STAT253/317 Lecture 10

Yibi Huang

5.3 The Poisson Processes

Lecture 10-1

Properties of Poisson Processes

Outline:

- Interarrival times of events are i.i.d Exponential with rate λ
- Conditional Distribution of the Arrival Times
- Superposition \& Thinning (Lecture 11)
- "Converse" of Superposition \& Thinning (Lecture 11)

Arrival \& Interarrival Times of Poisson Processes

Let

$$
S_{n}=\text { Arrival time of the } n \text {-th event, } n=1,2, \ldots
$$

$$
T_{1}=S_{1}=\text { Time until the 1st event occurs }
$$

$$
T_{n}=S_{n}-S_{n-1}
$$

$=$ time elapsed between the $(n-1)$ st and n-th event,

The interarrival times $T_{1}, T_{2}, \ldots, T_{k}, \ldots$, are i.i.d $\sim \operatorname{Exp}(\lambda)$.

Consequently, as the distribution of the sum of n i.i.d $\operatorname{Exp}(\lambda)$ is $\operatorname{Gamma}(n, \lambda)$, the arrival time of the nth event is

$$
S_{n}=\sum_{i=1}^{n} T_{i} \sim \operatorname{Gamma}(n, \lambda)
$$

Lecture 10-3

Proof of Proposition 5.1

$$
\begin{aligned}
& \mathrm{P}\left(T_{n+1}>t \mid T_{1}=t_{1}, T_{2}=t_{2}, \ldots, T_{n}=t_{n}\right) \\
&= \mathrm{P}\left(0 \text { event in }\left(s_{n}, s_{n}+t\right] \mid T_{1}=t_{1}, T_{2}=t_{2}, \ldots, T_{n}=t_{n}\right) \\
&\left.\quad \text { (where } s_{n}=t_{1}+t_{2}+\cdots+t_{n}\right) \\
&= \mathrm{P}\left(0 \text { event in }\left(s_{n}, s_{n}+t\right]\right) \quad \text { (by indep increment) } \\
&= \mathrm{P}\left(N\left(s_{n}+t\right)-N\left(s_{n}\right)=0\right) \\
&=\left.e^{-\lambda t} \quad \text { (stationary increment }\right)
\end{aligned}
$$

This shows that T_{n+1} is $\sim \operatorname{Exp}(\lambda)$, and is independent of $T_{1}, T_{2}, \ldots, T_{n}$.

Definition 3 of the Poisson Process

A continuous-time stochastic process $\{N(t), t \geq 0\}$ is a Poisson process with rate $\lambda>0$ if
(i) $N(0)=0$,
(ii) $N(t)$ counts the number of events that have occurred up to time t (i.e. it is a counting process).
(iii) The times between events are independent and identically distributed with an Exponential (λ) distribution.

We have seen how Definition 5.1 implies (i), (ii) and (iii) in Definition 3. The proof of the converse is omitted.

5.3.5. Conditional Distribution of the Arrival Times

Uniform Distribution of Arrivals
Given $N(t)=1$, then T_{1}, the arrival time of the first event
$\sim \operatorname{Unif}(0, t)$
Proof.

$$
\begin{aligned}
\mathrm{P}\left(T_{1} \leq s \mid N(t)=1\right) & =\frac{\mathrm{P}\left(T_{1} \leq s, N(t)=1\right)}{\mathrm{P}(N(t)=1)} \mathrm{P}(\mathrm{~N}(\mathrm{~s})=1) \mathrm{P}(\mathrm{~N}(\mathrm{t})-\mathrm{N}(\mathrm{~s})=0) \\
& =\frac{\mathrm{P}(1 \text { event in }(0, s], \text { no events in }(s, t])}{\mathrm{P}(N(t)=1)} \\
& =\frac{\left(\lambda s e^{-\lambda s}\right)\left(e^{-\lambda(t-s)}\right)}{\lambda t e^{-\lambda t}}=\frac{s}{t}, s<t .
\end{aligned}
$$

which is the CDF of the Uniform (0,t) distribution.

$$
\begin{aligned}
\text { Given } N(t)= & n \text { the } n \text { events are equally likely to occur } \\
& \left(S_{1}, S_{2}, \ldots, S_{n}\right) \sim\left(U_{(1)}, U_{(2)}, \ldots, U_{(n)}\right)
\end{aligned}
$$

where $\left(U_{(1)}, \ldots, U_{(k)}\right)$ are the order statistics of $\left(U_{1}, \ldots, U_{n}\right) \sim$ i.i.d Uniform $(0, t)$, i.e., the joint conditional density of S_{1}, S_{2}, \ldots, S_{n} is $\quad \mathrm{S} 1=$ first event $=\min (\mathrm{U} 1, \mathrm{U} 2, \ldots, \mathrm{Un})$

$$
f\left(s_{1}, s_{2}, \ldots, s_{n} \mid N(t)=n\right)=n!/ t^{n}, 0<s_{1}<s_{2}<\ldots<s_{n}<\mathrm{t}
$$

Proof. The event that $S_{1}=s_{1}, S_{2}=s_{2}, \ldots, S_{n}=s_{n}, N(t)=n$ is equivalent to the event $T_{1}=s_{1}, T_{2}=s_{2}-s_{1}, \ldots, T_{n}=s_{n}-s_{n-1}$, $T_{n+1}>t-s_{n}$. Hence, by Proposition 5.1, we have the conditional joint density of S_{1}, \ldots, S_{n} given $N(t)=n$ as follows:

$$
\begin{aligned}
& f\left(s_{1}, \ldots, s_{n} \mid n\right)=\frac{f\left(s_{1}, \ldots, s_{n}, n\right)}{\mathrm{P}(N(t)=n)} \\
&=\frac{\lambda e^{-\lambda s_{1}} \lambda e^{-\lambda\left(s_{2}-s_{1}\right)} \ldots \lambda e^{-\lambda\left(s_{n}-s_{n-1}\right)} e^{-\lambda\left(t-s_{n}\right)}}{e^{-\lambda t}(\lambda t)^{n} / n!} \\
&=n!t^{-n}, \quad 0<s_{1}<\ldots<s_{n}<t \\
& \text { Lecture } 10-7
\end{aligned}
$$

Example 5.21. Insurance claims comes according to a Poisson process $\{N(t)\}$ with rate λ. Let

- $S_{i}=$ the time of the i th claims
- $C_{i}=$ amount of the i th claims, i.i.d with mean μ, indep. of $\{N(t)\}$
Then the total discounted cost by time t at discount rate α is given by

$$
D(t)=\sum_{i=1}^{N(t)} C_{i} e^{-\alpha S_{i}}
$$

Then

$$
\begin{aligned}
\mathbb{E}[D(t) \mid N(t)] & =\mathbb{E}\left[\sum_{i=1}^{N(t)} C_{i} e^{-\alpha S_{i}} \mid N(t)\right] \stackrel{(T h m}{=}{ }^{5.2)} \mathbb{E}\left[\sum_{i=1}^{N(t)} C_{i} e^{-\alpha U_{(i)}}\right] \\
& =\mathbb{E}\left[\sum_{i=1}^{N(t)} C_{i} e^{-\alpha U_{i}}\right]=\sum_{i=1}^{N(t)} \mathbb{E}\left[C_{i}\right] \mathbb{E}\left[e^{-\alpha U_{i}}\right] \\
& =N(t) \mu \int_{0}^{t} \frac{1}{t} e^{-\alpha x} d x=N(t) \frac{\mu}{\alpha t}\left(1-e^{-\alpha t}\right)
\end{aligned}
$$

Thus $\mathbb{E}[D(t)]=\mathbb{E}[N(t)] \frac{\mu}{\alpha t}\left(1-e^{\alpha t}\right)=\frac{\lambda \mu}{\alpha}\left(1-e^{-\alpha t}\right)$
Lecture 10-8

