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4.1 Introduction to Markov Chains
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Stochastic Processes

A stochastic process is a family of random variables {X; : t € T}
such that

» For each t € T, X; is a random variable
» The index set 7 can be discrete or continuous

3,4}

» 7 ={0,1,2,
» 7 =R,RT,R? R3
Examples:
>

>
>
>
>
| 2

Discrete Time Markov Chains ...................

Poisson Processes, Counting Processes

Continuous Time
Renewal Theory
Queuing Theory
Brownian Motion

Markov Chain .................
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4.1 Introduction to Markov Chain
Consider a stochastic process {X,: n=10,1,2,...} taking values
in a finite or countable set X.
> X is called the state space
> If X, =1, i€ X, we say the process is in state / at time n

» Since X is countable, there is a 1-1 map from X to the set of
non-negative integers {0,1,2,3,...}
From now on, we assume X = {0,1,2,3,...}

Definition
A stochastic process {X,: n=0,1,2,...} is called a Markov
chain if it has the following property:

P(Xnt1 = j|Xn =i, Xn-1 = in—1,..., X2 = Iz, X1 = i1, Xo = Ip)
= P(Xn+1 :J"Xn = i)

for all states iy, i1, io,...,in—1, i, j € X and n > 0.

Lecture 1 -3



Transition Probability Matrix
If P(Xny1 = j|X, = 1) = Pjj does not depend on n, then the
process {X,: n=0,1,2,...} is called a stationary Markov
chain. From now on, we consider stationary Markov chain only.

{Pj} is called the transition probabilities.

The matrix
Po Por Po2 --- Py
Pio Pi1 P2 -+ Py
P=| : : e
Pio P P - Py

is called the transition probability matrix.
Naturally, the transition probabilities { Pjj} satisfies the following
> P; >0foralli,j
> Rows sums are 1: >, P; =1 for all i.
In other words, P1 = 1, where 1 = (1,1,---,1,---)"
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Example 1: Busy Phone Line

Consider the status of a phone line on discrete time intervals: 1, 2,

» Suppose calls come in independently at constant rate: for
each time interval, there is a probability « that one call comes
in that interval. Assume there is at most one call per interval.

» An incoming call can go through only if the line is free when
the call comes in, and will occupied the line starting the next
time interval until the call ends.

» All unanswered calls are missed. (Cannot “stay on the line")
> Suppose the length of calls is fixed at 2 (time intervals).

Can you find a Markov chain in this model?
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Example 1: Busy Phone Line (Cont'd)

Let X, be the status (busy or free) of the phone line in the nth
time interval. Is {X,} a Markov chain?

Answer: No. Observe that

P(X5 = free| X = busy, X; = free) =0
P(X3 = free| Xy = busy, X; = busy) >0

The distribution of X3 depends on not just X, but also the X; and
hence {X,} is NOT a Markov Chain.
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Example 1: Busy Phone Line (Cont'd)

Let Y, be the remaining time of the call in the nth time interval if
the line is busy, and Y, = 0 if the line is free in the nth time
interval. Is {Y,} a Markov chain?

Y,—1 ifY,>0
Yor1 =<2 with prob a if Y, =0
0 with prob 1 —a if Y, =0

The transition matrix is

=
I
N P O
=t
= O O
OO0 N
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Example 1: Busy Phone Line (Cont'd)
Is {Y},} still a Markov chain if the lengths of calls are random: 50%
of the calls are of length 1, 30% of length 2 and 20% of length 3?
Assume the lengths of calls are independent of each other.

,

Y,—1 ifY,>0

1 with prob 0.5 if Y, =0
Ypr1 =<2 with prob 0.3aif Y, =0

3 with prob 0.2a if Y, =0

0 with prob 1 —a if Y, =0

The transition matrix is

0 1 2 3
0/1—a 05a 03a 0.2«
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0

P =
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Example 2: Random Walk

Consider the following random walk on integers

X, + 1 with prob p
Xn+1 = .
X, —1 with prob1l—p

This is a Markov chain because given X, X;,—1, Xp—2, ..., the

distribution of X1 depends only on X, but not X,_1, X;_2,....

The state space is

X={-,-3-2,-1,0,1,2,3,--- } = Z = all integers

The transition probability is

p if j=i4+1
Pi=q1l—p ifj=i—-1
0 otherwise
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Example 2: Random Walk (Cont'd)

-3 0 p

-2 1-p O p

-1 1-p O p
P=20 1-p O

1 1-p

2

3
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Example 3: Ehrenfest Diffusion Model

Two containers A and B, containing a sum of K balls. At each
stage, a ball is selected at random from the totality of K balls, and
move to the other container. Let

Xo = # of balls in container A in the beginning

Xp = # of balls in container A after n movements, n=1,2,3,...

x=1{0,1,2,...,K}

% ifj=i—1
Pi=d K—i
i K’ ifj=i+1
0 otherwise
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Example 4: Discrete Queuing Process
A line of customers await in front of 1 server.
> It takes one unit of time to serve 1 customer
» During each period of time, only 1 customer is served.
» |If no customer awaits, the server idles

Let £, = # of customers arriving in the n-th period. Suppose
{€n,n=0,1,2,---} are i.i.d. with

Ph=k)=ax, k=0,1,2,...
ay > 0 for all k, and Zk:oakzl

Let X, = # of customers await during the n-th period, including
the one being served. Then

X, —14& X, >1
Xn—l—l: .
é-n |an:0
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Example 3: Discrete Queuing Process (Cont'd)
First, observe that Pox = P(Xpt1 = k| X, = 0) = P(&, = k) = ax
since Xp11 =&, if X, =0.

Second, as Xpp 1 =Xp—14+&,=i—14+&,if Xp=i>0,
Xnt1 = k implies £, = k — i + 1 and hence,

Pik:P(Xn+1:k|Xn:i):P(gn:k—i—i-l):ak_,'_;'_l.
The transition probability matrix is then

0 1 2 3 4

0 dy d1 4d2 a3 aa
1| a a1 a» a3 a4
21 0 a a1 a a3

P= 3 0 0 dp a1 an
41 0

0 0 a &
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