STAT 234 Lecture 23A
Sample Covariance and Correlation
Section 12.5

Yibi Huang
Department of Statistics
University of Chicago
Given n pairs of observations $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, sample covariance s_{xy} is a measure of the direction and strength of the linear relationship between X and Y, defined as

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
Sample Covariance

Given \(n \) pairs of observations \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\), sample covariance \(s_{xy} \) is a measure of the direction and strength of the linear relationship between \(X \) and \(Y \), defined as

\[
s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})
\]

- \(s_{xy} > 0 \): Positive linear relation;
- \(s_{xy} < 0 \): Negative linear relation
- The magnitude of covariance reflects the strength of the relation
- The covariance of a variable \(X \) with itself is its sample variance

\[
s_{xx} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = s_x^2
\]
Sample Covariance Reflects the **Direction** of a Linear Relation

What is the sign of \((x_i - \bar{x})(y_i - \bar{y})\)?

Cov > 0 as most points have \((x_i - \bar{x})(y_i - \bar{y}) > 0\)

Cov < 0 as most points have \((x_i - \bar{x})(y_i - \bar{y}) < 0\)
Sample Covariance Reflects the **Strength** of a Linear Relation

Covariance is of a smaller magnitude in the right plot than in the left because the \((x_i - \bar{x})(y_i - \bar{y})\) of most points in the left plot are of the different signs and get cancelled out when adding up.
How Large the Covariance is Large Enough?

It can be shown in the next slide that

$$|s_{xy}| \leq s_x s_y = (\text{SD of } X) \times (\text{SD of } Y)$$
How Large the Covariance is Large Enough?

It can be shown in the next slide that

\[|s_{xy}| \leq s_x s_y = (\text{SD of } X) \times (\text{SD of } Y) \]

Moreover, the sample covariance reaches its maximum possible magnitude if and only if all the points \((x_i, y_i)\) fall on a straight line.
It can be shown in the next slide that

\[|s_{xy}| \leq s_x s_y = (\text{SD of } X) \times (\text{SD of } Y) \]

Moreover, the sample covariance reaches its maximum possible magnitude if and only if all the points \((x_i, y_i)\) fall on a straight line.

Thus, one can determine whether a linear relation is strong by comparing the Cov with the product of the SDs of the two variables.
Proof of $|s_{xy}| \leq s_x s_y$

For any two sequences (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n), the Cauchy Schwartz Inequality below is always true

$$\left(\sum_{i=1}^{n} a_i b_i \right)^2 \leq \left(\sum_{i=1}^{n} a_i^2 \right) \left(\sum_{i=1}^{n} b_i^2 \right)$$

Moreover, the inequality becomes an equality if and only if

$$\alpha a_i + \beta b_i = 0 \quad \text{for all } i \text{ for some non-zero constants } \alpha \text{ and } \beta.$$

Applying Cauchy Schwartz Inequality with $a_i = x_i - \bar{x}$ and $b_i = y_i - \bar{y}$, we get

$$\left(\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \right)^2 \leq \left(\sum_{i=1}^{n} (x_i - \bar{x})^2 \right) \left(\sum_{i=1}^{n} (y_i - \bar{y})^2 \right).$$

Dividing both sides by $(n-1)^2$, and taking square-root, we get

$$|s_{xy}| \leq s_x s_y.$$
Moreover, recall the the inequality becomes an equality if and only if

\[\alpha a_i + \beta b_i = 0 \quad \text{for all } i \text{ for some nonzero constants } \alpha \text{ and } \beta. \]

Now with \(a_i = x_i - \bar{x} \) and \(b_i = y_i - \bar{y} \), we get that \(|s_{xy}|\) reach its max \(s_x s_y \) if and only if

\[\alpha(x_i - \bar{x}) + \beta(y_i - \bar{y}) = 0 \quad \text{for all } i \text{ for some nonzero constants } \alpha \text{ and } \beta, \]

or equivalently all the points \((x_i, y_i)\) fall on the straight line

\[\alpha x_i + \beta y_i = \alpha \bar{x} + \beta \bar{y} \]
There are various formula for computing the sample covariance:

\[s_{xy} = \frac{1}{n - 1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \]

\[= \frac{\left(\sum_{i=1}^{n} x_i y_i \right) - n \bar{x} \bar{y}}{n - 1} \]

The last one is the *shortcut formula* for calculating the *sample covariance*, similar to the shortcut formula for the sample variance

\[s^2_x = \frac{\left(\sum_{i=1}^{n} x_i^2 \right) - n \bar{x}^2}{n - 1} \]
Sample Correlation = Correlation Coefficient \(r \)

Given \(n \) pairs of observations \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\), the (sample) correlation is defined to be

\[
r = \frac{s_{xy}}{s_x s_y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}
\]

- \(-1 \leq r \leq 1\) since \(|s_{xy}| \leq s_x s_y\)
- The closer \(r \) is to 1 or \(-1\), the stronger the linear relation
- \(r = 1 \) or \(-1\) if and only if all the points \((x_i, y_i)\) fall on a straight line
Positive Correlations

$r = 0$

$r = 0.2$

$r = 0.4$

$r = 0.6$

$r = 0.8$

$r = 0.9$
Negative Correlations

$r = -0.1$

$r = -0.3$

$r = -0.5$

$r = -0.7$

$r = -0.95$

$r = -0.99$
Recall in Lecture 11 we introduced the *correlation* between two random variables \(X, Y\),

\[
\rho = \rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \text{Var}(Y)}} = \frac{\text{E}[(X - \mu_X)(Y - \mu_Y)]}{\sqrt{\text{E}[(X - \mu_X)^2] \text{E}[(Y - \mu_Y)^2]}}.
\]

The sample correlation \(r\)

\[
r_{xy} = r = \hat{\rho} = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2 \sum_i (y_i - \bar{y})^2}} = \frac{s_{xy}}{s_x s_y},
\]

is an estimate for the population correlation \(\rho\) if \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) are i.i.d. pairs of observations from the joint distribution of \((X, Y)\).
Soldiers depend on their body armor for protection. Specimens of UHMWPE body armor were shot with a 7.62 mm round at various firing velocities. The penetration areas were recorded.

<table>
<thead>
<tr>
<th>Velocity (m/s)</th>
<th>Penetration Area (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>670</td>
<td>66.4</td>
</tr>
<tr>
<td>675</td>
<td>64.5</td>
</tr>
<tr>
<td>679</td>
<td>63.6</td>
</tr>
<tr>
<td>681</td>
<td>72.9</td>
</tr>
<tr>
<td>694</td>
<td>79.1</td>
</tr>
<tr>
<td>699</td>
<td>76.7</td>
</tr>
<tr>
<td>699</td>
<td>65.5</td>
</tr>
<tr>
<td>708</td>
<td>68.0</td>
</tr>
<tr>
<td>726</td>
<td>57.8</td>
</tr>
<tr>
<td>732</td>
<td>72.4</td>
</tr>
<tr>
<td>738</td>
<td>78.6</td>
</tr>
<tr>
<td>740</td>
<td>87.9</td>
</tr>
<tr>
<td>762</td>
<td>92.6</td>
</tr>
<tr>
<td>762</td>
<td>83.0</td>
</tr>
<tr>
<td>768</td>
<td>79.0</td>
</tr>
<tr>
<td>780</td>
<td>75.3</td>
</tr>
<tr>
<td>792</td>
<td>83.4</td>
</tr>
<tr>
<td>786</td>
<td>100.7</td>
</tr>
<tr>
<td>790</td>
<td>106.6</td>
</tr>
<tr>
<td>787</td>
<td>112.8</td>
</tr>
</tbody>
</table>
Finding Covariance & Correlation in R

Armor Strength Data and the variables:

```r
armor = read.table("http://www.stat.uchicago.edu/~yibi/s234/ArmorStrength.txt", header=TRUE)
str(armor)
'data.frame': 20 obs. of 2 variables:
$ velocity : int 670 675 679 681 694 699 699 708 726 732 ...
$ penetration.area: num 66.4 64.5 63.6 72.9 79.1 76.7 65.5 68 57.8 72.4 ...
```

The R commands `cov()` and `cor()` can calculate the sample covariance and sample correlation between two variables

```r
cov(armor$velocity, armor$penetration.area)
[1] 471.0042
cor(armor$velocity, armor$penetration.area)
[1] 0.743148
```
When one uses X to predict Y, X is called the *explanatory variable*, and Y the *response*. Covariance and correlation do not distinguish between X & Y. They treat X and Y symmetrically.

\[
s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x}) = s_{yx};
\]

\[
r_{xy} = \frac{s_{xy}}{s_x s_y} = \frac{s_{yx}}{s_x s_y} = r_{yx}
\]

Swapping the x-, y-axes doesn’t change r (both $r \approx 0.74$.)
Scaling Property of Sample Covariance

\[
\begin{align*}
(X, \ Y) & \quad \rightarrow \quad (aX + b, \ cY + d) \\
(x_1, \ y_1) & \rightarrow (ax_1 + b, \ cy_1 + d) \\
(x_2, \ y_2) & \rightarrow (ax_2 + b, \ cy_2 + d) \\
(x_3, \ y_3) & \Rightarrow (ax_3 + b, \ cy_3 + d) \\
\vdots & \quad \vdots \\
(x_n, \ y_n) & \rightarrow (ax_n + b, \ cy_n + d)
\end{align*}
\]

The sample covariance has the scaling property:

\[
S_{aX+b,cY+d} = \frac{1}{n-1} \sum_{i=1}^{n} [ax_i + b - (a\bar{x} + b)][cy_i + d - (c\bar{y} + d)]
= \frac{1}{n-1} \sum_{i=1}^{n} ac(x_i - \bar{x})(y_i - \bar{y})
= ac \cdot S_{XY}.
\]
Example. When $X =$ velocity is measured in feet/sec rather than meter/sec,

- the value of X becomes ≈ 3.28 times as large since

 $$1 \text{ meter} \approx 3.28 \text{ feet}.$$

- the covariance between velocity and penetration.area would become about 3.28 times as large

```r
x = armor$velocity
y = armor$penetration.area
cov(x, y)
[1] 471.0042
cov(3.28 * x, y)
[1] 1544.894
cov(x, y) * 3.28
[1] 1544.894
```
The sample correlation is *scaling invariant* and *has no units*!

\[
r_{aX+b, cY+d} = \frac{S_{aX+b, cY+d}}{S_{aX+b} S_{cY+d}} = \frac{ac S_{XY}}{|a| S_X |c| S_Y} = (\text{sign of } ac) \times \frac{s_{XY}}{s_X s_Y}
\]

= (\text{sign of } ac) \times r_{XY}.

Example. When velocity is measured in ft/s rather than m/s, the value of velocity becomes \(\approx 3.28 \) times as large, the correlation between velocity and penetration area remain unchanged to be \(r \approx 0.74 \).

\[
\begin{align*}
cor(x, y) & \quad [1] \, 0.743148 \\
cor(3.28 \times x, y) & \quad [1] \, 0.743148
\end{align*}
\]
Both scatter plots below show perfect nonlinear relations. All points fall on the quadratic curve $y = 2 - \frac{x^2}{2}$.

$r = 0$ (why?)
(black + white dots)

$r = 0.91$
(black dots only)