STAT253/317 Winter 2020 Lecture 1

Yibi Huang

4.1 Introduction to Markov Chains

Lecture 1-1

Stochastic Processes

A stochastic process is a family of random variables $\left\{X_{t}: t \in \mathcal{T}\right\}$ such that

- For each $t \in \mathcal{T}, X_{t}$ is a random variable
- The index set \mathcal{T} can be discrete or continuous
- $\mathcal{T}=\{0,1,2,3,4\}$
- $\mathcal{T}=\mathbb{R}, \mathbb{R}^{+}, \mathbb{R}^{2}, \mathbb{R}^{3}$

Examples:

- Discrete Time Markov Chains Chapter 4
- Poisson Processes, Counting Processes Chapter 5
- Continuous Time Markov Chain Chapter 6
- Renewal Theory ... Chapter 7
- Queuing Theory .. Chapter 8
- Brownian Motion

Chapter 10

4.1 Introduction to Markov Chain

Consider a stochastic process $\left\{X_{n}: n=0,1,2, \ldots\right\}$ taking values in a finite or countable set \mathfrak{X}.

- \mathfrak{X} is called the state space
- If $X_{n}=i, i \in \mathfrak{X}$, we say the process is in state i at time n
- Since \mathfrak{X} is countable, there is a $1-1$ map from \mathfrak{X} to the set of non-negative integers $\{0,1,2,3, \ldots\}$
From now on, we assume $\mathfrak{X}=\{0,1,2,3, \ldots\}$

Definition

A stochastic process $\left\{X_{n}: n=0,1,2, \ldots\right\}$ is called a Markov chain if it has the following property:

$$
\begin{aligned}
& P\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{2}=i_{2}, X_{1}=i_{1}, X_{0}=i_{0}\right) \\
& =P\left(X_{n+1}=j \mid X_{n}=i\right)
\end{aligned}
$$

for all states $i_{0}, i_{1}, i_{2}, \ldots, i_{n-1}, i, j \in \mathfrak{X}$ and $n \geq 0$.

Transition Probability Matrix

If $P\left(X_{n+1}=j \mid X_{n}=i\right)=P_{i j}$ does not depend on n, then the process $\left\{X_{n}: n=0,1,2, \ldots\right\}$ is called a stationary Markov chain. From now on, we consider stationary Markov chain only.
$\left\{P_{i j}\right\}$ is called the transition probabilities.
The matrix

$$
\mathbb{P}=\left(\begin{array}{cccccc}
P_{00} & P_{01} & P_{02} & \cdots & P_{0 j} & \cdots \\
P_{10} & P_{11} & P_{12} & \cdots & P_{1 j} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\
P_{i 0} & P_{i 1} & P_{i 2} & \cdots & P_{i j} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots
\end{array}\right)
$$

is called the transition probability matrix.
Naturally, the transition probabilities $\left\{P_{i j}\right\}$ satisfies the following

- $P_{i j} \geq 0$ for all i, j
- Rows sums are 1: $\sum_{j} P_{i j}=1$ for all i .

In other words, $\mathbb{P} \mathbf{1}=\mathbf{1}$, where $\mathbf{1}=(1,1, \cdots, 1, \cdots)^{T}$
Lecture 1-4

Example 1: Busy Phone Line

Consider the status of a phone line on discrete time intervals: 1,2 ,

- Suppose calls come in independently at constant rate: for each time interval, there is a probability α that one call comes in that interval. Assume there is at most one call per interval.
- An incoming call can go through only if the line is free when the call comes in, and will occupied the line starting the next time interval until the call ends.
- All unanswered calls are missed. (Cannot "stay on the line")
- Suppose the length of calls is fixed at 2 (time intervals).

Can you find a Markov chain in this model?

Example 1: Busy Phone Line (Cont'd)

Let X_{n} be the status (busy or free) of the phone line in the nth time interval. Is $\left\{X_{n}\right\}$ a Markov chain?

Answer: No. Observe that

$$
\begin{array}{r}
P\left(X_{3}=\text { free } X_{2}=\text { busy, } X_{1}=\text { free }\right)=0 \\
P\left(X_{3}=\text { free } X_{2}=\text { busy, } X_{1}=\text { busy }\right)>0
\end{array}
$$

The distribution of X_{3} depends on not just X_{2} but also the X_{1} and hence $\left\{X_{n}\right\}$ is NOT a Markov Chain.

Example 1: Busy Phone Line (Cont'd)

Let Y_{n} be the remaining time of the call in the nth time interval if the line is busy, and $Y_{n}=0$ if the line is free in the nth time interval. Is $\left\{Y_{n}\right\}$ a Markov chain?

$$
Y_{n+1}= \begin{cases}Y_{n}-1 & \text { if } Y_{n}>0 \\ 2 & \text { with prob } \alpha \text { if } Y_{n}=0 \\ 0 & \text { with prob } 1-\alpha \text { if } Y_{n}=0\end{cases}
$$

The transition matrix is

$$
\mathbb{P}=\begin{gathered}
0 \\
0 \\
1 \\
2
\end{gathered}\left(\begin{array}{ccc}
1-\alpha & 0 & \alpha \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Example 1: Busy Phone Line (Cont'd)

Is $\left\{Y_{n}\right\}$ still a Markov chain if the lengths of calls are random: 50% of the calls are of length $1,30 \%$ of length 2 and 20% of length 3 ? Assume the lengths of calls are independent of each other.

$$
Y_{n+1}= \begin{cases}Y_{n}-1 & \text { if } Y_{n}>0 \\ 1 & \text { with prob } 0.5 \alpha \text { if } Y_{n}=0 \\ 2 & \text { with prob } 0.3 \alpha \text { if } Y_{n}=0 \\ 3 & \text { with prob } 0.2 \alpha \text { if } Y_{n}=0 \\ 0 & \text { with prob } 1-\alpha \text { if } Y_{n}=0\end{cases}
$$

The transition matrix is

$$
\mathbb{P}=\begin{gathered}
\\
0 \\
1 \\
2 \\
3
\end{gathered}\left(\begin{array}{cccc}
0 & 1 & 2 & 3 \\
1-\alpha & 0.5 \alpha & 0.3 \alpha & 0.2 \alpha \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Example 2: Random Walk

Consider the following random walk on integers

$$
X_{n+1}= \begin{cases}X_{n}+1 & \text { with prob } p \\ X_{n}-1 & \text { with prob } 1-p\end{cases}
$$

This is a Markov chain because given $X_{n}, X_{n-1}, X_{n-2}, \ldots$, the distribution of X_{n+1} depends only on X_{n} but not X_{n-1}, X_{n-2}, \ldots The state space is

$$
\mathfrak{X}=\{\cdots,-3,-2,-1,0,1,2,3, \cdots\}=\mathbb{Z}=\text { all integers }
$$

The transition probability is

$$
P_{i j}= \begin{cases}p & \text { if } j=i+1 \\ 1-p & \text { if } j=i-1 \\ 0 & \text { otherwise }\end{cases}
$$

Example 2: Random Walk (Cont'd)

$$
\mathbb{P}=\begin{gathered}
\\
\vdots \\
-3 \\
-2 \\
-1 \\
-1 \\
0 \\
1 \\
2 \\
\\
3 \\
\\
\vdots
\end{gathered}\left(\begin{array}{ccccccccc}
\cdots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & \cdots \\
& 0 & p & & & & & & \\
& & & 1-p & p & & & & \\
1-p & p & & & & \\
& & & & & & 1-p & 0 & p \\
1-p & 0 & p & & \\
& & & & & & 1-p & 0 & p \\
\\
& & & & & & 1-p & 0 & \ddots \\
& & & & & & \ddots & \ddots
\end{array}\right)
$$

Example 3: Ehrenfest Diffusion Model

Two containers A and B, containing a sum of K balls. At each stage, a ball is selected at random from the totality of K balls, and move to the other container. Let
$X_{0}=\#$ of balls in container A in the beginning
$X_{n}=\#$ of balls in container A after n movements, $n=1,2,3, \ldots$

$$
\begin{gathered}
\mathfrak{X}=\{0,1,2, \ldots, K\} \\
P_{i j}= \begin{cases}\frac{i}{K} & \text { if } j=i-1 \\
\frac{K-i}{K} & \text { if } j=i+1 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Example 4: Discrete Queuing Process

A line of customers await in front of 1 server.

- It takes one unit of time to serve 1 customer
- During each period of time, only 1 customer is served.
- If no customer awaits, the server idles

Let $\xi_{n}=\#$ of customers arriving in the n-th period. Suppose $\left\{\xi_{n}, n=0,1,2, \cdots\right\}$ are i.i.d. with

$$
\begin{aligned}
& \mathrm{P}\left(\xi_{n}=k\right)=a_{k}, \quad k=0,1,2, \ldots \\
& \quad a_{k} \geq 0 \text { for all } k, \quad \text { and } \sum_{k=0}^{\infty} a_{k}=1
\end{aligned}
$$

Let $X_{n}=\#$ of customers await during the n-th period, including the one being served. Then

$$
X_{n+1}= \begin{cases}X_{n}-1+\xi_{n} & \text { if } X_{n} \geq 1 \\ \xi_{n} & \text { if } X_{n}=0\end{cases}
$$

Example 3: Discrete Queuing Process (Cont'd)

First, observe that $P_{0 k}=P\left(X_{n+1}=k \mid X_{n}=0\right)=P\left(\xi_{n}=k\right)=a_{k}$ since $X_{n+1}=\xi_{n}$ if $X_{n}=0$.

Second, as $X_{n+1}=X_{n}-1+\xi_{n}=i-1+\xi_{n}$ if $X_{n}=i>0$, $X_{n+1}=k$ implies $\xi_{n}=k-i+1$ and hence,

$$
P_{i k}=P\left(X_{n+1}=k \mid X_{n}=i\right)=P\left(\xi_{n}=k-i+1\right)=a_{k-i+1} .
$$

The transition probability matrix is then

$$
\mathbb{P}=\begin{gathered}
0 \\
0 \\
1 \\
2 \\
3 \\
4 \\
\vdots
\end{gathered}\left(\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & \cdots \\
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & \cdots \\
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & \cdots \\
0 & a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
0 & 0 & a_{0} & a_{1} & a_{2} & \cdots \\
0 & 0 & 0 & a_{0} & a_{1} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

