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6.2 Continuous-Time Markov Chains (CTMC)

Definitions. A stochastic process {X (t), t ≥ 0} with state space
X is called a continuous-time Markov chain if for any two states i ,
j ∈ X ,

P(X (t + s) = j︸ ︷︷ ︸
future

|X (s) = i︸ ︷︷ ︸
present

,X (u) = x(u), for 0 ≤ u < s︸ ︷︷ ︸
past

)

= P(X (t + s) = j︸ ︷︷ ︸
future

|X (s) = i︸ ︷︷ ︸
present

)

If P(X (t + s) = j |X (s) = i) does not depend on s for all i , j ∈ X ,
then it is denoted as

Pij(t) = P(X (t + s) = j |X (s) = i),

and we say the CTMC is homogeneous in time.

In STAT253/317, we focus on homogeneous CTMC only.
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Exponential Waiting Time

Let {X (t), t ≥ 0} be a homogeneous continuous-time Markov
chain. For i ∈ X , let Ti denote the amount of time that X (t)
stays in state i before making a transition into a different state.

Claim: Ti has the memoryless property.

P(Ti ≥ t + s|Ti ≥ s)

= P(X (u) = i , for s ≤ u ≤ s + t|X (u) = i , for 0 ≤ u ≤ s)

= P(X (u) = i , for s ≤ u ≤ s + t|X (s) = i) (Markov property)

= P(X (u) = i , for 0 ≤ u ≤ t|X (0) = i) (time homogeneity)

= P(Ti ≥ t) ⇒ So Ti is memoryless.

Recall that the exponential distribution is the only continuous
distribution having the memoryless property.
Thus Ti ∼ Exp(νi ) for some rate νi .

Lecture 12 - 3



An Alternative Definition of CTMC
A stochastic process {X (t), t ≥ 0} with state space X is a
continuous-time Markov chain if

I (exponential waiting time) when the chain reaches a state i ,
the time it stays at state i ∼ Exp(νi ), where νi is the
transition rate at state i

I (embedded with a discrete time Markov chain) when the
process leaves state i , it enters anther state j with probability
Pij , such that

Pii = 0,
∑

j∈X
Pij = 1 for all i , j ∈ X .

Remark: The amount of time Ti the process spends in state i ,
and the next state visited, must be independent. For if the next
state visited were dependent on Ti , then information as to how
long the process has already been in state i would be relevant to
the prediction of the next state—and this contradicts the
Markovian assumption.
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6.3 Birth and Death Processes
Let X (t) = the number of people in the system at time t.
Suppose that whenever there are n people in the system, then

(i) new arrivals enter the system at an exponential rate λn, and

(ii) people leave the system at an exponential rate µn.

Such an {X (t), t ≥ 0} is called a birth and death process. In other
words, a birth and death process is a CTMC with state space
X = {0, 1, 2, . . .} such that

ν0 = λ0,

νi = λi + µi , i > 0

P01 = 1,

Pi ,i+1 =
λi

λi + µi
, Pi ,i−1 =

µi
λi + µi

, i > 0

Pi ,j = 0 if |i − j | > 1

The parameters {λn}∞n=0 and {µn}∞n=0 are called, respectively, the
arrival (or birth) and departure (or death) rates.
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Examples of Birth and Death Processes
I Poisson Processes: µn = 0, λn = λ for all n ≥ 0
I Pure Birth Process:

µn = 0 ⇒ νi = λi , Pi ,i+1 = 1, Pi ,i−1 = 0

I Yule Processes (Pure Birth Process with Linear Growth rate):
If there are n people and each independently gives birth at at
an exponential rate λ, then the total rate at which births
occur is nλ.

µn = 0, λn = nλ

I Linear Growth Model with Immigration:

µn = nµ, λn = nλ+ θ

I M/M/s Queueing Model
I s servers
I Poisson arrival of customers, rate = λ
I Exponential service time, rate = µ

⇒ a birth and death process with constant birth rate λn = λ,
and death rate µn = min(n, s)µ.
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6.4 The Transition Probability Function Pij(t)

Recall the transition probability function Pij(t) of a CTMC
{X (t), t ≥ 0} is

Pij(t) = P(X (t + s) = j |X (s) = i)

Example. (Poisson Processes with rate λ)

Pij(t) = P(N(t + s) = j |N(s) = i)

= P(N(t + s)− N(s) = j − i) =

{
e−λt (λt)j−i

(j−i)! if j ≥ i

0 if j < i

Properties of Transition Probability Functions

I Pij(t) ≥ 0 for all i , j ∈ X and t ≥ 0

I (Row sums are 1)
∑

j Pij(t) = 1 for all i ∈ X and t ≥ 0
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Lemma 6.3 Chapman-Kolmogorov Equation
For all i , j ∈ X and t ≥ 0,

Pij(t + s) =
∑
k∈X

Pik(t)Pkj(s)

Proof.

Pij(t + s)

= P(X (t + s) = j |X (0) = i)

=
∑
k∈X

P(X (t + s) = j ,X (t) = k |X (0) = i)

=
∑
k∈X

P(X (t + s) = j |X (t) = k ,X (0) = i)P(X (t) = k |X (0) = i)

=
∑
k∈X

P(X (t + s) = j |X (t) = k)P(X (t) = k |X (0) = i) (Markov Property)

=
∑
k∈X

Pkj(s)Pik(t)
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Lemma 6.2
For any i , j ∈ X , we have

(a) limh→0
1−Pii (h)

h = νi (b) limh→0
Pij (h)

h = νiPij
defined as

= qij ,

where qij = νiPij is called the instantaneous transition rates.

Proof. (a) Let Ti be the amount of time the process stays in state
i before moving to other states.

Pii (h) = P(X (h) = i |X (0) = i)

= P(X (h) = i , no transition in (0,h]|X (0) = i)

+ P(X (h) = i , 2 or more transition in (0,h]|X (0) = i)

= P(Ti > h) + o(h) = e−νih + o(h) = 1− νih + o(h)

(b)Pij(h) = P(X (h) = j |X (0) = i)

= P(X (h) = j , 1 transition in (0,h]|X (0) = i)

+ P(X (h) = j , 2 or more transition in (0,h]|X (0) = i)

= P(Ti < h)Pij + o(h) = (1−e−νih)Pij + o(h) = νiPijh + o(h)
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Theorem 6.1 Kolmogorov’s Backward Equations
From Lemma 6.3 (Chapman-Kolmogorov equations), we obtain

Pij(h + t)− Pij(t) =
∑
k∈X

Pik(h)Pkj(t)− Pij(t)

=
∑

k∈X ,k 6=i

Pik(h)Pkj(t)− (1− Pii (h))Pij(t)

and thus

lim
h→0

Pij(t + h)− Pij(t)

h
= lim

h→0

∑
k 6=i

Pik(h)

h
Pkj(t)− 1− Pii (h)

h
Pij(t)


Now assuming that we can interchange the limit and the
summation in the preceding and applying Lemma 6.2, we obtain

P ′ij(t) =
∑

k∈X ,k 6=i

qikPkj(t)− νiPij(t)

It turns out that this interchange can indeed be justified.
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Theorem 6.2 Kolmogorov’s Forward Equations
From Lemma 6.3 (Chapman-Kolmogorov equations), we obtain

Pij(t + h)− Pij(t) =
∑
k∈X

Pik(t)Pkj(h)− Pij(t)

=
∑

k∈X ,k 6=j

Pik(t)Pkj(h)− (1− Pjj(h))Pij(t)

and thus

lim
h→0

Pij(h + t)− Pij(t)

h
= lim

h→0

∑
k 6=j

Pik(t)
Pkj(h)

h
−

1− Pjj(h)

h
Pij(t)


Now assuming that we can interchange the limit and the
summation in the preceding and applying Lemma 6.2, we obtain

P ′ij(t) =
∑

k 6=j
Pik(t)qkj − νjPij(t)

Unfortunately, this interchange is not always justifiable. However,
the forward equations do hold in most models, including all birth
and death processes and all finite state models.
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Recall that we define the instantaneous transition rates

qij = νiPij , fori , j ∈ X , i 6= j

If we define qii as −νi . For finite state space case
X = {1, 2, . . . ,m}, define the matrices

P(t) =

P11(t) · · · P1m(t)
...

...
Pm1(t) · · · Pmm(t)

 , P′(t) =

P ′11(t) · · · P ′1m(t)
...

...
P ′m1(t) · · · P ′mm(t)

 ,

Q =

q11 · · · q1m
...

...
qm1 · · · qmm

 =


−ν1 ν1P12 · · · ν1P1m

ν2P21 −ν2 · · · ν2P2m
...

...
...

νmPm1 νmPm2 · · · −νm


In matrix notation,
Forward equation: P′(t) = P(t)Q
Backward equation: P′(t) = QP(t)
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