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Stochastic Processes

A stochastic process is a family of random variables {Xt : t ∈ T }
such that

I For each t ∈ T , Xt is a random variable
I The index set T can be discrete or continuous

I T = {0, 1, 2, 3, 4}
I T = R,R+,R2,R3

Examples:

I Discrete Time Markov Chains . . . . . . . . . . . . . . . . . . . . Chapter 4

I Poisson Processes, Counting Processes . . . . . . . . . . . . Chapter 5

I Continuous Time Markov Chain . . . . . . . . . . . . . . . . . . Chapter 6

I Renewal Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 7

I Queuing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 8

I Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 10
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4.1 Introduction to Markov Chain

Consider a stochastic process {Xn : n = 0, 1, 2, . . .} taking values
in a finite or countable set X.

I X is called the state space

I If Xn = i , i ∈ X, we say the process is in state i at time n

I Since X is countable, there is a 1-1 map from X to the set of
non-negative integers {0, 1, 2, 3, . . .}
From now on, we assume X = {0, 1, 2, 3, . . .}

Definition
A stochastic process {Xn : n = 0, 1, 2, . . .} is called a Markov
chain if it has the following property:

P(Xn+1 = j |Xn = i ,Xn−1 = in−1, . . . ,X2 = i2,X1 = i1,X0 = i0)

= P(Xn+1 = j |Xn = i)

for all states i0, i1, i2, . . . , in−1, i , j ∈ X and n ≥ 0.
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Transition Probability Matrix
If P(Xn+1 = j |Xn = i) = Pij does not depend on n, then the
process {Xn : n = 0, 1, 2, . . .} is called a stationary Markov
chain. From now on, we consider stationary Markov chain only.

{Pij} is called the transition probabilities.
The matrix

P =


P00 P01 P02 · · · P0j · · ·
P10 P11 P12 · · · P1j · · ·

...
...

...
. . .

...
. . .

Pi0 Pi1 Pi2 · · · Pij · · ·
...

...
...

. . .
...

. . .


is called the transition probability matrix.
Naturally, the transition probabilities {Pij} satisfies the following
I Pij ≥ 0 for all i , j
I Rows sums are 1:

∑
j Pij = 1 for all i.

In other words, P1 = 1, where 1 = (1, 1, · · · , 1, · · · )T
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Example 1: Busy Phone Line

Consider the status of a phone line on discrete time intervals: 1, 2,
. . . .

I Suppose calls come in independently at constant rate: for
each time interval, there is a probability α that one call comes
in that interval. Assume there is at most one call per interval.

I An incoming call can go through only if the line is free when
the call comes in, and will occupied the line starting the next
time interval until the call ends.

I All unanswered calls are missed. (Cannot “stay on the line”)

I Suppose the length of calls is fixed at 2 (time intervals).

Can you find a Markov chain in this model?
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Example 1: Busy Phone Line (Cont’d)

Let Xn be the status (busy or free) of the phone line in the nth
time interval. Is {Xn} a Markov chain?

Answer: No. Observe that

P(X3 = free|X2 = busy,X1 = free) = 0

P(X3 = free|X2 = busy,X1 = busy) > 0

The distribution of X3 depends on not just X2 but also the X1 and
hence {Xn} is NOT a Markov Chain.
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Example 1: Busy Phone Line (Cont’d)

Let Yn be the remaining time of the call in the nth time interval if
the line is busy, and Yn = 0 if the line is free in the nth time
interval. Is {Yn} a Markov chain?

Yn+1 =


Yn − 1 if Yn > 0

2 with prob α if Yn = 0

0 with prob 1− α if Yn = 0

The transition matrix is

P =


0 1 2

0 1− α 0 α
1 1 0 0
2 0 1 0


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Example 1: Busy Phone Line (Cont’d)
Is {Yn} still a Markov chain if the lengths of calls are random: 50%
of the calls are of length 1, 30% of length 2 and 20% of length 3?
Assume the lengths of calls are independent of each other.

Yn+1 =



Yn − 1 if Yn > 0

1 with prob 0.5α if Yn = 0

2 with prob 0.3α if Yn = 0

3 with prob 0.2α if Yn = 0

0 with prob 1− α if Yn = 0

The transition matrix is

P =


0 1 2 3

0 1− α 0.5α 0.3α 0.2α
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0


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Example 2: Random Walk
Consider the following random walk on integers

Xn+1 =

{
Xn + 1 with prob p

Xn − 1 with prob 1− p

This is a Markov chain because given Xn,Xn−1,Xn−2, . . ., the
distribution of Xn+1 depends only on Xn but not Xn−1,Xn−2, . . . .
The state space is

X = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · } = Z = all integers

The transition probability is

Pij =


p if j = i + 1

1− p if j = i − 1

0 otherwise
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Example 2: Random Walk (Cont’d)

P =



· · · −3 −2 −1 0 1 2 3 · · ·
...

. . .
. . .

−3
. . . 0 p

−2 1−p 0 p
−1 1−p 0 p
0 1−p 0 p
1 1−p 0 p
2 1−p 0 p

3 1−p 0
. . .

...
. . .

. . .


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Example 3: Ehrenfest Diffusion Model

Two containers A and B, containing a sum of K balls. At each
stage, a ball is selected at random from the totality of K balls, and
move to the other container. Let

X0 = # of balls in container A in the beginning

Xn = # of balls in container A after n movements, n = 1, 2, 3, . . .

X = {0, 1, 2, . . . ,K}

Pij =


i

K
if j = i − 1

K − i

K
if j = i + 1

0 otherwise
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Example 4: Discrete Queuing Process
A line of customers await in front of 1 server.

I It takes one unit of time to serve 1 customer

I During each period of time, only 1 customer is served.

I If no customer awaits, the server idles

Let ξn = # of customers arriving in the n-th period. Suppose
{ξn, n = 0, 1, 2, · · · } are i.i.d. with

P(ξn = k) = ak , k = 0, 1, 2, . . .

ak ≥ 0 for all k , and
∑∞

k=0
ak = 1

Let Xn = # of customers await during the n-th period, including
the one being served. Then

Xn+1 =

{
Xn − 1 + ξn if Xn ≥ 1

ξn if Xn = 0
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Example 3: Discrete Queuing Process (Cont’d)
First, observe that P0k = P(Xn+1 = k |Xn = 0) = P(ξn = k) = ak
since Xn+1 = ξn if Xn = 0.

Second, as Xn+1 = Xn − 1 + ξn = i − 1 + ξn if Xn = i > 0,
Xn+1 = k implies ξn = k − i + 1 and hence,

Pik = P(Xn+1 = k|Xn = i) = P(ξn = k − i + 1) = ak−i+1.

The transition probability matrix is then

P =



0 1 2 3 4 · · ·
0 a0 a1 a2 a3 a4 · · ·
1 a0 a1 a2 a3 a4 · · ·
2 0 a0 a1 a2 a3 · · ·
3 0 0 a0 a1 a2 · · ·
4 0 0 0 a0 a1 · · ·
...

...
...

...
...

...
. . .


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