STAT253/317 Lecture 11

Yibi Huang

- 5.3 The Poisson Processes
- 5.4 Generalizations of the Poisson Processes

Superposition

The sum of two independent Poisson processes with respective rates λ_1 and λ_2 , called the **superposition** of the processes, is again a Poisson process but with rate $\lambda_1 + \lambda_2$.

The proof is straight forward from Definition 5.3 and hence omitted.

Remark: By repeated application of the above arguments we can see that the superposition of k independent Poisson processes with rates $\lambda_1, \dots, \lambda_k$ is again a Poisson process with rate $\lambda_1 + \dots + \lambda_k$.

Why Are Poisson Processes Commonly Used?

There is a useful result in probability theory which says that: if we take N independent counting processes and sum them up, then the resulting superposition process is approximately a Poisson process.

Here

- ▶ N must be "large enough" and
- ▶ the rates of the individual processes must be "small" relative to N
- but the individual processes that go into the superposition can otherwise be arbitrary.

E.g., N(t) = # of crimes by time t in a certain town.

town.

Thinning

Consider a Poisson process $\{N(t): t \geq 0\}$ with rate λ .

At each arrival of events, it is classified as a

$$\begin{cases} \text{Type 1 event with probability} & p & \text{or} \\ \text{Type 2 event with probability} & 1-p, \end{cases}$$

independently of all other events. Let

$$N_i(t) = \#$$
 of type i events occurred during $[0, t], i = 1, 2$.

Note that $N(t) = N_1(t) + N_2(t)$.

Proposition 5.2

 $\{N_1(t), t \geq 0\}$ and $\{N_2(t), t \geq 0\}$ are both Poisson processes having respective rates λp and $\lambda(1-p)$.

Furthermore, the two processes are independent.

Proof of Proposition 5.2

First observe that given N(t) = n + m,

$$N_1(t) \sim Binomial(n+m,p).$$
 (why?)

Thus
$$P(N_1(t) = n, N_2(t) = m)$$

 $= P(N_1(t) = n, N_2(t) = m | N(t) = n + m) P(N(t) = n + m)$
 $= {n + m \choose n} p^n (1 - p)^m e^{-\lambda t} \frac{(\lambda t)^{n+m}}{(n+m)!}$
 $= e^{-\lambda t p} \frac{(\lambda p t)^n}{n!} e^{-\lambda t (1-p)} \frac{(\lambda (1-p)t)^m}{m!}$
 $= P(N_1(t) = n) P(N_2(t) = m).$

This proves the independence of $N_1(t)$ and $N_2(t)$ and that

$$N_1(t) \sim Poisson(\lambda pt), \quad N_2(t) \sim Poisson(\lambda(1-p)t).$$

Both $\{N_1(t)\}$ and $\{N_2(t)\}$ inherit the stationary and independent increment properties from $\{N(t)\}$, and hence are both Poisson processes.

Some "Converse" of Thinning & Superposition

Consider two indep. Poisson processes $\{N_A(t)\}\$ and $\{N_B(t)\}\$ w/respective rates λ_A and λ_B . Let

$$S_n^A = \text{arrival time of the } n \text{th } A \text{ event}$$

 $S_m^B = \text{arrival time of the } m \text{th } B \text{ event}$

Find $P(S_n^A < S_m^B)$.

Approach 1:

Observer that $S_n^A \sim Gamma(n, \lambda_A)$, $S_m^B \sim Gamma(m, \lambda_B)$ and they are independent. Thus

$$P(S_n^A < S_m^B) = \int_{x < y} \lambda_A e^{-\lambda_A x} \frac{(\lambda_A x)^{n-1}}{(n-1)!} \lambda_B e^{-\lambda_B y} \frac{(\lambda_B y)^{m-1}}{(m-1)!} dx dy$$

Some "Converse" of Thinning & Superposition (Cont'd)

Let $N(t) = N_A(t) + N_B(t)$ be the superposition of the two processes. Let

$$I_i = \begin{cases} 1 & \text{if the } i \text{th event in the superpositon process is an } A \text{ event} \\ 0 & \text{otherwise} \end{cases}$$

The l_i , $i=1,2,\ldots$ are i.i.d. Bernoulli(p), where $p=\frac{\lambda_A}{\lambda_A+\lambda_B}$ into tail

Approach 2: HHHTTHTTTLTT

$$P(S_n^A < S_1^B) = P(\text{the first } n \text{ events are all } A \text{ events}) = \left(\frac{\lambda_A}{\lambda_A + \lambda_B}\right)^n$$

$$P(S_n^A < S_m^B) = P(\text{at least } n \text{ A events occur before } m \text{ B events})$$

=
$$P(\text{at least } n \text{ heads before } m \text{ tails})$$

= $P(\text{at least } n \text{ heads in the first } n + m - 1 \text{ tosses})$

$$= P(\text{at least } n \text{ heads in the first } n+m-1 \text{ tosses})$$

$$= \sum_{k=0}^{n+m-1} \binom{n+m-1}{k} \left(\frac{\lambda_A}{\lambda_A + \lambda_B}\right)^k \left(\frac{\lambda_B}{\lambda_A + \lambda_B}\right)^{n+m-1-k}$$

Proposition 5.3 (Generalization of Proposition 5.2)

Consider a Poisson process with rate λ . If an event occurs at time t will be classified as a type i event with probability $p_i(t)$, $i=1,\ldots,k$, $\sum_i p_i(t)=1$, for all t, independently of all other events. then

 $N_i(t) = \text{number of type } i \text{ events occurring in } [0, t], i = 1, \dots, k.$

Note $N(t) = \sum_{i=1}^{k} N_i(t)$. Then $N_i(t)$, i = 1, ..., k are independent Poisson random variables with means $\lambda \int_0^t p_i(s) ps$.

Remark: Note $\{N_i(t), t \ge 0\}$ are NOT Poisson processes.

- Policyholders of a certain insurance company have accidents occurring according to a Poisson process with rate λ .
- The amount of time T from when the accident occurs until a claim is made has distribution $G(t) = P(T \le t)$.
- Let $N_c(t)$ be the number of claims made by time t.

Find the distribution of $N_c(t)$.

Solution. Suppose an accident occurred at time s. It is claimed by time t if $s+T \le t$, i.e., with probability

$$P(s + T \le t)$$

 $p(s) = P(T \le t - s) = G(t - s).$

By Proposition 5.3, $N_c(t)$ has a Poisson distribution with mean

$$\lambda \int_0^t p(s)ps = \lambda \int_0^t G(t-s)ds = \lambda \int_0^t G(s)ds$$

5.4.1 Nonhomogeneous Poisson Process

Definition 5.4a. A nonhomogeneous (a.k.a. non-stationary) Poisson process with intensity function $\lambda(t) \geq 0$ is a counting process $\{N(t), t \geq 0\}$ satisfying

- (i) N(0) = 0.
- (ii) having independent increments.
- (iii) $P(N(t+h) N(t) = 1) = \lambda(t)h + o(h)$.
- (iv) $P(N(t+h) N(t) \ge 2) = o(h)$.

Definition 5.4b. A nonhomogeneous Poisson process with intensity function $\lambda(t) \geq 0$ is a counting process $\{N(t), t \geq 0\}$ satisfying

- (i) N(0) = 0,
- (ii) for $s, t \ge 0$, N(t + s) N(s) is independent of N(s) (independent increment)
- (iii) For $s, t \ge 0$, $N(t+s) N(s) \sim Poisson(m(t+s) m(s))$, where $m(t) = \int_0^t \lambda(u) du$

The two definitions are equivalent.

The Interarrival Times of a Nonhomogeneous Poisson Process Are NOT Independent

A nonhomogeneous Poisson process has independent increment but its interarrival times between events are

- neither independent
- nor identically distributed.

Proof. Homework.

Proposition 5.4

Let $\{N_1(t), t \geq 0\}$, and $\{N_2(t), t \geq 0\}$ be two independent nonhomogeneous Poisson process with respective intensity functions $\lambda_1(t)$ and $\lambda_2(t)$, and let $N(t) = N_1(t) + N_2(t)$. Then

- (a) $\{N(t), t \geq 0\}$ is a nonhomogeneous Poisson process with intensity function $\lambda_1(t) + \lambda_2(t)$.
- (b) Given that an event of the $\{N(t), t \geq 0\}$ process occurs at time t then, independent of what occurred prior to t, the event at t was from the $\{N_1(t)\}$ process with probability

$$\frac{\lambda_1(t)}{\lambda_1(t)+\lambda_2(t)}.$$

5.4.2 Compound Poisson Processes

Definition. Let $\{N(t)\}$ be a (homogeneous) Poisson process with rate λ and Y_1, Y_2, \ldots are i.i.d random variables independent of $\{N(t)\}$. The process

$$X(t) = \sum_{i=1}^{N(t)} Y_i$$

is called a *compound Poisson process*, in which X(t) is defined as 0 if N(t) = 0.

A compound Poisson process has

- independent increment, since $X(t+s) X(s) = \sum_{i=1}^{N(t+s)-N(s)} Y_{i+N(s)}$ is independent of $X(s) = \sum_{i=1}^{N(s)} Y_i$, and
- **stationary increment**, since $X(t+s) X(s) = \sum_{i=1}^{N(t+s)-N(s)} Y_{i+N(s)}$ has the same distribution as $X(t) = \sum_{i=1}^{N(t)} Y_i$

The Mean of a Compound Poisson Process

Suppose
$$\mathbb{E}[Y_i] = \mu_Y$$
, $Var(Y_i) = \sigma_Y^2$. Note that $\mathbb{E}[N(t)] = \lambda t$.

$$\mathbb{E}[X(t)|N(t)] = \sum_{i=1}^{N(t)} \mathbb{E}[Y_i|N(t)]$$

$$= \sum_{i=1}^{N(t)} \mathbb{E}[Y_i] \quad \text{(since } Y_i\text{'s are indep. of } N(t))$$

$$= N(t)\mu_Y$$

Thus

$$\mathbb{E}[X(t)] = \mathbb{E}[\mathbb{E}[X(t)|N(t)]] = \mathbb{E}[N(t)]\mu_Y = \lambda t \mu_Y$$

Variance of a Compound Poisson Process (Cont'd)

Similarly, using that $\mathbb{E}[N(t)] = \operatorname{Var}(N(t)) = \lambda t$, we have

$$\begin{aligned} \operatorname{Var}[X(t)|N(t)] &= \operatorname{Var}\left(\sum\nolimits_{i=1}^{N(t)} Y_i \middle| N(t)\right) \\ &= \sum\nolimits_{i=1}^{N(t)} \operatorname{Var}(Y_i|N(t)) \\ &= \sum\nolimits_{i=1}^{N(t)} \operatorname{Var}(Y_i) \quad \text{(since } Y_i\text{'s are indep. of } N(t)) \\ &= N(t)\sigma_Y^2 \\ \mathbb{E}[\operatorname{Var}(X(t)|N(t))] &= \mathbb{E}[N(t)\sigma_Y^2] = \lambda t \sigma_Y^2 \end{aligned}$$

Thus

$$egin{aligned} \operatorname{Var}(X(t)) &= \mathbb{E}[\operatorname{Var}[X(t)|N(t)]] + \operatorname{Var}(\mathbb{E}[X(t)|N(t)]) \ &= \lambda t(\sigma_Y^2 + \mu_Y^2) = \lambda t \mathbb{E}[Y_i^2] \end{aligned}$$

 $\operatorname{Var}(\mathbb{E}[X(t)|N(t)]) = \operatorname{Var}(N(t)\mu_Y) = \operatorname{Var}(N(t))\mu_Y^2 = \lambda t \mu_Y^2$

CLT of a Compound Poisson Process

As $t \to \infty$, the distribution of

$$\frac{X(t) - \mathbb{E}[X(t)]}{\sqrt{\operatorname{Var}(X(t))}} = \frac{X(t) - \lambda t \mu_Y}{\sqrt{\lambda t (\sigma_Y^2 + \mu_Y^2)}}$$

converges to a standard normal distribution N(0,1).

5.4.3 Conditional Poisson Processes

Definition. A conditional (or mixed) Poisson process

- $\{N(t), t \geq 0\}$ is a counting process satisfying
 - (i) N(0) = 0,
 - (ii) having stationary increment, and
- (iii) there is a random variable $\Lambda>0$ with probability density $g(\lambda)$, such that given $\Lambda=\lambda$,

$$N(t+s) - N(s) \sim Poisson(\lambda t)$$
,

i.e.,

$$P(N(t+s)-N(s)=k)=\int_0^\infty e^{-\lambda t} \frac{(\lambda t)^k}{k!} g(\lambda) d\lambda, \ k=0,1,\ldots$$

Remark: In general, a conditional Poisson process does NOT have independent increment.

$$P(N(s) = j, N(t+s) - N(s) = k)$$

$$= \int_{0}^{\infty} e^{-\lambda s} \frac{(\lambda s)^{j}}{j!} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} g(\lambda) d\lambda$$

$$\neq \left(\int_{0}^{\infty} e^{-\lambda s} \frac{(\lambda s)^{j}}{j!} g(\lambda) d\lambda \right) \left(\int_{0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} g(\lambda) d\lambda \right)$$

$$= P(N(s) = j) P(N(t+s) - N(s) = k)$$