STAT253/317 Lecture 12

Yibi Huang

Chapter 6 Continuous-Time Markov Chains

Lecture 12-1

6.2 Continuous-Time Markov Chains (CTMC)

Definitions. A stochastic process $\{X(t), t \geq 0\}$ with state space \mathcal{X} is called a continuous-time Markov chain if for any two states i, $j \in \mathcal{X}$,

$$
\begin{aligned}
& \mathrm{P}(\underbrace{X(t+s)=j}_{\text {future }} \mid \underbrace{X(s)=i}_{\text {present }}, \underbrace{X(u)=x(u), \text { for } 0 \leq u<s}_{\text {past }}) \\
& =\mathrm{P}(\underbrace{X(t+s)=j}_{\text {future }} \mid \underbrace{X(s)=i}_{\text {present }})
\end{aligned}
$$

If $\mathrm{P}(X(t+s)=j \mid X(s)=i)$ does not depend on s for all $i, j \in \mathcal{X}$, then it is denoted as

$$
P_{i j}(t)=\mathrm{P}(X(t+s)=j \mid X(s)=i)
$$

and we say the CTMC is homogeneous in time.
In STAT253/317, we focus on homogeneous CTMC only.

Exponential Waiting Time

Let $\{X(t), t \geq 0\}$ be a homogeneous continuous-time Markov chain. For $i \in \mathcal{X}$, let T_{i} denote the amount of time that $X(t)$ stays in state i before making a transition into a different state.
Claim: T_{i} has the memoryless property.

$$
\begin{aligned}
& \mathrm{P}\left(T_{i} \geq t+s \mid T_{i} \geq s\right) \\
& =\mathrm{P}(X(u)=i, \text { for } s \leq u \leq s+t \mid X(u)=i, \text { for } 0 \leq u \leq s) \\
& =\mathrm{P}(X(u)=i, \text { for } s \leq u \leq s+t \mid X(s)=i) \quad \text { (Markov property) } \\
& =\mathrm{P}(X(u)=i, \text { for } 0 \leq u \leq t \mid X(0)=i) \quad \text { (time homogeneity) } \\
& =\mathrm{P}\left(T_{i} \geq t\right) \Rightarrow \text { So } T_{i} \text { is memoryless. }
\end{aligned}
$$

Recall that the exponential distribution is the only continuous distribution having the memoryless property.
Thus $T_{i} \sim \operatorname{Exp}\left(\nu_{i}\right)$ for some rate ν_{i}.

An Alternative Definition of CTMC

A stochastic process $\{X(t), t \geq 0\}$ with state space \mathcal{X} is a continuous-time Markov chain if

- (exponential waiting time) when the chain reaches a state i, the time it stays at state $i \sim \operatorname{Exp}\left(\nu_{i}\right)$, where ν_{i} is the transition rate at state i
- (embedded with a discrete time Markov chain) when the process leaves state i, it enters anther state j with probability $P_{i j}$, such that

$$
P_{i i}=0, \quad \sum_{j \in \mathcal{X}} P_{i j}=1 \quad \text { for all } i, j \in \mathcal{X} .
$$

Remark: The amount of time T_{i} the process spends in state i, and the next state visited, must be independent. For if the next state visited were dependent on T_{i}, then information as to how long the process has already been in state i would be relevant to the prediction of the next state-and this contradicts the Markovian assumption.
Lecture 12-4

6.3 Birth and Death Processes

Let $X(t)=$ the number of people in the system at time t. Suppose that whenever there are n people in the system, then
(i) new arrivals enter the system at an exponential rate λ_{n}, and
(ii) people leave the system at an exponential rate μ_{n}.

Such an $\{X(t), t \geq 0\}$ is called a birth and death process. In other words, a birth and death process is a CTMC with state space $\mathcal{X}=\{0,1,2, \ldots\}$ such that

$$
\begin{aligned}
\nu_{0} & =\lambda_{0} \\
\nu_{i} & =\lambda_{i}+\mu_{i}, i>0 \\
P_{01} & =1 \\
P_{i, i+1} & =\frac{\lambda_{i}}{\lambda_{i}+\mu_{i}}, P_{i, i-1}=\frac{\mu_{i}}{\lambda_{i}+\mu_{i}}, i>0 \\
P_{i, j} & =0 \quad \text { if }|i-j|>1
\end{aligned}
$$

The parameters $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ and $\left\{\mu_{n}\right\}_{n=0}^{\infty}$ are called, respectively, the arrival (or birth) and departure (or death) rates.

Lecture 12-5

Examples of Birth and Death Processes

- Poisson Processes: $\mu_{n}=0, \lambda_{n}=\lambda$ for all $n \geq 0$
- Pure Birth Process:

$$
\mu_{n}=0 \Rightarrow \nu_{i}=\lambda_{i}, P_{i, i+1}=1, P_{i, i-1}=0
$$

- Yule Processes (Pure Birth Process with Linear Growth rate): If there are n people and each independently gives birth at at an exponential rate λ, then the total rate at which births occur is $n \lambda$.

$$
\mu_{n}=0, \quad \lambda_{n}=n \lambda
$$

- Linear Growth Model with Immigration:

$$
\mu_{n}=n \mu, \quad \lambda_{n}=n \lambda+\theta
$$

- $M / M / s$ Queueing Model
- s servers
- Poisson arrival of customers, rate $=\lambda$
- Exponential service time, rate $=\mu$
\Rightarrow a birth and death process with constant birth rate $\lambda_{n}=\lambda$, and death rate $\mu_{n}=\min (n, s) \mu$.
Lecture 12-6

6.4 The Transition Probability Function $P_{i j}(t)$

Recall the transition probability function $P_{i j}(t)$ of a CTMC $\{X(t), t \geq 0\}$ is

$$
P_{i j}(t)=\mathrm{P}(X(t+s)=j \mid X(s)=i)
$$

Example. (Poisson Processes with rate λ)

$$
\begin{aligned}
P_{i j}(t) & =\mathrm{P}(N(t+s)=j \mid N(s)=i) \\
& =\mathrm{P}(N(t+s)-N(s)=j-i)= \begin{cases}e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!} & \text { if } j \geq i \\
0 & \text { if } j<i\end{cases}
\end{aligned}
$$

Properties of Transition Probability Functions

- $P_{i j}(t) \geq 0$ for all $i, j \in \mathcal{X}$ and $t \geq 0$
- (Row sums are 1) $\sum_{j} P_{i j}(t)=1$ for all $i \in \mathcal{X}$ and $t \geq 0$

Lemma 6.3 Chapman-Kolmogorov Equation

For all $i, j \in \mathcal{X}$ and $t \geq 0$,

$$
P_{i j}(t+s)=\sum_{k \in \mathcal{X}} P_{i k}(t) P_{k j}(s)
$$

Proof.

$$
\begin{aligned}
& P_{i j}(t+s) \\
& =\mathrm{P}(X(t+s)=j \mid X(0)=i) \\
& =\sum_{k \in \mathcal{X}} \mathrm{P}(X(t+s)=j, X(t)=k \mid X(0)=i) \\
& =\sum_{k \in \mathcal{X}} \mathrm{P}(X(t+s)=j \mid X(t)=k, X(0)=i) \mathrm{P}(X(t)=k \mid X(0)=i) \\
& =\sum_{k \in \mathcal{X}} \mathrm{P}(X(t+s)=j \mid X(t)=k) \mathrm{P}(X(t)=k \mid X(0)=i) \text { (Markov Property) } \\
& =\sum_{k \in \mathcal{X}} P_{k j}(s) P_{i k}(t)
\end{aligned}
$$

Lemma 6.2

For any $i, j \in \mathcal{X}$, we have

$$
\text { (a) } \lim _{h \rightarrow 0} \frac{1-P_{i i}(h)}{h}=\nu_{i} \quad \text { (b) } \lim _{h \rightarrow 0} \frac{P_{i j}(h)}{h}=\nu_{i} P_{i j} \stackrel{\text { defined as }}{=} q_{i j}
$$

where $q_{i j}=\nu_{i} P_{i j}$ is called the instantaneous transition rates.
Proof. (a) Let T_{i} be the amount of time the process stays in state i before moving to other states.

$$
\begin{aligned}
P_{i i}(h)= & \mathrm{P}(X(h)=i \mid X(0)=i) \\
= & \mathrm{P}(X(h)=i, \text { no transition in }(0, \mathrm{~h}] \mid X(0)=i) \\
& +\mathrm{P}(X(h)=i, 2 \text { or more transition in }(0, \mathrm{~h}] \mid X(0)=i) \\
= & \mathrm{P}\left(T_{i}>h\right)+o(h)=e^{-\nu_{i} h}+o(h)=1-\nu_{i} h+o(h)
\end{aligned}
$$

(b) $P_{i j}(h)=\mathrm{P}(X(h)=j \mid X(0)=i)$

$$
\begin{aligned}
= & \mathrm{P}(X(h)=j, 1 \text { transition in }(0, \mathrm{~h}] \mid X(0)=i) \\
& +\mathrm{P}(X(h)=j, 2 \text { or more transition in }(0, \mathrm{~h}] \mid X(0)=i) \\
= & \mathrm{P}\left(T_{i}<h\right) P_{i j}+o(h)=\left(1-e^{-\nu_{i} h}\right) P_{i j}+o(h)=\nu_{i} P_{i j} h+o(h)
\end{aligned}
$$

Lecture 12-9

Theorem 6.1 Kolmogorov's Backward Equations

From Lemma 6.3 (Chapman-Kolmogorov equations), we obtain

$$
\begin{aligned}
P_{i j}(h+t)-P_{i j}(t) & =\sum_{k \in \mathcal{X}} P_{i k}(h) P_{k j}(t)-P_{i j}(t) \\
& =\sum_{k \in \mathcal{X}, k \neq i} P_{i k}(h) P_{k j}(t)-\left(1-P_{i i}(h)\right) P_{i j}(t)
\end{aligned}
$$

and thus

$$
\lim _{h \rightarrow 0} \frac{P_{i j}(t+h)-P_{i j}(t)}{h}=\lim _{h \rightarrow 0}\left\{\sum_{k \neq i} \frac{P_{i k}(h)}{h} P_{k j}(t)-\frac{1-P_{i i}(h)}{h} P_{i j}(t)\right\}
$$

Now assuming that we can interchange the limit and the summation in the preceding and applying Lemma 6.2, we obtain

$$
P_{i j}^{\prime}(t)=\sum_{k \in \mathcal{X}, k \neq i} q_{i k} P_{k j}(t)-\nu_{i} P_{i j}(t)
$$

It turns out that this interchange can indeed be justified.

Theorem 6.2 Kolmogorov's Forward Equations

From Lemma 6.3 (Chapman-Kolmogorov equations), we obtain

$$
\begin{aligned}
P_{i j}(t+h)-P_{i j}(t) & =\sum_{k \in \mathcal{X}} P_{i k}(t) P_{k j}(h)-P_{i j}(t) \\
& =\sum_{k \in \mathcal{X}, k \neq j} P_{i k}(t) P_{k j}(h)-\left(1-P_{j j}(h)\right) P_{i j}(t)
\end{aligned}
$$

and thus
$\lim _{h \rightarrow 0} \frac{P_{i j}(h+t)-P i j(t)}{h}=\lim _{h \rightarrow 0}\left\{\sum_{k \neq j} P_{i k}(t) \frac{P_{k j}(h)}{h}-\frac{1-P_{j j}(h)}{h} P_{i j}(t)\right\}$
Now assuming that we can interchange the limit and the summation in the preceding and applying Lemma 6.2, we obtain

$$
P_{i j}^{\prime}(t)=\sum_{k \neq j} P_{i k}(t) q_{k j}-\nu_{j} P_{i j}(t)
$$

Unfortunately, this interchange is not always justifiable. However, the forward equations do hold in most models, including all birth and death processes and all finite state models.

Lecture 12-11

Recall that we define the instantaneous transition rates

$$
q_{i j}=\nu_{i} P_{i j}, \quad \text { for } i, j \in \mathcal{X}, i \neq j
$$

If we define $q_{i i}$ as $-\nu_{i}$. For finite state space case $\mathcal{X}=\{1,2, \ldots, m\}$, define the matrices

$$
\begin{aligned}
& \mathbf{P}(t)=\left[\begin{array}{ccc}
P_{11}(t) & \cdots & P_{1 m}(t) \\
\vdots & & \vdots \\
P_{m 1}(t) & \cdots & P_{m m}(t)
\end{array}\right], \quad \mathbf{P}^{\prime}(t)=\left[\begin{array}{ccc}
P_{11}^{\prime}(t) & \cdots & P_{1 m}^{\prime}(t) \\
\vdots & & \vdots \\
P_{m 1}^{\prime}(t) & \cdots & P_{m m}^{\prime}(t)
\end{array}\right], \\
& \mathbf{Q}=\left[\begin{array}{ccc}
q_{11} & \cdots & q_{1 m} \\
\vdots & & \vdots \\
q_{m 1} & \cdots & q_{m m}
\end{array}\right]=\left[\begin{array}{cccc}
-\nu_{1} & \nu_{1} P_{12} & \cdots & \nu_{1} P_{1 m} \\
\nu_{2} P_{21} & -\nu_{2} & \cdots & \nu_{2} P_{2 m} \\
\vdots & \vdots & & \vdots \\
\nu_{m} P_{m 1} & \nu_{m} P_{m 2} & \cdots & -\nu_{m}
\end{array}\right]
\end{aligned}
$$

In matrix notation,
Forward equation: $\mathbf{P}^{\prime}(t)=\mathbf{P}(t) \mathbf{Q}$
Backward equation: $\mathbf{P}^{\prime}(t)=\mathbf{Q P}(t)$

