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Terminology

For i.i.d. random variables X1, . . . , Xn with mean µ and variance
σ2,

• i.i.d. = “independent and have an identical distribution”

• the common probability distribution of individual Xi’s is called
the population distribution

• the collection of {X1, . . . , Xn} is called a random sample from
the population distribution

• the mean µ of the population distribution is called the
population mean

• the average of random sample {X1, . . . , Xn},
X = 1

n (X1 + · · · + Xn) is called the sample mean
• Observe that the sample mean X is also a random variable,

which has a probability distribution, called the sampling
distribution of the (sample) mean.
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Weak Law of Large Number

In Lectured 11, we showed if X1, . . . , Xn are i.i.d. random variables
with mean µ and variance σ2, then

E(X) = µ, Var(X) =
σ2

n

from which we can prove the Weak Law of Large Numbers:

as n→ ∞, X =
1
n

n∑
i=1

Xi → µ.

Intuitively, this is clear from the mean and the variance of X; the
“center” of the distribution X is µ, and the “spread” around it
becomes smaller and smaller as n grows.
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Sampling Distribution of the (Sample) Mean

Note that the sample mean X itself is a random variable, and
hence it has a probability distribution, called the sampling
distribution of the (sample) mean.

The sampling distribution of X depends on the population
distribution. Here are some examples.

• If X1, . . . , Xn ∼ N(µ, σ2), then X ∼ N(µ, σ2/n).
• If X is the average of n Bernoulli random variables

X1, . . . , Xn ∼ Bernoulli(p), then nX ∼ Bin(n, p), i.e.,

P
(
X =

k
n

)
=

(
n
k

)
pk(1 − p)n−k, 0 ≤ k ≤ n.

and so on.
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Central Limit Theorem (CLT)

Let X1, X2, . . . be i.i.d. random variables with mean µ and variance
σ2. CLT asserts that, when n is large,

• the distribution of the sample mean X = 1
n
∑n

i=1 Xi is
approximately

N
(
µx = µ, σ

2
x =
σ2

n

)
.

• the distribution of the total T =
∑n

i=1 Xi is approximately

N
(
µT = nµ, σ2

T = nσ2
)
.
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Example 1: Card Game

Recall the card game in Lecture 4, draw ONE card from a
well-shuffled deck of cards and get a reward based on the card
drawn as follows.

Event reward X p(x)
Heart (not ace) $1 12/52
Ace $5 4/52
King of spades $10 1/52
All else $0 35/52
Total 1

• The card drawn is placed back to the deck before he draws
the card for the next game.

• Let Xi be the reward he get in the ith game, then Xi’s are i.i.d.
and his total reward from the 300 games is

X1 + X2 + · · · + X300 6



Example 1: Card Game

Recall the pmf for the reward Xi from one game is

x 0 1 5 10
pX(x) 35/52 12/52 4/52 1/52

The expected reward from one game and the variance are

µ = E(X) = 0 ·
35
52
+ 1 ·

12
52
+ 5 ·

4
52
+ 10 ·

1
52
=

21
26

E(X2) = 02 ·
35
52
+ 12 ·

12
52
+ 52 ·

4
52
+ 102 ·

1
52
=

53
13

σ2 = Var(X) = E(X2) − µ2 =
53
13
−

(
21
26

)2

=
2315
262
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So if a gambler played the game 300 times, his expected value,
variance of his total reward is

E(X1 + · · · + X300) = 300µ = 300 ×
21
26
≈ 243.308

Var(X1 + · · · + X300) = 300σ2 = 300 ×
2315
262

SD(X1 + · · · + X300) =

√
300 ×

2315
262 = 32.052

The gambler is expected to get $243.308 from the 300 games, with
a standard deviation $32.052.

8



Example 1: Card Game

What is the probability that the gambler can earn $250 or more
from the 300 games?

Solution: By CLT, as n = 300 is large, the distribution of the total
rewards T =

∑300
i=1 Xi is approx. normal w/

µT = nµ = 300µ = 243.308, σT =
√

300σ = 32.052.

Thus

P(total reward > $250) = P
(
Z >

250 − 243.308
32.052

)
≈ P(Z > 0.21) ≈ 1 − 0.5832 ≈ 0.417

1- pnorm(250, m = 243.308, s = 32.052)

[1] 0.4173
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Example 2: Shipping Packages

Suppose a company ships packages that vary in weight:

• Packages have mean 15 lb and standard deviation 10 lb.
• Packages weights are independent from each other

Q: What is the probability that the average weight of 100 packages
exceeds 17 lb?
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Example 2: Shipping Packages — Solutions

Let Wi be the weight of the ith package and the total weights of
100 packages is

W =
1

100

∑100

i=1
Wi,

where Wi’s are i.i.d. with mean µW = 15 and SD σW = 10.

Then

µw = µW = 15, and σw =
σW
√

100
=

10
√

100
= 1 .

By CLT, W is approx. N(µw = 15, σ2
w = 12),

P(W > 17) = P
W − µw

σw
>

17 − µw

σw


= P

(
Z >

17 − 15
1

)
≈ 1 − Φ(2) ≈ 0.023

1- pnorm(2)

[1] 0.02275
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If the population distribution is exponential with density

f (x) = e−x, for x > 0, µ = 1, σ2 = 1

black curve: the exact sampling distribution of X,
blue curve: the normal approximation
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Normal Approximation to Binomial Distribution

Normal approximation to the Binomial distributions is a special
case of CLT:

X =
n∑

i=1

Xi ∼ Bin(n, p),

where X1, X2, ..., Xn are n independent Bernoulli random variables
with success probability p.

Therefore,
E(Xi) = p, Var(Xi) = p(1 − p).

By CLT, for large n, Y ∼ Bin(n, p) is approximately distributed as

N(µY = np, σ2
Y = np(1 − p)).
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Normal Approximation to Bin(n, p = 0.5)

When X1, . . . , Xn ∼ Bernoulli(p = 0.5), the sampling distribution of
X is
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For X1, . . . , Xn ∼ Bernoulli(p = 0.1), the sampling distribution of X is
n = 1
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If the population distribution is skewed, so is the sampling
distribution of the sample mean, though the skewness diminishes
as the number of draws goes up.
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Example 3: Roulette Calibration

With a perfectly balanced roulette wheel, red numbers should turn
up 18 in 38 of the time. To test its wheel, one casino records the
results of 3800 plays. Let X be the number of reds the casino got.

Q1: If the roulette wheel is perfectly
balanced, what is the chance that
X ≥ 1890?

Q2 If the casino gets 1890 reds, do
you think the roulette wheel should
be calibrated?
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Example 3: Roulette Calibration

Q1: If the roulette wheel is perfectly balanced, what is the chance
that X ≥ 1890?

Sol.: We know X ∼ Bin(n = 3800, p = 18
38 ).

Thus

E(X) = np = 3800(18/38) = 1800

SD(X) =
√

np(1 − p) =
√

3800(18/38)(20/38) ≈ 30.78

By CLT, X is approximately N(µ = 1800, σ2 = (30.78)2). Thus,

P(X ≥ 1890) ≈ P
(

X − 1800
30.78

≥
1890 − 1800

30.78

)
≈ P(Z ≥ 2.92) ≈ 0.00173

1-pnorm(1890, m = 1800, s = sqrt(3800*(18/38)*(20/38)))

[1] 0.001728

22



Example 3: Roulette Calibration

Q1: If the roulette wheel is perfectly balanced, what is the chance
that X ≥ 1890?

Sol.: We know X ∼ Bin(n = 3800, p = 18
38 ).

Thus

E(X) = np = 3800(18/38) = 1800

SD(X) =
√

np(1 − p) =
√

3800(18/38)(20/38) ≈ 30.78

By CLT, X is approximately N(µ = 1800, σ2 = (30.78)2). Thus,

P(X ≥ 1890) ≈ P
(

X − 1800
30.78

≥
1890 − 1800

30.78

)
≈ P(Z ≥ 2.92) ≈ 0.00173

1-pnorm(1890, m = 1800, s = sqrt(3800*(18/38)*(20/38)))

[1] 0.001728

22



Example 3: Roulette Calibration

Q1: If the roulette wheel is perfectly balanced, what is the chance
that X ≥ 1890?

Sol.: We know X ∼ Bin(n = 3800, p = 18
38 ).

Thus

E(X) = np = 3800(18/38) = 1800

SD(X) =
√

np(1 − p) =
√

3800(18/38)(20/38) ≈ 30.78

By CLT, X is approximately N(µ = 1800, σ2 = (30.78)2). Thus,

P(X ≥ 1890) ≈ P
(

X − 1800
30.78

≥
1890 − 1800

30.78

)
≈ P(Z ≥ 2.92) ≈ 0.00173

1-pnorm(1890, m = 1800, s = sqrt(3800*(18/38)*(20/38)))

[1] 0.001728

22



Example 3: Roulette Calibration

As X ∼ Bin(n = 3800, p = 18/38), the exact probability of X ≥ 1890
is

P(X ≥ 1890) =
∑3800

k=1890

(
3800

k

) (
18
38

)k (
20
38

)3800−k

≈ 0.00183

found using R as follows.

sum(dbinom(1890:3800, size=3800, p = 18/38))

[1] 0.00183

We can see normal approx. to Binomial gives fairly good approx to
the exact Binomial probability.

Q2 If the casino gets 1890 reds, do you think the roulette wheel
should be calibrated? Yes. X ≥ 1890 is very unlikely to happen.
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How Large n Has to Be to Use CLT?

• If the population is normal, then any n will do.
• If the population distribution is symmetric, then n should be at

least 30 or so.
• The more skew or irregular the population, the larger n has to

be
• For the Binomial distribution, a rule of thumb is that n should

be such that

np ≥ 10 and n(1 − p) ≥ 10.
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