STAT253/317 Lecture 11

Yibi Huang

5.3 The Poisson Processes
5.4 Generalizations of the Poisson Processes

Lecture 11-1

Superposition

The sum of two independent Poisson processes with respective rates λ_{1} and λ_{2}, called the superposition of the processes, is again a Poisson process but with rate $\lambda_{1}+\lambda_{2}$.

The proof is straight forward from Definition 5.3 and hence omitted.

Remark: By repeated application of the above arguments we can see that the superposition of k independent Poisson processes with rates $\lambda_{1}, \cdots, \lambda_{k}$ is again a Poisson process with rate $\lambda_{1}+\cdots+\lambda_{k}$.

Why Are Poisson Processes Commonly Used?

There is a useful result in probability theory which says that:
if we take N independent counting processes and sum them up, then the resulting superposition process is approximately a Poisson process.

Here

- N must be "large enough" and
- the rates of the individual processes must be "small" relative to N
- but the individual processes that go into the superposition can otherwise be arbitrary.
E.g., $N(t)=\#$ of crimes by time t in a certain town.

Thinning

Consider a Poisson process $\{N(t): t \geq 0\}$ with rate λ.
At each arrival of events, it is classified as a

$$
\begin{cases}\text { Type } 1 \text { event with probability } & p \\ \text { Type } 2 \text { event with probability } & 1-p,\end{cases}
$$

independently of all other events. Let

$$
N_{i}(t)=\# \text { of type } i \text { events occurred during }[0, t], i=1,2
$$

Note that $N(t)=N_{1}(t)+N_{2}(t)$.

Proposition 5.2
$\left\{N_{1}(t), t \geq 0\right\}$ and $\left\{N_{2}(t), t \geq 0\right\}$ are both Poisson processes having respective rates λp and $\lambda(1-p)$.
Furthermore, the two processes are independent.

Proof of Proposition 5.2

First observe that given $N(t)=n+m$,

$$
N_{1}(t) \sim \operatorname{Binomial}(n+m, p) . \quad(\text { why? })
$$

Thus $\mathrm{P}\left(N_{1}(t)=n, N_{2}(t)=m\right)$

$$
=\mathrm{P}\left(N_{1}(t)=n, N_{2}(t)=m \mid N(t)=n+m\right) \mathrm{P}(N(t)=n+m)
$$

$$
=\binom{n+m}{n} p^{n}(1-p)^{m} e^{-\lambda t} \frac{(\lambda t)^{n+m}}{(n+m)!}
$$

$$
=e^{-\lambda t p} \frac{(\lambda p t)^{n}}{n!} e^{-\lambda t(1-p)} \frac{(\lambda(1-p) t)^{m}}{m!}
$$

$$
=\mathrm{P}\left(N_{1}(t)=n\right) \mathrm{P}\left(N_{2}(t)=m\right)
$$

This proves the independence of $N_{1}(t)$ and $N_{2}(t)$ and that

$$
N_{1}(t) \sim \operatorname{Poisson}(\lambda p t), \quad N_{2}(t) \sim \operatorname{Poisson}(\lambda(1-p) t) .
$$

Both $\left\{N_{1}(t)\right\}$ and $\left\{N_{2}(t)\right\}$ inherit the stationary and independent increment properties from $\{N(t)\}$, and hence are both Poisson processes.

Lecture 11-5

Some "Converse" of Thinning \& Superposition

Consider two indep. Poisson processes $\left\{N_{A}(t)\right\}$ and $\left\{N_{B}(t)\right\}$ w/ respective rates λ_{A} and λ_{B}. Let

$$
\begin{aligned}
& S_{n}^{A}=\text { arrival time of the } n \text {th } A \text { event } \\
& S_{m}^{B}=\text { arrival time of the } m \text { th } B \text { event }
\end{aligned}
$$

Find $\mathrm{P}\left(S_{n}^{A}<S_{m}^{B}\right)$.

Approach 1:

Observer that $S_{n}^{A} \sim \operatorname{Gamma}\left(n, \lambda_{A}\right), S_{m}^{B} \sim \operatorname{Gamma}\left(m, \lambda_{B}\right)$ and they are independent. Thus

$$
\mathrm{P}\left(S_{n}^{A}<S_{m}^{B}\right)=\int_{x<y} \lambda_{A} e^{-\lambda_{A} x} \frac{\left(\lambda_{A} x\right)^{n-1}}{(n-1)!} \lambda_{B} e^{-\lambda_{B y}} \frac{\left(\lambda_{B} y\right)^{m-1}}{(m-1)!} d x d y
$$

Some "Converse" of Thinning \& Superposition (Cont'd)

Let $N(t)=N_{A}(t)+N_{B}(t)$ be the superposition of the two processes. Let
$I_{i}=\left\{\begin{array}{ll}1 & \text { if the } i \text { th event in the superpositon process is an } A \text { event } \\ 0 & \text { otherwise }\end{array}\right.$.
The $\iota_{i}, i=1,2, \ldots$ are i.i.d. Bernoulli (p), where $p=\frac{\lambda_{A}}{\lambda_{A}+\lambda_{B}}$ mth tail

Approach 2:

$\mathrm{P}\left(S_{n}^{A}<S_{1}^{B}\right)=\mathrm{P}$ (the first n events are all A events $)=\left(\frac{\lambda_{A}}{\lambda_{A}+\lambda_{B}}\right)^{n}$
$\mathrm{P}\left(S_{n}^{A}<S_{m}^{B}\right)=\mathrm{P}$ (at least $n A$ events occur before $m B$ events)
$=\mathrm{P}($ at least n heads before m tails $)$
$=\mathrm{P}($ at least n heads in the first $n+m-1$ tosses $)$
$=\sum_{k=n}^{n+m-1}\binom{n+m-1}{k}\left(\frac{\lambda_{A}}{\lambda_{A}+\lambda_{B}}\right)^{k}\left(\frac{\lambda_{B}}{\lambda_{A}+\lambda_{B}}\right)^{n+m-1-k}$
Lecture 11-7

Proposition 5.3 (Generalization of Proposition 5.2)

Consider a Poisson process with rate λ. If an event occurs at time t will be classified as a type i event with probability $p_{i}(t)$, $i=1, \ldots, k, \sum_{i} p_{i}(t)=1$, for all t, independently of all other events. then
$N_{i}(t)=$ number of type i events occurring in $[0, t], i=1, \ldots, k$.
Note $N(t)=\sum_{i=1}^{k} N_{i}(t)$. Then $N_{i}(t), i=1, \ldots, k$ are independent Poisson random variables with means $\lambda \int_{0}^{t} p_{i}(s) p s$.

Remark: Note $\left\{N_{i}(t), t \geq 0\right\}$ are NOT Poisson processes.

Example

- Policyholders of a certain insurance company have accidents occurring according to a Poisson process with rate λ.
- The amount of time T from when the accident occurs until a claim is made has distribution $G(t)=\mathrm{P}(T \leq t)$.
- Let $N_{c}(t)$ be the number of claims made by time t.

Find the distribution of $N_{c}(t)$.
Solution. Suppose an accident occurred at time s. It is claimed by time t if $s+T \leq t$, i.e., with probability

$$
p(s)=\mathrm{P}(\mathrm{~s}+\mathrm{T}<=\mathrm{t}) .
$$

By Proposition 5.3, $N_{c}(t)$ has a Poisson distribution with mean

$$
\lambda \int_{0}^{t} p(s) p s=\lambda \int_{0}^{t} G(t-s) d s=\lambda \int_{0}^{t} G(s) d s
$$

Lecture 11-9

5.4.1 Nonhomogeneous Poisson Process

Definition 5.4a. A nonhomogeneous (a.k.a. non-stationary) Poisson process with intensity function $\lambda(t) \geq 0$ is a counting process $\{N(t), t \geq 0\}$ satisfying
(i) $N(0)=0$.
(ii) having independent increments.
(iii) $\mathrm{P}(N(t+h)-N(t)=1)=\lambda(t) h+o(h)$.
(iv) $\mathrm{P}(N(t+h)-N(t) \geq 2)=o(h)$.

Definition 5.4b. A nonhomogeneous Poisson process with intensity function $\lambda(t) \geq 0$ is a counting process $\{N(t), t \geq 0\}$ satisfying
(i) $N(0)=0$,
(ii) for $s, t \geq 0, N(t+s)-N(s)$ is independent of $N(s)$ (independent increment)
(iii) For $s, t \geq 0, N(t+s)-N(s) \sim \operatorname{Poisson}(m(t+s)-m(s))$, where $m(t)=\int_{0}^{t} \lambda(u) d u$
The two definitions are equivalent.

The Interarrival Times of a Nonhomogeneous Poisson Process Are NOT Independent

A nonhomogeneous Poisson process has independent increment but its interarrival times between events are

- neither independent
- nor identically distributed.

Proof. Homework.

Proposition 5.4

Let $\left\{N_{1}(t), t \geq 0\right\}$, and $\left\{N_{2}(t), t \geq 0\right\}$ be two independent nonhomogeneous Poisson process with respective intensity functions $\lambda_{1}(t)$ and $\lambda_{2}(t)$, and let $N(t)=N_{1}(t)+N_{2}(t)$. Then
(a) $\{N(t), t \geq 0\}$ is a nonhomogeneous Poisson process with intensity function $\lambda_{1}(t)+\lambda_{2}(t)$.
(b) Given that an event of the $\{N(t), t \geq 0\}$ process occurs at time t then, independent of what occurred prior to t, the event at t was from the $\left\{N_{1}(t)\right\}$ process with probability

$$
\frac{\lambda_{1}(t)}{\lambda_{1}(t)+\lambda_{2}(t)} .
$$

5.4.2 Compound Poisson Processes

Definition. Let $\{N(t)\}$ be a (homogeneous) Poisson process with rate λ and Y_{1}, Y_{2}, \ldots are i.i.d random variables independent of $\{N(t)\}$. The process

$$
X(t)=\sum_{i=1}^{N(t)} Y_{i}
$$

is called a compound Poisson process, in which $X(t)$ is defined as 0 if $N(t)=0$.

A compound Poisson process has

- independent increment, since

$$
\begin{aligned}
& X(t+s)-X(s)=\sum_{i=1}^{N(t+s)-N(s)} Y_{i+N(s)} \text { is independent of } \\
& X(s)=\sum_{i=1}^{N(s)} Y_{i} \text {, and }
\end{aligned}
$$

- stationary increment, since $X(t+s)-X(s)=\sum_{i=1}^{N(t+s)-N(s)} Y_{i+N(s)}$ has the same distribution as $X(t)=\sum_{i=1}^{N(t)} Y_{i}$

The Mean of a Compound Poisson Process

Suppose $\mathbb{E}\left[Y_{i}\right]=\mu_{Y}, \operatorname{Var}\left(Y_{i}\right)=\sigma_{Y}^{2}$. Note that $\mathbb{E}[N(t)]=\lambda t$.

$$
\begin{aligned}
\mathbb{E}[X(t) \mid N(t)] & =\sum_{i=1}^{N(t)} \mathbb{E}\left[Y_{i} \mid N(t)\right] \\
& \left.=\sum_{i=1}^{N(t)} \mathbb{E}\left[Y_{i}\right] \quad \text { (since } Y_{i} \text { 's are indep. of } N(t)\right) \\
& =N(t) \mu_{Y}
\end{aligned}
$$

Thus

$$
\mathbb{E}[X(t)]=\mathbb{E}[\mathbb{E}[X(t) \mid N(t)]]=\mathbb{E}[N(t)] \mu_{Y}=\lambda t \mu_{Y}
$$

Variance of a Compound Poisson Process (Cont'd)

Similarly, using that $\mathbb{E}[N(t)]=\operatorname{Var}(N(t))=\lambda t$, we have

$$
\begin{aligned}
\operatorname{Var}[X(t) \mid N(t)] & =\operatorname{Var}\left(\sum_{i=1}^{N(t)} Y_{i} \mid N(t)\right) \\
& =\sum_{i=1}^{N(t)} \operatorname{Var}\left(Y_{i} \mid N(t)\right) \\
& \left.=\sum_{i=1}^{N(t)} \operatorname{Var}\left(Y_{i}\right) \quad \text { (since } Y_{i} \text { 's are indep. of } N(t)\right) \\
& =N(t) \sigma_{Y}^{2}
\end{aligned}
$$

$\mathbb{E}[\operatorname{Var}(X(t) \mid N(t))]=\mathbb{E}\left[N(t) \sigma_{Y}^{2}\right]=\lambda t \sigma_{Y}^{2}$
$\operatorname{Var}(\mathbb{E}[X(t) \mid N(t)])=\operatorname{Var}\left(N(t) \mu_{Y}\right)=\operatorname{Var}(N(t)) \mu_{Y}^{2}=\lambda t \mu_{Y}^{2}$
Thus

$$
\begin{aligned}
\operatorname{Var}(X(t)) & =\mathbb{E}[\operatorname{Var}[X(t) \mid N(t)]]+\operatorname{Var}(\mathbb{E}[X(t) \mid N(t)]) \\
& =\lambda t\left(\sigma_{Y}^{2}+\mu_{Y}^{2}\right)=\lambda t \mathbb{E}\left[Y_{i}^{2}\right]
\end{aligned}
$$

CLT of a Compound Poisson Process

As $t \rightarrow \infty$, the distribution of

$$
\frac{X(t)-\mathbb{E}[X(t)]}{\sqrt{\operatorname{Var}(X(t))}}=\frac{X(t)-\lambda t \mu_{Y}}{\sqrt{\lambda t\left(\sigma_{Y}^{2}+\mu_{Y}^{2}\right)}}
$$

converges to a standard normal distribution $N(0,1)$.

5.4.3 Conditional Poisson Processes

Definition. A conditional (or mixed) Poisson process $\{N(t), t \geq 0\}$ is a counting process satisfying
(i) $N(0)=0$,
(ii) having stationary increment, and
(iii) there is a random variable $\Lambda>0$ with probability density $g(\lambda)$, such that given $\Lambda=\lambda$,

$$
N(t+s)-N(s) \sim \operatorname{Poisson}(\lambda t)
$$

i.e.,

$$
\mathrm{P}(N(t+s)-N(s)=k)=\int_{0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} g(\lambda) d \lambda, k=0,1, \ldots
$$

Remark: In general, a conditional Poisson process does NOT have independent increment.

$$
\begin{aligned}
& \mathrm{P}(N(s)=j, N(t+s)-N(s)=k) \\
& =\int_{0}^{\infty} e^{-\lambda s} \frac{(\lambda s)^{j}}{j!} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} g(\lambda) d \lambda \\
& \neq\left(\int_{0}^{\infty} e^{-\lambda s} \frac{(\lambda s)^{j}}{j!} g(\lambda) d \lambda\right)\left(\int_{0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} g(\lambda) d \lambda\right) \\
& =\mathrm{P}(N(s)=j) \mathrm{P}(N(t+s)-N(s)=k)
\end{aligned}
$$

