STAT253/317 Lecture 10

Yibi Huang

5.3 The Poisson Processes

Lecture 10 - 1

Properties of Poisson Processes

Outline:

- Interarrival times of events are i.i.d Exponential with rate λ
- Conditional Distribution of the Arrival Times
- Superposition & Thinning(Lecture 11)
- "Converse" of Superposition & Thinning (Lecture 11)

Arrival & Interarrival Times of Poisson Processes Let

$$S_n = \text{Arrival time of the } n\text{-th event, } n = 1, 2, \dots$$

$$T_1 = S_1 = \text{Time until the 1st event occurs}$$

$$T_n = S_n - S_{n-1}$$

$$= \text{time elapsed between the } (n-1)\text{st and } n\text{-th event,}$$

$$n = 2, 3, \dots$$

$$T_1 \qquad T_2 \qquad T_3 \qquad T_4 \qquad \text{time}$$

$$Proposition 5.1 \qquad S_2 \qquad S_3 \qquad S_4$$

The interarrival times $T_1, T_2, \ldots, T_k, \ldots$, are i.i.d $\sim Exp(\lambda)$.

Consequently, as the distribution of the sum of *n* i.i.d $Exp(\lambda)$ is $Gamma(n, \lambda)$, the arrival time of the *n*th event is

$$S_n = \sum_{i=1}^n T_i \sim Gamma(n, \lambda)$$

Lecture 10 - 3

Proof of Proposition 5.1

$$\begin{split} & P(T_{n+1} > t | T_1 = t_1, T_2 = t_2, \dots, T_n = t_n) \\ &= P(0 \text{ event in } (s_n, s_n + t] | T_1 = t_1, T_2 = t_2, \dots, T_n = t_n) \\ & \quad (\text{where } s_n = t_1 + t_2 + \dots + t_n) \\ &= P(0 \text{ event in } (s_n, s_n + t]) \quad (\text{by indep increment}) \\ &= P(N(s_n + t) - N(s_n) = 0) \\ &= e^{-\lambda t} \quad (\text{stationary increment}) \end{split}$$

This shows that T_{n+1} is $\sim Exp(\lambda)$, and is independent of T_1, T_2, \ldots, T_n .

Definition 3 of the Poisson Process

A continuous-time stochastic process $\{N(t), t \ge 0\}$ is a Poisson process with rate $\lambda > 0$ if

- (i) N(0) = 0,
- (ii) N(t) counts the number of events that have occurred up to time t (i.e. it is a counting process).
- (iii) The times between events are independent and identically distributed with an Exponential(λ) distribution.

We have seen how Definition 5.1 implies (i), (ii) and (iii) in Definition 3. The proof of the converse is omitted.

5.3.5. Conditional Distribution of the Arrival Times

Uniform Distribution of Arrivals Given N(t) = 1, then T_1 , the arrival time of the first event $\sim Unif(0,t)$ Proof. 0 s t $P(T_1 \le s | N(t) = 1) = \frac{P(T_1 \le s, N(t) = 1)}{P(N(t) = 1)} \frac{P(N(s) = 1)}{P(N(s) = 1)}$ $= \frac{P(1 \text{ event in } (0, s], \text{ no events in } (s, t])}{P(1 \text{ event in } (0, s], \text{ no events in } (s, t])}$ P(N(t) = 1) $= \frac{(\lambda s e^{-\lambda s})(e^{-\lambda(t-s)})}{\sum_{t=s-\lambda t}} = \frac{s}{t}, s < t.$

which is the CDF of the Uniform (0,t) distribution.

Lecture 10 - 6

Theorem 5.2

Given N(t) = n, between 0 and t, all Uniform(0,t).

$$(S_1, S_2, \ldots, S_n) \sim (U_{(1)}, U_{(2)}, \ldots, U_{(n)})$$

where $(U_{(1)}, \ldots, U_{(k)})$ are the order statistics of $(U_1, \ldots, U_n) \sim$ i.i.d Uniform (0, t), i.e., the joint conditional density of S_1, S_2, \ldots, S_n is **S1** = first event = min(U1, U2,..., Un)

$$f(s_1, s_2, \dots, s_n | N(t) = n) = n! / t^n, \ 0 < s_1 < s_2 < \dots < s_n < t$$

Proof. The event that $S_1 = s_1$, $S_2 = s_2$,..., $S_n = s_n$, N(t) = n is equivalent to the event $T_1 = s_1$, $T_2 = s_2 - s_1$,..., $T_n = s_n - s_{n-1}$, $T_{n+1} > t - s_n$. Hence, by Proposition 5.1, we have the conditional joint density of S_1, \ldots, S_n given N(t) = n as follows:

$$f(s_1, \dots, s_n | n) = \frac{f(s_1, \dots, s_n, n)}{P(N(t) = n)}$$
$$= \frac{\lambda e^{-\lambda s_1} \lambda e^{-\lambda (s_2 - s_1)} \dots \lambda e^{-\lambda (s_n - s_{n-1})} e^{-\lambda (t - s_n)}}{e^{-\lambda t} (\lambda t)^n / n!}$$
$$= n! t^{-n}, \quad 0 < s_1 < \dots < s_n < t$$
Lecture 10 - 7

Example 5.21. Insurance claims comes according to a Poisson process $\{N(t)\}$ with rate λ . Let

- S_i = the time of the *i*th claims
- ► C_i = amount of the *i*th claims, i.i.d with mean µ, indep. of {N(t)}

Then the total discounted cost by time t at discount rate $\boldsymbol{\alpha}$ is given by

$$D(t) = \sum_{i=1}^{N(t)} C_i e^{-\alpha S_i}.$$

Then

$$\mathbb{E}[D(t)|N(t)] = \mathbb{E}\left[\sum_{i=1}^{N(t)} C_i e^{-\alpha S_i} \Big| N(t)\right] \stackrel{(Thm \ 5.2)}{=} \mathbb{E}\left[\sum_{i=1}^{N(t)} C_i e^{-\alpha U_{(i)}}\right]$$
$$= \mathbb{E}\left[\sum_{i=1}^{N(t)} C_i e^{-\alpha U_i}\right] = \sum_{i=1}^{N(t)} \mathbb{E}[C_i] \mathbb{E}\left[e^{-\alpha U_i}\right]$$
$$= N(t) \mu \int_0^t \frac{1}{t} e^{-\alpha x} dx = N(t) \frac{\mu}{\alpha t} (1 - e^{-\alpha t})$$
Thus $\mathbb{E}[D(t)] = \mathbb{E}[N(t)] \frac{\mu}{\alpha t} (1 - e^{\alpha t}) = \frac{\lambda \mu}{\alpha} (1 - e^{-\alpha t})$

Lecture 10 - 8