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Random Variable & Probability Mass Function (Review)

A random variable is a real-valued function on the sample space
S and maps elements of S , ω, to real numbers.

S
X

−−−−−−→ R

ω 7−→ x = X(ω)

The probability mass function (pmf) of a random variable X is a
function p(x) that maps each possible value xi to the
corresponding probability P(X = xi).

• A pmf p(x) must satisfy 0 ≤ p(x) ≤ 1 and
∑

x p(x) = 1.
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Example: Geometric Distribution

Let X be the number of tosses required to obtain the first heads,
when tossing a coin with a probability of p to land heads.

The pmf of X is The pmf of X is

0.
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p(
x)
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p(x) = P(X = x) = P(
x−1 tails︷ ︸︸ ︷
T . . . T H) by indep.

= P(T )(T ) · · · P(T )P(H)

= (1 − p)(1 − p) · · · (1 − p)︸                          ︷︷                          ︸
x−1 copies

p

= (1 − p)x−1 p,

if x is a positive integer and p(x) = 0 if not.

• We say X has a geometric distribution since the pmf is a
geometric sequence

• Does
∑∞

x=1 p(x) = 1? 3



Example: Geometric Distribution (Cont’d)

Does
∑∞

x=1 p(x) =
∑∞

x=1(1 − p)x−1 p = 1?

Recall the geometric sum∑∞

k=0
ark = a + ar + ar2 + · · · ark + · · ·

=
a

1 − r
if |r| < 1.

The sum of the pmf of the geometric distribution∑∞

x=1
p(x) =

∑∞

x=1
(1 − p)x−1 p

= p + (1 − p)p + (1 − p)2 p + · · · + (1 − p)x−1 p + · · ·

is simply the case that a = p and r = 1 − p and hence the sum is
a

1 − r
=

p
1 − (1 − p)

=
p
p
= 1.
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Example: A Card Game

Consider a card game that you draw ONE card from a
well-shuffled deck of cards. You win

• $1 if you draw a heart,
• $5 if you draw an ace (including the ace of hearts),
• $10 if you draw the king of spades and
• $0 for any other card you draw.

What’s the pmf of your reward X?

Outcome x p(x)
Heart (not ace) 1 12/52
Ace 5 4/52
King of spades 10 1/52
All else 0 35/52

⇒ p(x) =



35/52 if x = 0
12/52 if x = 1
4/52 if x = 5
1/52 if x = 10
0 for all other values of x
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Expected Value of a Random
Variable



Expected Value = Expectation = Mean

Let X be a discrete random variable with pmf p(x). The expected
value or the expectation or the mean of X, denoted by E[X], or µ
is a weighted average of the possible values of X, where the
weights are the probabilities of those values.

µ = E[X]

=
∑
all x

xP(X = x)

=
∑
all x

xp(x)
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Example: Card Game — Expected Value

p(x) =



35/52 if x = 0
12/52 if x = 1
4/52 if x = 5
1/52 if x = 10
0 if x , 0, 1, 5, 10

E[X] =
∑

x

xp(x) = 0 ×
35
52
+ 1 ×

12
52
+ 5 ×

4
52
+ 10 ×

1
52
=

42
52
≈ 0.81

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

p(
x)

0 1 2 3 4 5 6 7 8 9 10

E(X) = 
42

52

x
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Interpretation of the Expected Value

If one plays the card game 5200 times(where the card is drawn with

replacement),then in the 5200 games, he is expected to get

• $10 about 100 times (why?)
• $5 about 400 times
• $1 about 1200 times
• $0 about 3500 times

His average reward in the 5200 games is hence about
100 × $10 + 400 × $5 + 1200 × $1 + 3500 × $0

5200

=
100
5200

× $10 +
400
5200

× $5 +
1200
5200

× $1 +
3500
5200

× $0

=
1
52
× $10 +

4
52
× $5 +

12
52
× $1 +

35
52
× $0 =

∑
x

p(x)x = $
42
52
≈ $0.81

So the long run average reward in a game is just the expected value.
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Fair Game

For the card game we have discussed so far,

• will you play the game if it costs $1 to play once?
• will you play the game if it costs 50 cents to play once?
• what is the maximum amount you would be willing to pay to

play this game?

A fair game is defined as a game that costs as much as its
expected payout, i.e. expected profit is 0.
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Expected Value of the Geometric Distribution

Recall the pmf of the Geometric distribution is p(x) = (1 − p)x−1 p
for x = 1, 2, 3, . . .. Find the expected value∑

x
xp(x) =

∑∞

x=1
x(1 − p)x−1 p.

Sol. Recall the geometric sum∑∞

k=0
ark =

a
1 − r

if |r| < 1.

Differentiate both sides of the identity above with respect to r, we
get another identity

d
dr

∑∞

k=0
ark =

d
dr

a
1 − r

∥ ∥∑∞

k=1
akrk−1 =

a
(1 − r)2
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Expected Value of the Geometric Distribution (Cont’d)

Observe the expected value

E(X) =
∑∞

x=0
xp(x) =

∑∞

x=1
xp(x)

(
can ignore x = 0 since
xp(x) = 0 when x = 0

)
=

∑∞

x=1
x(1 − p)x−1 p

is simply the second identity above when a = p and r = 1 − p, and
hence the expected value is

a
(1 − r)2 =

p
(1 − (1 − p))2 =

p
p2 =

1
p
.
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Expected Value of a Function of a
Random Variable



Functions of a Random Variable

Example 1 (Card Game w/ Tax). Suppose
it costs 50 cents = $0.5 to play the game
and the player has to pay 10% of the
reward as tax. One’s net profit from the
game is

X − 0.1X − 0.5
(reward) (tax) (cost)

Reward
Outcome X
Heart (not ace) 1
Ace 5
King of spades 10
All else 0

The net profit of the game is hence h(X) = 0.9X − 0.5.

Example 2. (Card Game w/ a new Tax Rule) Suppose the tax is
0.02X2 dollars for a reward of X dollars. (So those who earn more
pay a higher percentage of their rewards as tax). Then the next
profit is

h(X) = X − 0.02X2 − 0.5.
12



Expected Value of a Function of a Random Variable

In addition to the expected value of a random variable X itself, we
might be also interested in the expected value of a function of a
random variable h(X) , e.g.,

• the net profit from the card game h(X) = 0.9X − 0.5
• the net profit from the card game h(X) = X − 0.02X2 − 0.5 with

a new tax rule

Definition: If the pmf of X is pX(x), the expected value of h(X) is

E[h(X)] =
∑

x
h(x)pX(x).
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Example 1 (Card Game w/ Tax)

One’s expected net profit from
the game is

Reward pmf Net Profit
x p(x) h(x) = 0.9x − 0.5
1 12/52 0.9 · 1 − 0.5 = 0.4
5 4/52 0.9 · 5 − 0.5 = 4.0

10 1/52 0.9 · 10 − 0.5 = 8.5
0 35/52 0.9 · 0 − 0.5 = −0.5

E[h(X)] =
∑

x
h(x)p(x)

= 0.4 ×
12
52
+ 4.0 ×

4
52
+ 8.5 ×

1
52
+ (−0.5) ×

35
52

=
11.8
52
≈ 0.227

14



Variance of a Random Variable



Variance of a Random Variable

One measure of spread of a random variable (or its probability
distribution) is the variance.

The variance of a random variable X, denoted as σ2
X or V(X) is

defined as the average squared distance from the mean.

Var(X) = σ2 = "sigma squared" = E
[
(X − µ)2

]
Variance is in squared units.
Square root of the variance is the standard deviation (SD).

SD(X) = σ =
√

Var(X)
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Example (Card Game)

Recall for the card game reward X:

pmf:
x 0 1 5 10

p(x) 35
52

12
52

4
52

1
52

, and mean = µ = E(X) =
42
52
.

Its variance is hence,

Var(X) = E[(X − µ)2] = E

(X − 42
52

)2 =∑
x

(
x −

42
52

)2

p(x)

=

(
0 −

42
52

)2

·
35
52
+

(
1 −

42
52

)2

·
12
52
+

(
5 −

42
52

)2

·
4

52
+

(
10 −

42
52

)2

·
1

52

=
9260
522 ≈ 3.42

SD(X) =
√

Var(X) =

√
9260
522 ≈

√
3.42 ≈ 1.85.

Observe the computation of the variance can be awkward if the
expected value µ is not an integer.
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A Shortcut Formula for Calculating Variance

Var(X) = E[(X − µ)2] = E(X2) − µ2

Proof.

E[(X − µ)2] =
∑

x
(x − µ)2 p(x)

=

∑
x
(x2 − 2µx + µ2) p(x)

=

∑
x

x2 p(x)

︸         ︷︷         ︸

=E(X2)

− 2µ
∑

x
x p(x)

︸       ︷︷       ︸

=µ

+ µ2
∑

x
p(x)

︸     ︷︷     ︸

=1

=

E(X2) − 2µ2 + µ2

=

E(X2) − µ2
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Example (Card Game)

x 0 1 5 10
p(x) 35/52 12/52 4/52 1/52

Let’s calculate the variance again using the shortcut formula
Var(X) = E(X2) − µ2. First we calculate E[X2]

E[X2] = 02 ·
35
52
+ 12 ·

12
52
+ 52 ·

4
52
+ 102 ·

1
52
=

212
52

and the variance is hence

Var(X) = E(X2) − µ2 =
212
52
−

(
42
52

)2

=
9260
522

which resembles our previous calculation.
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Linear Transformation of a
Random Variable



Linear Transformation of a Random Variable

Linear transformation of a random variable h(X) = aX + b is also a
function of interest, e.g.,

• The net profit h(X) = X − 0.1X − 0.5 = 0.9X − 0.5 from the
Card Game w/ tax

For Y = aX + b, we can show that

E(aX + b) = a E(X) + b, and Var(aX + b) = a2 Var(X)

Before we get to the proofs.
Let’s review properties of summation.
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Review: Summation Notation and Its Properties

In the following, a is a fixed constant.∑n

i=1
a = (a + a + · · · + a︸            ︷︷            ︸

n copies

) = na

∑n

i=1
(axi) = ax1 + ax2 + · · · + axn

= a(x1 + x2 + · · · + xn)

= a
∑n

i=1
xi∑n

i=1
(xi + yi) = (x1 + y1) + (x2 + y2) + · · · + (xn + yn)

= (x1 + x2 + · · · + xn) + (y1 + y2 + · · · + yn)

=
∑n

i=1
xi +

∑n

i=1
yi
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Proof of E(aX + b) = a E(X) + b

We prove it for the case that X is discrete with pmf p(x).\ This
relation is also true when X is continuous.

E(aX + b)

=
∑

x
(ax + b)p(x) (definition of E(aX + b))

=
∑

x
(axp(x) + bp(x))

=
∑

x
axp(x) +

∑
x

bp(x) (since
n∑

i=1

(xi + yi) =
n∑

i=1

xi +

n∑
i=1

yi)

= a
∑

x
xp(x)︸      ︷︷      ︸

=E(X)

+b
∑

x
p(x)︸    ︷︷    ︸
=1

(since
n∑

i=1

(axi) = a
n∑

i=1

xi)

= aE(X) + b
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Proof of Var(aX + b) = a2 Var(X)

Recall Var(Y) is the expected value of [Y − E(Y)]2.

For Y = aX + b, we have proved that E(Y) = E(aX + b) = aµ + b, where
µ = E(X) and hence

[Y − E(Y)]2 = [(aX + b) − E(aX + b)]2 = [aX + b − (aµ + b)]2 = a2(X − µ)2.

Taking expected value of the above we get

E[Y − E(Y)]2 = E[a2(X − µ)2]

∥ ∥∗

Var(Y) a2 E[(X − µ)2]
∥ ∥

Var(aX + b) a2 Var(X)

in which the step E[a2(X − µ)2] = a2 E[(X − E(X))2] is justified using
E[cW + d] = c E[W] + d we just proved with c = a2, W = (X − E(X))2, and
d = 0.
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µ = E(X) and hence

[Y − E(Y)]2 = [(aX + b) − E(aX + b)]2 = [aX + b − (aµ + b)]2 = a2(X − µ)2.

Taking expected value of the above we get

E[Y − E(Y)]2 = E[a2(X − µ)2]
∥ ∥∗

Var(Y) a2 E[(X − µ)2]

∥ ∥

Var(aX + b) a2 Var(X)

in which the step E[a2(X − µ)2] = a2 E[(X − E(X))2] is justified using
E[cW + d] = c E[W] + d we just proved with c = a2, W = (X − E(X))2, and
d = 0.
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Example (Card Game w/ Tax)

For the Card Game, recall the mean and variance of the reward X
are

E(X) =
42
52
, Var(X) =

9620
522

The mean and variance of the net profit with tax h(X) = 0.9X − 0.5
are

E(0.9X − 0.5) = 0.9 E(X) − 0.5 = 0.9 ×
42
52
− 0.5 =

11.8
52

Var(0.9X − 0.5) = 0.92 Var(X) = 0.92 ×
9620
522 =

7792.2
52
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