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Chapter 6 Continuous-Time Markov Chains
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6.2 Continuous-Time Markov Chains (CTMC)

Definitions. A stochastic process {X(t),t > 0} with state space
X is called a continuous-time Markov chain if for any two states i,
JEX,

P(X(t+s)=j|X(s) =1i,X(u) = x(u),for 0 < u <s)
N — N——
future present past
= P(X(t +5) = ]| X(s) = /)
—_——— —

future present

If P(X(t+s) =j|X(s) = i) does not depend on s for all i,j € X,
then it is denoted as

Pj(t) = P(X(t +5) = j|X(s) = ),

and we say the CTMC is homogeneous in time.
In STAT253/317, we focus on homogeneous CTMC only.
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Exponential Waiting Time

Let {X(t),t > 0} be a homogeneous continuous-time Markov
chain. For i € X, let T; denote the amount of time that X(t)
stays in state / before making a transition into a different state.

Claim: T; has the memoryless property.

P(T; > t+s|T; > 5s)

P(X()—/ fors <u<s+t|X(u)=1i, for0<u<s)
(X(u) =1, fors <u<s+t|X(s)=1i) (Markov property)
(X(u ) =1, for 0 < u < t|X(0) =) (time homogeneity)
(Ti

) = So T; is memoryless.

P
P
P

Recall that the exponential distribution is the only continuous
distribution having the memoryless property.
Thus T; ~ Exp(v;) for some rate v;.
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An Alternative Definition of CTMC

A stochastic process {X(t),t > 0} with state space X is a
continuous-time Markov chain if

» (exponential waiting time) when the chain reaches a state /,
the time it stays at state i ~ Exp(v;), where v; is the
transition rate at state /

» (embedded with a discrete time Markov chain) when the
process leaves state /, it enters anther state j with probability
Pjj, such that

P; =0, ZJ,EX Pj=1 forallijcX.

Remark: The amount of time T; the process spends in state i/,
and the next state visited, must be independent. For if the next
state visited were dependent on T;, then information as to how
long the process has already been in state / would be relevant to
the prediction of the next state—and this contradicts the
Markovian assumption.
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6.3 Birth and Death Processes
Let X(t) = the number of people in the system at time t.
Suppose that whenever there are n people in the system, then
(i) new arrivals enter the system at an exponential rate \,, and
(ii) people leave the system at an exponential rate j,.
Such an {X(t),t > 0} is called a birth and death process. In other
words, a birth and death process is a CTMC with state space
X =1{0,1,2,...} such that

Vo = Ao,
vi= A+ pi,i >0
Po1 =1,
A i
P; : — , P:. = 0 > 0
ii+1 )\i“‘,ui ii—1 )\i"’,ui

P;,J'ZO if‘l'—_j'|>1

The parameters {\,}72 and {u,}02, are called, respectively, the
arrival (or birth) and departure (or death) rates.
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Examples of Birth and Death Processes

v

Poisson Processes: p, =0, A\, =Aforalln>0
» Pure Birth Process:

pn=0 = vi=Ai Piija=1 Pij1=0
» Yule Processes (Pure Birth Process with Linear Growth rate):
If there are n people and each independently gives birth at at
an exponential rate A, then the total rate at which births
occur is nA.
n =0, Xp=nA
» Linear Growth Model with Immigration:
tn =N, Ap=nA+0
» M/M/s Queueing Model

> S servers
» Poisson arrival of customers, rate = A\
» Exponential service time, rate = p
= a birth and death process with constant birth rate A, = A,

and death rate pu, = min(n, s)pu.
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6.4 The Transition Probability Function Pj(t)

Recall the transition probability function Pj;(t) of a CTMC
{X(t),t >0} is

Pij(t) = P(X(t +s) = j|IX(s) = 1)
Example. (Poisson Processes with rate \)

Pij(t) = P(N(t +s) = jIN(s) = /)

—P(N(t+s)— N(s)=j—i)=4° G "=
0 if j<i
Properties of Transition Probability Functions
» Pj(t)>0foralli,je Xandt>0
> (Row sums are 1) >, P;(t) =1foralli€ X and t >0
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Lemma 6.3 Chapman-Kolmogorov Equation
Forall i,j € X and t > 0,

Pi(t+s) =Y Pu(t)Pyg(s
kex

Proof.

P,'j(t+5)
=P(X(t+s) =j|X(0) =)
= 3" P(X(t+5) =, X(£) = kIX(0) = i)

keXx
=Y P(X(t+5s) =jIX(t) = k, X(0) = i)P(X(t) = k|X(0) = i)
kex

=Y P(X(t+5) =jIX(t) = k)P(X(t) = k|X(0) = i) (Markov Property)

= Z ij(S)Pk t

kex
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Lemma 6.2
For any i,j € X, we have

. 1-P;(h . P;i(h) defined as
(a) limp_o h( ) =y (b) limpo~2p~ =viPy =

where g;; = v;Pj; is called the instantaneous transition rates.

qij»

Proof. (a) Let T; be the amount of time the process stays in state
i before moving to other states.

Pi(h) = P(X(h) = 11X(0) = i)
= P(X(h) = i, no transition in (0,h]|X(0) = /)
+ P(X(h) = i,2 or more transition in (0,h]|X(0) = /)
=P(T; > h)+o(h) = e " + o(h) = 1 — vih + o(h)
(b)Py(h) = P(X(h) = j|X(0) = i)
P(X(h) = Jj, 1 transition in (0,h]|X(0) = /)
+ P(X(h) = Jj, 2 or more transition in (0,h]|X(0) = /)
= P(T; < h)Pj + o(h) = (1—e™"")P; + o(h) = v;Pjh + o(h)
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Theorem 6.1 Kolmogorov's Backward Equations
From Lemma 6.3 (Chapman-Kolmogorov equations), we obtain

Pi(h+t) = Pj(t) = > Pu(h)Pyg(t) — P;(t)

keXx
= Z Pik(h)Pki(t) — (1 — Pii(h))Py(t)
KEX ki
and thus
_ Pi(t+ h)— Pij(t) . Pix(h) 1— P;i(h)
im © _y Py(t) - — 0 p,
palts h palt Z h (%) h i ()

ki

Now assuming that we can interchange the limit and the
summation in the preceding and applying Lemma 6.2, we obtain

Pi() =D awPy(t) = viPy(t)
kEX ki

It turns out that this interchange can indeed be justified.
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Theorem 6.2 Kolmogorov's Forward Equations
From Lemma 6.3 (Chapman—KoImogorov equations), we obtain

P;i(t + h) Z Pi(t)Pij(h) — Py(t)
keX
Z Pix(t)Pii(h) — (1 — Py(h))Py(t)
keX kj
and thus

o Pilh+t) = Pij(t) S Put) Pk,;h) _1- ’;fi(h) Py(t)

h—0 h h—0

Now assuming that we can interchange the limit and the
summation in the preceding and applying Lemma 6.2, we obtain

Pj(t) = Zk# Pi(t)aw — vjPij(t)

Unfortunately, this interchange is not always justifiable. However,
the forward equations do hold in most models, including all birth
and death processes and all finite state models.
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Recall that we define the instantaneous transition rates

q,'j:V,'P,'j, fori,jEX,i;éj

If we define g;; as —v;. For finite state space case
X =1{1,2,..., m}, define the matrices

[ Pua(t) -+ Pim(t) P (1)
P(t)y=| o, P)=
_Pml(t) Pmm(t) 'Drlnl(t)
- -1 P
q11 qdim Vo Pay — vy
Q = . . =
_qml o dmm Vuml Vum2

In matrix notation,
Forward equation: P'(t) = P(t)Q
Backward equation: P’(t) = QP(t)
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