STAT 234 Lecture 12
 Condition Distributions Section 5.3

Yibi Huang
Department of Statistics
University of Chicago

Conditional Distributions of
Discrete Random Variables

Exercise 1 - Gas Station (p. 242 in MMSA, Review)

A gas station has both self-service and full-service islands, each with a single regular unleaded pump with 2 hoses.
$X=$ the \# of hoses in use on the self-service island, and
$Y=$ the \# of hoses in use on the full-service island

The joint pms of X and Y :

		Y (full-service)		
	$p(x, y)$	0	1	2
X	0	0.10	0.04	0.02
self-	1	0.08	0.20	0.06
service	2	0.06	0.14	0.30

What is $P(Y=1 \mid X=2)$?

$p(x, y)$		0	Y	2
Row Sum $p_{X}(x)$				
0	0.10	0.04	0.02	0.16
X	1	0.08	0.20	0.06
	2	0.06	0.14	0.30

By the definition of conditional probability,

$$
P(Y=1 \mid X=2)=\frac{P(X=2, Y=1)}{P(X=2)}=\frac{p(2,1)}{p_{X}(2)}=\frac{0.14}{0.50}=0.28 .
$$

By the definition of conditional probability,

$$
P(Y=1 \mid X=2)=\frac{P(X=2, Y=1)}{P(X=2)}=\frac{p(2,1)}{p_{X}(2)}=\frac{0.14}{0.50}=0.28 .
$$

The conditional mf of Y given $X=2$ is

\[

\]

			Y		
	$p(x, y)$	0	1	2	$p_{X}(x)$
	0	0.10	0.04	0.02	0.16
X	1	0.08	0.20	0.06	0.34
	2	0.06	0.14	0.30	0.50

Similarly, the conditional pmf of Y given $X=0$ is

$$
p_{Y \mid X}(y \mid x=0)=\frac{P(X=0, Y=y)}{P(X=0)}=\frac{p(0, y)}{p_{X}(0)}
$$

y	0	1	2
$p_{Y \mid X}(y \mid x=0)$	$\frac{0.10}{0.16}=0.625$	$\frac{0.04}{0.16}=0.25$	$\frac{0.02}{0.16}=0.125$

	$p(x, y)$	0	Y	2	$p_{X}(x)$
	0	0.10	0.04	0.02	0.16
X	1	0.08	0.20	0.06	0.34
	2	0.06	0.14	0.30	0.50

Similarly, the conditional pmf of Y given $X=0$ is

\[

\]

and the conditional pms of Y given $X=1$ is

$$
p_{Y \mid X}(y \mid x=1)=\frac{P(X=1, Y=y)}{P(X=1)}=\frac{p(1, y)}{p_{X}(1)}
$$

y	0	1	2
$p_{Y \mid X}(y \mid x=1)$	$\frac{0.08}{0.34} \approx 0.235$	$\frac{0.20}{0.34} \approx 0.588$	$\frac{0.06}{0.34} \approx 0.176$

Conditional Distributions of Y given X

The conditional pmf of a discrete r.v. Y given another discrete r.v. $X=x$ is

$$
p_{Y \mid X}(y \mid x)=\frac{P(X=x, Y=y)}{P(X=x)}=\frac{p(x, y)}{p_{X}(x)},
$$

in which $p(x, y)$ is the joint pmf of X and Y, and $p_{X}(x)$ is the marginal pmf of X.

		Y			
conditional pms $p(y \mid x)$	0	1	2	Row Sum	
	0	0.625	0.25	0.125	1
X	1	0.235	0.588	0.176	1
	2	0.12	0.18	0.60	1
marginal pmf	$p_{Y}(y)$	0.24	0.38	0.38	1

- Each row is a pmf for Y given some x value
- Observed the row sums of $p_{Y \mid X}(y \mid x)$ are all 1

Conditional Distributions of X given Y

The conditional pmf of a discrete r.v. X given another discrete r.v. $Y=y$ is

$$
p_{X \mid Y}(x \mid y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{p(x, y)}{p_{Y}(y)},
$$

in which $p(x, y)$ is the joint pmf of X and Y, and $p_{Y}(y)$ is the marginal pmf of Y.

$p(x, y)$	Y			$p_{X}(x)$
	0	1	2	
0	0.10	0.04	0.02	0.16
X 1	0.08	0.20	0.06	0.34
2	0.06	0.14	0.30	0.50
$p_{Y}(y)$	0.24	0.38	0.38	

- Each column is a pmf for X given some y value
- Observed the column sums $p_{X \mid Y}(x \mid y)$ are all 1

In summary,
A conditional pmf of Y given $X=x$ is $p_{Y \mid X}(y \mid x)=\frac{P(x, y)}{p_{X}(x)}$ which satisfies

$$
0 \leq p_{Y \mid X}(y \mid x) \leq 1 \quad \text { and } \quad \sum_{y} p_{Y \mid X}(y \mid x)=1, \quad \text { for all } x .
$$

A conditional pmf of X given $Y=y$ is $p_{X \mid Y}(x \mid y)=\frac{P(x, y)}{p_{Y}(y)}$ which satisfies

$$
0 \leq p_{X \mid Y}(x \mid y) \leq 1 \quad \text { and } \quad \sum_{x} p_{X \mid Y}(x \mid y)=1, \quad \text { for all } y .
$$

Conditional Distributions of Continuous Random Variables

Conditional Distributions of Continuous Random Variables

Given two continuous random variables with the joint pdf $f(x, y)$, the conditional probability distribution of \mathbf{X} given $\mathbf{Y}=\mathbf{y}$ is the function $f_{X \mid Y}$, and the conditional probability distribution of \mathbf{Y} given $\mathbf{X}=\mathbf{x}$ is the function $f_{Y \mid X}$ are defined as

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}, \quad f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}
$$

- Recall the definition of conditional probability

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- Similarly, given the joint pdf of two continuous r.v.'s, the conditional pdf is the ratio of the joint pdf and marginal pdf,

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}, \quad f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}
$$

Example 5.21 (Mixed Nuts) on p. 257 of MMSA

Recall in Lecture 9, the joint pdf for

$$
X=\text { the weight of almonds, and } Y=\text { the weight of cashews }
$$

in a can of mixed nuts is

$$
f(x, y)= \begin{cases}24 x y & \text { if } 0 \leq x, y \leq 1, x+y<1 \\ 0 & \text { otherwise }\end{cases}
$$

We calculated in L09 the marginal pdf's for X and for Y :

$$
f_{X}(x)=12 x(1-x)^{2}, \quad f_{Y}(y)=12 y(1-y)^{2}, \text { for } 0 \leq x, y \leq 1 .
$$

Conditional Distributions - Mixed Nuts

The conditional pdf $f_{X \mid Y}(x \mid y)$ of X (almond) given $Y=y$ (cashew) is

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

Conditional Distributions - Mixed Nuts

The conditional pdf $f_{X \mid Y}(x \mid y)$ of X (almond) given $Y=y$ (cashew) is

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & =\frac{f(x, y)}{f_{Y}(y)} \\
& =\frac{24 x y}{12 y(1-y)^{2}}
\end{aligned}
$$

Conditional Distributions - Mixed Nuts

The conditional pdf $f_{X \mid Y}(x \mid y)$ of X (almond) given $Y=y$ (cashew) is

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & =\frac{f(x, y)}{f_{Y}(y)} \\
& =\frac{24 x y}{12 y(1-y)^{2}} \\
& =\frac{2 x}{(1-y)^{2}}, \quad \text { for } 0 \leq x \leq 1-y .
\end{aligned}
$$

Conditional Distributions - Mixed Nuts

The conditional pdf $f_{X \mid Y}(x \mid y)$ of X (almond) given $Y=y$ (cashew) is

$$
\begin{aligned}
f_{X \mid Y}(x \mid y) & =\frac{f(x, y)}{f_{Y}(y)} \\
& =\frac{24 x y}{12 y(1-y)^{2}} \\
& =\frac{2 x}{(1-y)^{2}}, \quad \text { for } 0 \leq x \leq 1-y .
\end{aligned}
$$

Similarly, the conditional pdf $f_{Y \mid X}(y \mid x)$ of Y (cashew) given $X=x$ (almond) is

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\frac{2 y}{(1-x)^{2}}, \text { for } 0 \leq y \leq 1-x
$$

Example: Joint to Conditional

Recall on p. 7 of L10A slides, for X and $Y \mathrm{w} /$ the joint pdf

$$
f(x, y)=6 x y^{2}, \quad \text { for } 0 \leq x, y \leq 1
$$

We found the marginal pdf's of X and of Y to be

$$
f_{X}(x)=2 x, 0<x<1, \quad \text { and } \quad f_{Y}(y)=3 y^{2}, 0<y<1 .
$$

The conditional pdf of y given $X=x$ is

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{6 x y^{2}}{2 x}=3 y^{2}, \quad 0<y<1 .
$$

which is exactly the marginal pdf of Y.
Recall in L10A, we said X and Y are independent since $f(x, y)=6 x y^{2}=(2 x)\left(3 y^{2}\right)=f_{X}(x) f_{Y}(y)$ for all $0 \leq x, y \leq 1$ and $f(x, y)=0=f_{X}(x) f_{Y}(y)$ elsewhere.

Conditional = Marginal, when Independent

What is the conditional distribution of Y given $X=x$ if X and Y are independent?

$$
f_{Y \mid X}(y \mid X=x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{f_{X}(x) f_{Y}(y)}{f_{X}(x)}=f_{Y}(y) .
$$

i.e., conditional pdf $Y \mid X$ is the marginal pdf of Y.

Conditional = Marginal, when Independent

What is the conditional distribution of Y given $X=x$ if X and Y are independent?

$$
f_{Y \mid X}(y \mid X=x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{f_{X}(x) f_{Y}(y)}{f_{X}(x)}=f_{Y}(y)
$$

i.e., conditional pdf $Y \mid X$ is the marginal pdf of Y.

In fact, the following three are equivalent definitions of the independence of X and Y

- $f(x, y)=f_{X}(x) f_{Y}(y) \ldots \ldots \ldots \ldots$. (joint $=$ product of marginal)
- $f_{Y \mid X}(y \mid X=x)=f_{Y}(y) \ldots \ldots$. (conditional $Y \mid X=$ marginal of Y)
- $f_{X \mid Y}(x \mid Y=y)=f_{X}(x) \ldots \ldots$. (conditional $X \mid Y=$ marginal of X)

Conditional = Marginal, when Independent

What is the conditional distribution of Y given $X=x$ if X and Y are independent?

$$
f_{Y \mid X}(y \mid X=x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{f_{X}(x) f_{Y}(y)}{f_{X}(x)}=f_{Y}(y)
$$

i.e., conditional pdf $Y \mid X$ is the marginal pdf of Y.

In fact, the following three are equivalent definitions of the independence of X and Y

- $f(x, y)=f_{X}(x) f_{Y}(y) \ldots \ldots \ldots .$. (joint $=$ product of marginal)
- $f_{Y \mid X}(y \mid X=x)=f_{Y}(y) \ldots \ldots$. (conditional $Y \mid X=$ marginal of Y)
- $f_{X \mid Y}(x \mid Y=y)=f_{X}(x) \ldots \ldots$... (conditional $X \mid Y=$ marginal of X)

All the things above apply to joint/conditional/marginal pmf for discrete X, Y., too.

Conditional Expected Values

Conditional Expected Values

For two random variables X and Y, the conditional mean or conditional expected value of Y given $X=x$ is
$\mu_{Y \mid X=X}=\mathrm{E}(Y \mid X=x)= \begin{cases}\sum_{y} y p_{Y \mid X}(y \mid x) & \text { if } X, Y \text { are discrete } \\ \int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) d y & \text { if } X, Y \text { are continuous }\end{cases}$
where $p_{Y \mid X}(y \mid x)$ and $f_{Y \mid X}(y \mid x)$ are the conditional pmf/pdf of Y given X.

Conditional Expected Values

For two random variables X and Y, the conditional mean or conditional expected value of Y given $X=x$ is
$\mu_{Y \mid X=X}=\mathrm{E}(Y \mid X=x)= \begin{cases}\sum_{y} y p_{Y \mid X}(y \mid x) & \text { if } X, Y \text { are discrete } \\ \int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) d y & \text { if } X, Y \text { are continuous }\end{cases}$
where $p_{Y \mid X}(y \mid x)$ and $f_{Y \mid X}(y \mid x)$ are the conditional pmf/pdf of Y given X.

Note: The conditional mean of Y given $X=x \mathrm{E}(Y \mid X=x)$ is NOT a single value but a function of the x value given.

Example (Gas Station) - Conditional Mean

Recall the conditional pmf of Y given $X=x$ is as follows.

conditional pmf $p(y \mid x)$		0	1	2	Row Sum
X	0	0.625	0.25	0.125	1
	1	0.235	0.588	0.176	1
	2	0.12	0.18	0.60	1

The conditional mean of Y given $X=x$ is

$$
\mathrm{E}(Y \mid X=x)= \begin{cases}0 \cdot 0.625+1 \cdot 0.25+2 \cdot 0.125=0.5 & \text { if } x=0 \\ 0 \cdot 0.235+1 \cdot 0.588+2 \cdot 0.176=0.94 & \text { if } x=1 \\ 0 \cdot 0.12+1 \cdot 0.18+2 \cdot 0.6=1.38 & \text { if } x=2\end{cases}
$$

Example (Mixed Nuts) — Conditional Mean

Recall the conditional pdf $f_{Y \mid X}(y \mid x)$ of Y (cashew) given $X=x$ (almond) is

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\frac{2 y}{(1-x)^{2}}, \quad \text { for } 0 \leq y \leq 1-x .
$$

The conditional expected weight of Y (cashew) in a can given there being $X=x$ lbs of almond in the can is

$$
\begin{aligned}
\mathrm{E}(Y \mid X=x) & =\int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) d y \\
& =\int_{0}^{1-x} \frac{y \times 2 y}{(1-x)^{2}} d y \\
& =\left.\frac{2 y^{3}}{3(1-x)^{2}}\right|_{y=0} ^{y=1-x}=\frac{2}{3}(1-x) .
\end{aligned}
$$

Bivariate Normal Distribution

Bivariate Normal Distribution

The joint pdf of the Bivariate Normal Distribution is
$f(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left(\frac{-1}{2\left(1-\rho^{2}\right)}\left\{\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}-2 \rho\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)+\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}\right\}\right)$
denoted as

$$
(X, Y) \sim B N\left(\mu_{x}, \mu_{y}, \sigma_{x}, \sigma_{y}, \rho\right)
$$

One can show that

- The marginal distribution of X is $N\left(\mu_{x}, \sigma_{x}^{2}\right)$
- The marginal distribution of y is $N\left(\mu_{y}, \sigma_{y}^{2}\right)$
- The correlation of X and Y is ρ

The 3D plot of the joint pdf

- looks like a mountain peaks at $\left(\mu_{x}, \mu_{y}\right)$
- The horizontal cross-sections are elliptical
- The vertical cross-sections are all proportional to normal pdf

Plot of Bivariate Normal joint pdf with

$$
\mu_{x}=1,5, \quad \mu_{y}=0.5, \quad \sigma_{x}=1, \quad \sigma_{y}=1, \quad \rho=0.5
$$

Conditional pdf of Y Given X for Bivariate Normal

As $X \sim N\left(\mu_{x}, \sigma_{x}^{2}\right)$ for if $(X, Y) \sim B N\left(\mu_{x}, \mu_{y}, \sigma_{x}, \sigma_{y}, \rho\right)$, the marginal pdf of X is

$$
f(x)=\frac{1}{\sigma_{x} \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}\right)
$$

One can calculate the condition pdf of Y given $X=x$ by dividing the joint pdf by the marginal pdf. The algebra is messy but the result is simple. The conditional distribution of Y given $X=x$ is Normal with

$$
\text { mean }=\mu_{y}+\rho \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right), \quad \text { and } \quad \text { variance }=\sigma_{y}^{2}\left(1-\rho^{2}\right) .
$$

