[T]$ of interarrival times for $\{N(t): t \geq 0\}$.

- From the above we can answer the 2nd question: the expected number of tosses required to get k heads in a row or k tails in a row is

$$
\mathbb{E}[T]=\frac{1}{p^{k} q /\left(1-p^{k}\right)+q^{k} p /\left(1-q^{k}\right)}
$$

Lecture 16-5

Example 7.7 Solution (Cont'd)

With probability 1 , the long run proportion of events that are k-heads is

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{N_{H}(t)}{N(t)} & =\lim _{t \rightarrow \infty} \frac{N_{H}(t)}{N_{H}(t)+N_{T}(t)}=\lim _{t \rightarrow \infty} \frac{N_{H}(t) / t}{N_{H}(t) / t+N_{T}(t) / t} \\
& =\frac{p^{k} q /\left(1-p^{k}\right)}{p^{k} q /\left(1-p^{k}\right)+q^{k} p /\left(1-q^{k}\right)}
\end{aligned}
$$

The probability of getting k-heads before k-tails is, by SLLN, equal to the long-run proportion of events that are k-heads.

$$
\mathrm{P}(k \text {-heads before } k \text {-tails })=\frac{p^{k} q /\left(1-p^{k}\right)}{p^{k} q /\left(1-p^{k}\right)+q^{k} p /\left(1-q^{k}\right)}
$$

Theorem 7.2 CLT for Renewal Processes

Suppose that μ and σ^{2} are, respectively, the mean and variance of the interarrival times of a renewal process $\{N(t), t \geq 0\}$. Then

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Var}(N(t))}{t}=\frac{\sigma^{2}}{\mu^{3}}
$$

and $N(t)$ is asymptotically $N\left(t / \mu, \sigma^{2} t / \mu^{3}\right)$, i.e.,

$$
\lim _{t \rightarrow \infty} \mathrm{P}\left(\frac{N(t)-t / \mu}{\sqrt{t \sigma^{2} / \mu^{3}}}<x\right)=\Phi(x)
$$

where $\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{\pi}} e^{-z^{2} / 2} d z$ is the CDF of the standard normal distribution.

Proof of Theorem 7.2

$$
\left.\begin{array}{rlr}
& \mathrm{P}\left(\frac{N(t)-t / \mu}{\sqrt{t \sigma^{2} / \mu^{3}}}<x\right) & \\
= & \mathrm{P}\left(N(t)<\frac{t}{\mu}+\frac{\sigma}{\mu} \sqrt{\frac{t}{\mu}} x\right) & \\
= & \mathrm{P}(N(t) \leq n) & \quad\left(\text { Let } n=\left\lfloor\frac{t}{\mu}+\frac{\sigma}{\mu} \sqrt{\frac{t}{\mu}} x\right\rfloor\right) \\
= & \mathrm{P}\left(S_{n} \geq t\right) & \left.\quad \text { (Recall } N(t) \leq n \Leftrightarrow S_{n} \geq t\right) \\
= & \mathrm{P}\left(\frac{S_{n}-n \mu}{\sqrt{n} \sigma} \geq \frac{t-n \mu}{\sqrt{n} \sigma}\right) & \\
\longrightarrow & 1-\Phi\left(\frac{t-n \mu}{\sqrt{n} \sigma}\right) & \\
= & \text { as } n \rightarrow \infty \text { by the CLT for } S_{n} \\
\sqrt{n} \sigma
\end{array} \quad \text { (since } 1-\Phi(z)=\Phi(-z)\right)
$$

Proof of Theorem 7.2 (Cont'd)

It remains to show that

$$
-\frac{t-n \mu}{\sqrt{n} \sigma} \longrightarrow x \quad \text { as } t \rightarrow \infty
$$

Since $n \leq \frac{t}{\mu}+\frac{\sigma}{\mu} \sqrt{\frac{t}{\mu}} x$, as $t \rightarrow \infty$, we have

$$
\frac{t-n \mu}{\sqrt{n} \sigma} \geq \frac{t-\left(\frac{t}{\mu}+\frac{\sigma}{\mu} \sqrt{\frac{t}{\mu}} x\right) \mu}{\sigma \sqrt{\frac{t}{\mu}+\frac{\sigma}{\mu} \sqrt{\frac{t}{\mu}} x}}=\frac{-\sigma x \sqrt{t / \mu}}{\sigma \sqrt{\frac{t}{\mu}+\frac{\sigma}{\mu} \sqrt{\frac{t}{\mu}} x}} \longrightarrow-x .
$$

Similarly because $n \geq \frac{t}{\mu}+\frac{\sigma}{\mu} \sqrt{\frac{t}{\mu}}-1$, we have

$$
\frac{t-n \mu}{\sqrt{n} \sigma} \leq \frac{t-\left(\frac{t}{\mu}+\frac{\sigma}{\mu} \sqrt{\frac{t}{\mu}} x-1\right) \mu}{\sigma \sqrt{\frac{t}{\mu}+\frac{\sigma}{\mu} \sqrt{\frac{t}{\mu}} x}}=\frac{-\sigma x \sqrt{t / \mu}-\mu}{\sigma \sqrt{\frac{t}{\mu}+\frac{\sigma}{\mu} \sqrt{\frac{t}{\mu}} x-1}} \longrightarrow-x
$$

as $t \rightarrow \infty$.
Lecture 16-9

