Why Consider Two or More Random Variables?

- Our focus so far has been on the distribution of a single random variable.
- In many situations, there are two or more variables of interest, and we want to know how they are related. For example, I am interested to know
 - \(X_1 \): the number of hours spent on studying per week
 - \(X_2 \): final grade of stat234.
- Since the *relationship* is important, we cannot study them separately and need to consider them *jointly*.
Joint Probability Distribution for Discrete R.V.
The joint probability mass function (joint pmf), or, simply the joint distribution, of two discrete r.v. X and Y is defined as

$$p(x, y) = P(X = x, Y = y) = P(\{X = x\} \cap \{Y = y\}).$$
The *joint probability mass function (joint pmf)*, or, simply the *joint distribution*, of two discrete r.v. X and Y is defined as

$$p(x, y) = P(X = x, Y = y) = P\left(\{X = x\} \cap \{Y = y\}\right).$$

Properties of the joint probability distribution:

1. $p(x, y) \geq 0$.
2. Define the probability for an event A as,

 $$P(A) = P((x, y) \in A) = \sum_{(x,y)\in A} p(x, y).$$

3. If we set $A = S$ in (2), then

 $$P(S) = \sum_x \sum_y p(x, y) = 1.$$
Exercise 1 — Gas Station (p.242 in MMSA)

A gas station has both self-service and full-service islands, each with a single regular unleaded pump with 2 hoses.

\[X = \text{the # of hoses in use on the self-service island, and} \]
\[Y = \text{the # of hoses in use on the full-service island} \]

The joint pmf of \(X \) and \(Y \):

<table>
<thead>
<tr>
<th>(p(x, y))</th>
<th>(Y) (full-service)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>0</td>
</tr>
<tr>
<td>self-service</td>
<td>0</td>
</tr>
<tr>
<td>service</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
</tr>
</tbody>
</table>

What is \(P(X = 2 \text{ and } Y = 1) \)?
A gas station has both **self-service** and **full-service** islands, each with a single regular unleaded pump with 2 hoses.

\[X = \text{the \# of hoses in use on the self-service island, and} \]

\[Y = \text{the \# of hoses in use on the full-service island} \]

The joint pmf of \(X \) and \(Y \):

\[
\begin{array}{c|ccc}
X & Y (\text{full-service}) \\
0 & 0.10 & 0.04 & 0.02 \\
1 & 0.08 & 0.20 & 0.06 \\
2 & 0.06 & 0.14 & 0.30 \\
\end{array}
\]

What is \(P(X = 2 \text{ and } Y = 1) \)? \(p(2, 1) = 0.14 \)
Exercise 1 — Gas Station (2)

<table>
<thead>
<tr>
<th></th>
<th>$p(x, y)$</th>
<th>Y (full-service)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>0.10 0.04 0.02</td>
</tr>
<tr>
<td>self-</td>
<td>1</td>
<td>0.08 0.20 0.06</td>
</tr>
<tr>
<td>service</td>
<td>2</td>
<td>0.06 0.14 0.30</td>
</tr>
</tbody>
</table>

What is $P(X \leq 1$ and $Y \leq 1$)?
Exercise 1 — Gas Station (2)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(x, y)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>0.10</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>self- service</td>
<td>0.08</td>
<td>0.20</td>
<td>0.06</td>
</tr>
<tr>
<td>service</td>
<td>0.06</td>
<td>0.14</td>
<td>0.30</td>
</tr>
</tbody>
</table>

What is $P(X \leq 1$ and $Y \leq 1$)?

\[
P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 1, Y = 0) + P(X = 1, Y = 1) \\
= p(0, 0) + p(0, 1) + p(1, 0) + p(1, 1) \\
= 0.10 + 0.04 + 0.08 + 0.20 = 0.42
\]
What is the probability that more self-service hoses in use than full service hoses $P(X > Y)$?

<table>
<thead>
<tr>
<th>$p(x, y)$</th>
<th>Y (full-service)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>0.10</td>
</tr>
<tr>
<td>self-</td>
<td>0.08</td>
</tr>
<tr>
<td>service</td>
<td>0.06</td>
</tr>
</tbody>
</table>
What is the probability that more self-service hoses in use than full service hoses $P(X > Y)$?

\[
P(X = 1, Y = 0) + P(X = 2, Y = 1) + P(X = 2, Y = 0) \\
= p(1, 0) + p(2, 1) + p(2, 1) \\
= 0.08 + 0.06 + 0.14 = 0.28
\]
Marginal Distribution
Obtaining pmf of X From the Joint Distribution of (X, Y)

<table>
<thead>
<tr>
<th>$p(x, y)$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>Row Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.10</td>
<td>0.04</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.08</td>
<td>0.20</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.14</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>

$P(X = 0) =$
Obtaining pmf of X From the Joint Distribution of (X, Y)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>Row Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.10</td>
<td>0.04</td>
<td>0.02</td>
<td>0.16</td>
</tr>
<tr>
<td>1</td>
<td>0.08</td>
<td>0.20</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.14</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>

$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2)$

$= 0.10 + 0.04 + 0.02 = 0.16$
Obtaining pmf of X From the Joint Distribution of (X, Y)

<table>
<thead>
<tr>
<th>$p(x, y)$</th>
<th>Y</th>
<th>Row Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0.10</td>
<td>0.04</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.14</td>
</tr>
</tbody>
</table>

$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2)$

$= 0.10 + 0.04 + 0.02 = 0.16$

Likewise,

$P(X = 1) = 0.08 + 0.20 + 0.06 = 0.34$
Obtaining pmf of X From the Joint Distribution of (X, Y)

<table>
<thead>
<tr>
<th>$p(x, y)$</th>
<th>Y</th>
<th>Row Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0.10</td>
<td>0.04</td>
</tr>
<tr>
<td>X</td>
<td>0.08</td>
<td>0.20</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.14</td>
</tr>
</tbody>
</table>

$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2)$

$= 0.10 + 0.04 + 0.02 = 0.16$

Likewise,

$P(X = 1) = 0.08 + 0.20 + 0.06 = 0.34$

$P(X = 2) = 0.06 + 0.14 + 0.30 = 0.50$
Obtaining pmf of X From the Joint Distribution of (X, Y)

<table>
<thead>
<tr>
<th>$p(x, y)$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>Row Sum $p_X(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.10</td>
<td>0.04</td>
<td>0.02</td>
<td>0.16</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.08</td>
<td>0.20</td>
<td>0.06</td>
<td>0.34</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.14</td>
<td>0.30</td>
<td>0.50</td>
</tr>
</tbody>
</table>

$$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2)$$
$$= 0.10 + 0.04 + 0.02 = 0.16$$

Likewise,

$$P(X = 1) = 0.08 + 0.20 + 0.06 = 0.34$$

$$P(X = 2) = 0.06 + 0.14 + 0.30 = 0.50$$

The pmf $p_X(x)$ of X is thus

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_X(x)$</td>
<td>0.16</td>
<td>0.34</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Obtaining pmf of Y From the Joint Distribution of (X, Y)

<table>
<thead>
<tr>
<th>$p(x, y)$</th>
<th>Y</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.10</td>
<td>0.04</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.08</td>
<td>0.20</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.14</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Column sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$P(Y = 0) =$
Obtaining pmf of Y From the Joint Distribution of (X, Y)

<table>
<thead>
<tr>
<th>$p(x, y)$</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.10</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>1</td>
<td>0.08</td>
<td>0.20</td>
<td>0.06</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.14</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Column sum: 0.24

$P(Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0) + P(X = 2, Y = 0)$

$= 0.10 + 0.08 + 0.06 = 0.24$
Obtaining pmf of Y From the Joint Distribution of (X, Y)

<table>
<thead>
<tr>
<th>$p(x, y)$</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.10</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>1</td>
<td>0.08</td>
<td>0.20</td>
<td>0.06</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.14</td>
<td>0.30</td>
</tr>
</tbody>
</table>

| Column sum | 0.24 | 0.38 |

$P(Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0) + P(X = 2, Y = 0)$

$= 0.10 + 0.08 + 0.06 = 0.24$

Likewise, $P(Y = 1) = 0.04 + 0.20 + 0.14 = 0.38$
Obtaining pmf of \(Y \) From the Joint Distribution of \((X, Y)\)

<table>
<thead>
<tr>
<th>(p(x, y))</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.10</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>1</td>
<td>0.08</td>
<td>0.20</td>
<td>0.06</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.14</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Column sum

| | 0.24 | 0.38 | 0.38 |

\[
P(Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0) + P(X = 2, Y = 0)
= 0.10 + 0.08 + 0.06 = 0.24
\]

Likewise,

\[
P(Y = 1) = 0.04 + 0.20 + 0.14 = 0.38
\]

\[
P(Y = 2) = 0.02 + 0.06 + 0.30 = 0.38
\]
Obtaining pmf of Y From the Joint Distribution of (X, Y)

Y

<table>
<thead>
<tr>
<th>$p(x, y)$</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.10</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>1</td>
<td>0.08</td>
<td>0.20</td>
<td>0.06</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.14</td>
<td>0.30</td>
</tr>
<tr>
<td>Column sum</td>
<td>0.24</td>
<td>0.38</td>
<td>0.38</td>
</tr>
</tbody>
</table>

$P(Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0) + P(X = 2, Y = 0)$

$= 0.10 + 0.08 + 0.06 = 0.24$

Likewise,

$P(Y = 1) = 0.04 + 0.20 + 0.14 = 0.38$

$P(Y = 2) = 0.02 + 0.06 + 0.30 = 0.38$

The pmf $p_Y(y)$ of Y is thus

<table>
<thead>
<tr>
<th>y</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_Y(y)$</td>
<td>0.24</td>
<td>0.38</td>
<td>0.38</td>
</tr>
</tbody>
</table>
The marginal probability mass functions (marginal pmf’s) of X and of Y are obtained by summing $p(x, y)$ over values of the other variable.

$$p_X(x) = \sum_y p(x, y), \quad p_Y(y) = \sum_x p(x, y).$$

Example: Gas Station

<table>
<thead>
<tr>
<th>$p(x, y)$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>Row Sum $p_X(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.10</td>
<td>0.04</td>
<td>0.02</td>
<td>0.16</td>
</tr>
<tr>
<td>1</td>
<td>0.08</td>
<td>0.20</td>
<td>0.06</td>
<td>0.34</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.14</td>
<td>0.30</td>
<td>0.50</td>
</tr>
</tbody>
</table>

We call them **marginal distributions** because they show up at the table margins when the joint distribution is written in a tabular form.
Joint Distribution of Continuous Random Variables
Joint Distribution of Two Continuous Random Variables

Let X and Y be continuous rv. Then $f(x, y)$ is their **joint probability density function** or **joint pdf** for X and Y if for any two-dimensional set A

$$P[(X, Y) \in A] = \int_{A} \int f(x, y) \, dx \, dy$$

In particular, if A is the two-dimensional rectangle \{a \leq x \leq b, c \leq y \leq d\}, then

$$P[(X, Y) \in A] = P(a \leq X \leq b, c \leq Y \leq d) = \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy$$

Conditions for a joint pdf

- It must be nonnegative: $f(x, y) \geq 0$ for all x and y
- $\int \int f(x, y) \, dx \, dy = 1$
• Each can of mixed nuts contains *almonds, cashews, and peanuts*
Example 5.5 on p.237-238 of MMSA

- Each can of mixed nuts contains *almonds*, *cashews*, and *peanuts*
- Weights of the 3 types of nuts in a can are random but the total is exactly 1 lb
Each can of mixed nuts contains *almonds*, *cashews*, and *peanuts*

Weights of the 3 types of nuts in a can are random but the total is exactly 1 lb

In a randomly selected can, let

\[X = \text{the weight of almonds}, \quad Y = \text{the weight of cashews}. \]

The weight of peanuts in the can is thus \((1 - X - Y)\)
Each can of mixed nuts contains *almonds, cashews, and peanuts*.

Weights of the 3 types of nuts in a can are random but the total is **exactly 1 lb**

In a randomly selected can, let

\[X = \text{the weight of almonds, and } Y = \text{the weight of cashews.} \]

The weight of peanuts in the can is thus

\[(1 - X - Y) \]

Natural constraints on \(X \) & \(Y \):

\[0 \leq X \leq 1, \ 0 \leq Y \leq 1, \ X + Y < 1 \]

Joint pdf of \(X \) & \(Y \):

\[
 f(x, y) = \begin{cases}
 24xy & \text{if } 0 \leq x \leq 1, 0 \leq y \leq 1, x + y < 1 \\
 0 & \text{otherwise}
\end{cases}
\]
Clearly, \(f(x, y) \geq 0 \). It remains to check \(\iint f(x, y) \, dx \, dy = 1 \).

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = \int_{0}^{1} \int_{0}^{1-y} 24xy \, dx \, dy
\]

To compute the double integral above,
1. hold one variable fixed (e.g., \(y \))
2. integrate the other variable \(x \) along the line of the fixed \(y \)
3. integrate the variable \(y \) that is fixed in the prior steps

\[
\int_{0}^{1} \int_{0}^{1-y} 24xy \, dx \, dy = \int_{0}^{1} \left[12(1-y)^2 \right] y \, dy = \left[6y^2 - 8y^3 + 3y^4 \right]_{0}^{1} = 1
\]
Clearly, \(f(x, y) \geq 0 \). It remains to check \(\iint f(x, y) \, dx \, dy = 1 \).

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = \int_{0}^{1} \int_{0}^{1-y} 24xy \, dx \, dy
\]

To compute the double integral above,

1. hold one variable fixed (e.g., \(y \))
Checking Conditions on a Joint PDF

Clearly, \(f(x, y) \geq 0 \). It remains to check \(\iint f(x, y) \, dx \, dy = 1 \).

\[
\iint_{-\infty}^{\infty} f(x, y) \, dx \, dy = \int_0^1 \int_0^{1-y} 24xy \, dx \, dy
\]

To compute the double integral above,

1. hold one variable fixed (e.g., \(y \))
2. integrate the other variable \(x \) along the line of the fixed \(y \)
 - key: express the end points of the line in terms of the fixed \(y \), which will be the upper and lower limits for the integral over \(x \)

 \[
 \int_0^{1-y} 24xy \, dx = 12x^2y \bigg|_{x=0}^{x=1-y} = 12(1 - y)^2y
 \]
3. integrate the variable \(y \) that is fixed in the prior steps

\[
\int_0^1 \int_0^{1-y} 24xy \, dx \, dy = \int_0^1 12(1 - y)^2y \, dy = 6y^2 - 8y^3 + 3y^4 \bigg|_0^1 = 1.
\]
What is $P(X > 0.3) = P(\text{at least 30\% almonds in a can})$?
What is $P(X > 0.3) = P(\text{at least 30\% almonds in a can})$?

$$P(X > 0.3) = \int_{x>0.3} \int f(x,y) \, dx \, dy$$

$$= \int_0^{0.7} \int_{0.3}^{1-y} 24xy \, dx \, dy$$
What is $P(X > 0.3) = P(\text{at least 30\% almonds in a can})$?

$$P(X > 0.3) = \int_{x>0.3} \int f(x, y) \, dx \, dy$$

$$= \int_0^{0.7} \int_0^{1-y} 24xy \, dx \, dy$$

where

$$\int_0^{1-y} 24xy \, dx = 12x^2y \bigg|_{x=0.3}^{x=1-y}$$

$$= 12((1 - y)^2 - 0.3^2)y = 12(0.91y - 2y^2 + y^3).$$

Putting it back to the double integral, we get

$$\int_{0.3}^{1-y} \int_0^{1-y} 24xy \, dx \, dy = \int_{0.3}^{0.7} 12(0.91y - 2y^2 + y^3) \, dy$$

$$= 5.46y^2 - 8y^3 + 3y^4 \bigg|_{0.3}^{0.7}$$

$$= 0.6517.$$
Finding Probabilities From the Joint PDF $P(X > 0.3)$

What is $P(X > 0.3) = P(\text{at least 30\% almonds in a can})$?

$$P(X > 0.3) = \int_{x>0.3} \int f(x, y) \, dx \, dy$$

where

$$\int_{0.3}^{1-y} 24xy \, dx = 12x^2y \bigg|_{x=0.3}^{x=1-y}$$

$$= 12((1 - y)^2 - 0.3^2)y = 12(0.91y - 2y^2 + y^3).$$

Putting it back to the double integral, we get

$$\int_{0}^{0.7} \int_{0.3}^{1-y} 24xy \, dx \, dy = \int_{0}^{0.7} 12(0.91y - 2y^2 + y^3) \, dy$$

$$= 5.46y^2 - 8y^3 + 3y^4 \bigg|_{0}^{0.7} = 0.6517.$$
What is the probability that less than 30% are peanuts in a randomly selected can?

\[P(\text{less than 30\% are Peanuts}) \]

\[= \]

\[= \]

\[= \]
What is the probability that less than 30% are peanuts in a randomly selected can?

\[
P(\text{less than 30% are Peanuts})
\]

\[
= P(\text{at least 70% are almonds or cashews})
\]

\[
= \]

\[
= \]

\[
by \text{ Complement Rule}
\]

\[
P(X + Y > 0.7) = \text{integral of } f(x, y) \text{ over the gray region}
\]

\[
P(X + Y < 0.7) = \text{integral of } f(x, y) \text{ over the green region}
\]
What is the probability that less than 30% are peanuts in a randomly selected can?

\[
P(\text{less than 30\% are Peanuts})
\]
\[
= P(\text{at least 70\% are almonds or cashews})
\]
\[
= P(X + Y > 0.7)
\]
\[
=
\]
Finding Probabilities From the Joint PDF $P(X + Y > 0.7)$

What is the probability that less than 30% are peanuts in a randomly selected can?

\[
P(\text{less than 30\% are Peanuts})
\]

\[
= P(\text{at least 70\% are almonds or cashews})
\]

\[
= P(X + Y > 0.7)
\]

\[
= 1 - P(X + Y \leq 0.7) \quad \text{by } \textit{Complement Rule}
\]
Finding Probabilities From the Joint PDF $P(X + Y > 0.7)$

What is the probability that less than 30% are peanuts in a randomly selected can?

$$P(\text{less than 30% are Peanuts})$$

$$= P(\text{at least 70% are almonds or cashews})$$

$$= P(X + Y > 0.7)$$

$$= 1 - P(X + Y \leq 0.7) \text{ by Complement Rule}$$

where

$$P(X + Y > 0.7) = \text{integral of } f(x, y) \text{ over the gray region}$$

$$P(X + Y < 0.7) = \text{integral of } f(x, y) \text{ over the green region}$$
Finding Probabilities From the Joint PDF $P(X + Y > 0.7)$ (Cont’d)

\[P(X + Y < 0.7) = \int_{x+y<0.7} \int f(x, y) \, dx \, dy \]

\[= \int_{0}^{0.7} \int_{0}^{0.7-y} 24xy \, dx \, dy \]

where

\[\int_{0}^{0.7-y} 24xy \, dx = 12x^2y \bigg|_{x=0}^{x=0.7-y} = 12(0.7 - y)^2y \]

Putting it back to the double integral, we get

\[Z_{0.7} - y \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]

\[0.7 \]

\[0 \]

\[0.7 \]

\[1 \]

\[0 \]

\[0 \]
Finding Probabilities From the Joint PDF $P(X + Y > 0.7)$ (Cont’d)

$$P(X + Y < 0.7) = \int_{x+y<0.7} \int f(x, y) \, dx \, dy$$

$$= \int_0^{0.7} \int_0^{0.7-y} 24xy \, dx \, dy$$

Where

$$\int_0^{0.7-y} 24xy \, dx = 12x^2y \bigg|_{x=0}^{x=0.7-y} = 12(0.7 - y)^2y$$

Putting it back to the double integral, we get

$$\int_0^{0.7} \int_0^{0.7-y} 24xy \, dx \, dy = \int_0^{0.7} 12(0.7 - y)^2y \, dy = \int_0^{0.7} (-4y)d(0.7 - y)^3$$

$$= -4y(0.7 - y)^3 \bigg|_0^{0.7} + \int_0^{0.7} 4(0.7 - y)^3 \, dy$$

$$= 0 - (0.7 - y)^4 \bigg|_0^{0.7} = (0.7)^4 = 0.2401.$$

Hence, $P(\text{less than 30% peanut}) = 1 - 0.2401 = 0.7599$.
Given the joint pdf \(f(x, y) \) of two continuous random variables, the *marginal probability density function* (\(p \)), or simply the *marginal density*, of \(X \) and \(Y \), can be obtained by *integrating the joint pdf over the other variable*.

\[
\begin{align*}
 f_X(x) &= \int_{-\infty}^{\infty} f(x, y) \, dy, \quad \text{for } -\infty < x < \infty, \\
 f_Y(y) &= \int_{-\infty}^{\infty} f(x, y) \, dx, \quad \text{for } -\infty < y < \infty.
\end{align*}
\]

Recall the *marginal pmf’s* of discrete random variables are obtained by *summing the joint pmf over values of the other variable*.

\[
\begin{align*}
 p_X(x) &= \sum_y p(x, y), \quad p_Y(y) = \sum_x p(x, y).
\end{align*}
\]
The marginal pdfs of X (almond) is

\[
f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy
= \int_{0}^{1-x} 24xy \, dy = 12xy^2 \bigg|_{y=0}^{y=1-x}
= 12x(1 - x)^2, \text{ for } 0 \leq x \leq 1.
\]
The marginal pdfs of X (almond) is

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y)dy = \int_{0}^{1-x} 24xydy = 12xy^2 \bigg|_{y=0}^{y=1-x} = 12x(1 - x)^2, \text{ for } 0 \leq x \leq 1.$$

The marginal pdfs of Y (cashew) is

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y)dx = \int_{0}^{1-y} 24xydx = 12x^2y \bigg|_{x=0}^{x=1-y} = 12y(1 - y)^2, \text{ for } 0 \leq y \leq 1.$$
Independent Random Variables
Independent Random Variables

- Recall that two events A and B are *independent* if
 \[P(A \cap B) = P(A)P(B) \]
- Two random variables X and Y are *independent* if
 \[P(X \in A, Y \in B) = P(X \in A) \, P(Y \in B) \]
 for any sets A and B.
- It can be shown that two random variables X and Y are *independent* if and only if
 \[
 \begin{align*}
 p(x, y) &= p_X(x)p_Y(y) & \text{if } X \text{ and } Y \text{ are discrete} \\
 f(x, y) &= f_X(x)f_Y(y) & \text{if } X \text{ and } Y \text{ are continuous}
 \end{align*}
 \]
 for all x and y, i.e., the joint distribution of X and Y is the product of their marginal distributions.
Are X and Y Independent?

<table>
<thead>
<tr>
<th>$f(x, y)$</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
</tr>
</tbody>
</table>

1. Find the marginal distributions
2. Check whether $p(x, y) = p_X(x)p_Y(y)$ for all possible x, y pairs.

- $p(1, 1) = 0.05 \times 0.2 = p_X(1)p_Y(1)$.

- X and Y are NOT independent.
Are X and Y Independent?

<table>
<thead>
<tr>
<th>$f(x, y)$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>$f_X(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>x</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
<td>0.40</td>
<td>0.10</td>
<td>0.60</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
<td>0.20</td>
</tr>
</tbody>
</table>

| $f_Y(y)$ | 0.20 | 0.60 | 0.20 |

1. Find the marginal distributions

X and Y are NOT independent.
Are X and Y Independent?

<table>
<thead>
<tr>
<th>$f(x, y)$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>$f_X(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
<td>0.40</td>
<td>0.10</td>
<td>0.60</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>$f_Y(y)$</td>
<td>0.20</td>
<td>0.60</td>
<td>0.20</td>
<td></td>
</tr>
</tbody>
</table>

1. Find the marginal distributions
2. Check whether

$$p(x, y) = p_X(x)p_Y(y)$$
Are X and Y Independent?

<table>
<thead>
<tr>
<th>f(x, y)</th>
<th>y</th>
<th></th>
<th></th>
<th>f_X(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>x</td>
<td>2</td>
<td>0.10</td>
<td>0.40</td>
<td>0.10</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>f_Y(y)</td>
<td>0.20</td>
<td>0.60</td>
<td>0.20</td>
<td></td>
</tr>
</tbody>
</table>

1. Find the marginal distributions
2. Check whether

\[p(x, y) = p_X(x)p_Y(y) \]

for all possible \(x, y \) pairs.

- \(p(1, 1) = 0.05 \neq 0.2 \times 0.2 = p_X(1)p_Y(1) \).
- \(X \) and \(Y \) are NOT independent.
Given the marginal pmfs of two independent r.v.'s, \(X \) and \(Y \), find their joint pmf.

Since \(X \) and \(Y \) are independent,

1. \(p(1, 1) = p_X(1)p_Y(1) = 0.2 \times 0.2 = 0.04 \)
2. also \(p(1, 2) = p_X(1)p_Y(2) = 0.2 \times 0.6 = 0.12 \).
3. Repeat filling the blank for \(p(x, y) \) by \(p_X(x)p_Y(y) \) for all \(x, y \) pairs.
Given the marginal pmfs of two independent r.v.’s, X and Y, find their joint pmf.

<table>
<thead>
<tr>
<th>$p(x, y)$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>$f_X(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.04</td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.6</td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Since X and Y are independent,

1. $p(1, 1) = p_X(1)p_Y(1) = 0.2 \times 0.2 = 0.04$
2. also $p(1, 2) = p_X(1)p_Y(2) = 0.2 \times 0.6 = 0.12$.
3. Repeat filling the blank for $p(x, y)$ by $p_X(x)p_Y(y)$ for all x, y pairs.
Given the marginal pmfs of two independent r.v.'s, X and Y, find their joint pmf.

<table>
<thead>
<tr>
<th>$p(x, y)$</th>
<th>y</th>
<th>$f_X(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>x</td>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>$f_Y(y)$</td>
<td>0.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Since X and Y are independent,

1. $p(1, 1) = p_X(1)p_Y(1) = 0.2 \times 0.2 = 0.04$
2. also $p(1, 2) = p_X(1)p_Y(2) = 0.2 \times 0.6 = 0.12.$
3. Repeat filling the blank for $p(x, y)$ by $p_X(x)p_Y(y)$ for all x, y pairs.
Given the marginal pmfs of two *independent* r.v.’s, X and Y, find their joint pmf.

\[
\begin{array}{|c|c|c|c|c|}
\hline
p(x, y) & 1 & 2 & 3 & f_X(x) \\
\hline
1 & 0.04 & 0.12 & 0.04 & 0.2 \\
x & 2 & 0.12 & 0.36 & 0.12 & 0.6 \\
3 & 0.04 & 0.12 & 0.04 & 0.2 \\
\hline
f_Y(y) & 0.2 & 0.6 & 0.2 & \\
\hline
\end{array}
\]

Since X and Y are *independent*,

1. $p(1, 1) = p_X(1)p_Y(1) = 0.2 \times 0.2 = 0.04$
2. also $p(1, 2) = p_X(1)p_Y(2) = 0.2 \times 0.6 = 0.12$.
3. Repeat filling the blank for $p(x, y)$ by $p_X(x)p_Y(y)$ for all x, y pairs.
If X and Y are independent with marginal pdfs

$$f_X(x) = e^{-x} \quad \text{and} \quad f_Y(y) = 2e^{-2y},$$

for $0 < x, y < \infty$, then their joint pdf is

$$f(x, y) = f_X(x)f_Y(y) = 2e^{-(x+2y)}, \quad 0 < x, y < \infty.$$