STAT253/317 Winter 2020 Lecture 1

Yibi Huang

4.1 Introduction to Markov Chains

Stochastic Processes

A stochastic process is a family of random variables $\{X_t : t \in \mathcal{T}\}$ such that

- For each $t \in \mathcal{T}$, X_t is a random variable
- The index set \mathcal{T} can be discrete or continuous

•
$$T = \{0, 1, 2, 3, 4\}$$

• $T = \mathbb{R}, \mathbb{R}^+, \mathbb{R}^2, \mathbb{R}^3$

Examples:

Discrete Time Markov Chains	Chapter 4
Poisson Processes, Counting Processes	Chapter 5
Continuous Time Markov Chain	Chapter 6
Renewal Theory	Chapter 7
Queuing Theory	Chapter 8
Brownian Motion	Chapter 10

4.1 Introduction to Markov Chain

Consider a stochastic process $\{X_n : n = 0, 1, 2, ...\}$ taking values in a finite or countable set \mathfrak{X} .

- \mathfrak{X} is called the state space
- ▶ If $X_n = i$, $i \in \mathfrak{X}$, we say the process is in state *i* at time *n*
- Since X is countable, there is a 1-1 map from X to the set of non-negative integers {0, 1, 2, 3, ...}
 From now on, we assume X = {0, 1, 2, 3, ...}

Definition

A stochastic process $\{X_n : n = 0, 1, 2, ...\}$ is called a Markov chain if it has the following property:

$$P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_2 = i_2, X_1 = i_1, X_0 = i_0)$$

= $P(X_{n+1} = j | X_n = i)$

for all states i_0 , i_1 , i_2 , ..., i_{n-1} , $i, j \in \mathfrak{X}$ and $n \ge 0$.

Transition Probability Matrix

If $P(X_{n+1} = j | X_n = i) = P_{ij}$ does not depend on *n*, then the process $\{X_n : n = 0, 1, 2, ...\}$ is called a **stationary Markov** chain. From now on, we consider stationary Markov chain only.

 $\{P_{ij}\}$ is called the **transition probabilities**. The matrix

$$\mathbb{P} = \begin{pmatrix} P_{00} & P_{01} & P_{02} & \cdots & P_{0j} & \cdots \\ P_{10} & P_{11} & P_{12} & \cdots & P_{1j} & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\ P_{i0} & P_{i1} & P_{i2} & \cdots & P_{ij} & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \end{pmatrix}$$

is called the **transition probability matrix**. Naturally, the transition probabilities $\{P_{ij}\}$ satisfies the following

• Rows sums are 1:
$$\sum_{j} P_{ij} = 1$$
 for all i.

In other words, $\mathbb{P}\mathbf{1} = \mathbf{1}$, where $\mathbf{1} = (1, 1, \cdots, 1, \cdots)^T$ Lecture 1 - 4

Example 1: Busy Phone Line

. . . .

Consider the status of a phone line on discrete time intervals: 1, 2,

- Suppose calls come in independently at constant rate: for each time interval, there is a probability α that one call comes in that interval. Assume there is at most one call per interval.
- An incoming call can go through only if the line is free when the call comes in, and will occupied the line starting the next time interval until the call ends.
- ▶ All unanswered calls are missed. (Cannot "stay on the line")
- Suppose the length of calls is fixed at 2 (time intervals).

Can you find a Markov chain in this model?

Example 1: Busy Phone Line (Cont'd)

Let X_n be the status (busy or free) of the phone line in the *n*th time interval. Is $\{X_n\}$ a Markov chain?

Answer: No. Observe that

$$P(X_3 = \text{free}|X_2 = \text{busy}, X_1 = \text{free}) = 0$$
$$P(X_3 = \text{free}|X_2 = \text{busy}, X_1 = \text{busy}) > 0$$

The distribution of X_3 depends on not just X_2 but also the X_1 and hence $\{X_n\}$ is NOT a Markov Chain.

Example 1: Busy Phone Line (Cont'd)

Let Y_n be the remaining time of the call in the *n*th time interval if the line is busy, and $Y_n = 0$ if the line is free in the *n*th time interval. Is $\{Y_n\}$ a Markov chain?

$$Y_{n+1} = \begin{cases} Y_n - 1 & \text{if } Y_n > 0\\ 2 & \text{with prob } \alpha \text{ if } Y_n = 0\\ 0 & \text{with prob } 1 - \alpha \text{ if } Y_n = 0 \end{cases}$$

The transition matrix is

$$\mathbb{P} = \begin{array}{ccc} 0 & 1 & 2 \\ 0 & 1 - \alpha & 0 & \alpha \\ 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \end{array}$$

Example 1: Busy Phone Line (Cont'd)

Is $\{Y_n\}$ still a Markov chain if the lengths of calls are random: 50% of the calls are of length 1, 30% of length 2 and 20% of length 3? Assume the lengths of calls are independent of each other.

$$Y_{n+1} = \begin{cases} Y_n - 1 & \text{if } Y_n > 0\\ 1 & \text{with prob } 0.5\alpha \text{ if } Y_n = 0\\ 2 & \text{with prob } 0.3\alpha \text{ if } Y_n = 0\\ 3 & \text{with prob } 0.2\alpha \text{ if } Y_n = 0\\ 0 & \text{with prob } 1 - \alpha \text{ if } Y_n = 0 \end{cases}$$

The transition matrix is

$$\mathbb{P} = \begin{array}{cccc} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

Example 2: Random Walk

Consider the following random walk on integers

$$X_{n+1} = \begin{cases} X_n + 1 & \text{with prob } p \\ X_n - 1 & \text{with prob } 1 - p \end{cases}$$

This is a Markov chain because given $X_n, X_{n-1}, X_{n-2}, ...$, the distribution of X_{n+1} depends only on X_n but not $X_{n-1}, X_{n-2}, ...$. The state space is

$$\mathfrak{X} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\} = \mathbb{Z} = \mathsf{all integers}$$

The transition probability is

$$P_{ij} = \begin{cases} p & \text{if } j = i+1\\ 1-p & \text{if } j = i-1\\ 0 & \text{otherwise} \end{cases}$$

Example 2: Random Walk (Cont'd)

$$\mathbb{P} = \begin{pmatrix} \cdots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & \cdots \\ & \vdots & & & & & & & \\ & -3 & & & & & & & \\ & -3 & & & & & & & \\ & & 0 & p & & & & & & \\ & & & 1-p & 0 & p & & & & \\ & & & 1-p & 0 & p & & & \\ & & & & 1-p & 0 & p & & \\ & & & & & 1-p & 0 & p & \\ & & & & & 1-p & 0 & p & \\ & & & & & & 1-p & 0 & \cdots \\ & & & & & & & 1-p & 0 & \ddots \\ & & & & & & & & \ddots & \ddots \end{pmatrix}$$

Example 3: Ehrenfest Diffusion Model

Two containers A and B, containing a sum of K balls. At each stage, a ball is selected at random from the totality of K balls, and move to the other container. Let

 $X_0 = \#$ of balls in container A in the beginning $X_n = \#$ of balls in container A after n movements, n = 1, 2, 3, ...

 $\mathfrak{X} = \{0, 1, 2, \dots, K\}$

$$P_{ij} = \begin{cases} \frac{i}{K} & \text{if } j = i - 1\\ \frac{K - i}{K} & \text{if } j = i + 1\\ 0 & \text{otherwise} \end{cases}$$

Example 4: Discrete Queuing Process

A line of customers await in front of 1 server.

- It takes one unit of time to serve 1 customer
- During each period of time, only 1 customer is served.
- If no customer awaits, the server idles

Let $\xi_n = \#$ of customers arriving in the *n*-th period. Suppose $\{\xi_n, n = 0, 1, 2, \dots\}$ are i.i.d. with

$$\mathrm{P}(\xi_n=k)=a_k,\quad k=0,1,2,\ldots$$

 $a_k\geq 0 ext{ for all } k, ext{ and } \sum_{k=0}^\infty a_k=1$

Let $X_n = \#$ of customers await during the *n*-th period, including the one being served. Then

$$X_{n+1} = \begin{cases} X_n - 1 + \xi_n & \text{if } X_n \ge 1\\ \xi_n & \text{if } X_n = 0 \end{cases}$$

Example 3: Discrete Queuing Process (Cont'd)

First, observe that $P_{0k} = P(X_{n+1} = k | X_n = 0) = P(\xi_n = k) = a_k$ since $X_{n+1} = \xi_n$ if $X_n = 0$.

Second, as
$$X_{n+1} = X_n - 1 + \xi_n = i - 1 + \xi_n$$
 if $X_n = i > 0$,
 $X_{n+1} = k$ implies $\xi_n = k - i + 1$ and hence,

$$P_{ik} = P(X_{n+1} = k | X_n = i) = P(\xi_n = k - i + 1) = a_{k-i+1}.$$

The transition probability matrix is then