# STAT 234 Lecture 2 Probability Axioms and Rules, Conditional Probabilty, Independence 

Yibi Huang<br>Department of Statistics<br>University of Chicago

## Outline

Coverage: Section 2.2, 2.4 and 2.5 of MMSA (Skip Section 2.3)

- Probability Axioms
- Complementation Rule
- General Addition Rule
- Conditional Probability
- General Multiplication Rule
- Independence


## Probability Axioms and Rules

## Probability Axioms

AXIOM 1 For any event $A, P(A) \geq 0$.
AXIOM $2 P(S)=1$, where $S=$ sample space.
AXIOM 3 If $A_{1}, A_{2}, A_{3}, \ldots$ is an infinite collection of disjoint events, then

$$
P\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right)+\cdots
$$

## Complement Rule

$$
P\left(A^{c}\right)=1-P(A)
$$

Proof. As $A$ and $A^{c}$ are disjoint and $A \cup A^{c}=S=$ sample space, by Axiom 3, we have

$$
P(S)=P(A)+P\left(A^{c}\right)
$$

The Complement Rule then follows from simple algebra and Axiom 2.

$$
\begin{array}{rlr}
P\left(A^{c}\right) & =P(S)-P(A) & \text { simple algebra } \\
& =1-P(A) & \text { by Axiom } 2 P(S)=1
\end{array}
$$

## Complement Rule

- Useful for finding probability of events like \{at least $k\}$ since

$$
\{\text { at least } k\}^{c}=\{\text { at most } k-1\}
$$

- Example: Rolling a pair of fair dice,

$$
\begin{aligned}
P(\text { Total is at least } 3) & =1-P(\text { Total is } 2) \\
& =1-P(\text { The outcome is }(1,1)) \\
& =1-\frac{1}{36}
\end{aligned}
$$



## General Addition Rule

$$
P(A \cup B)= \begin{cases}P(A)+P(B) & \text { if } A \text { and } B \text { are disjoint } \\ P(A)+P(B)-P(A \cap B) & \text { in general }\end{cases}
$$



## Example (General Addition Rule)

Rolling a pair of fair dice, what is the probability of getting a total of 10 or a double?

Sol. The two events are

$$
\begin{aligned}
A=\{\text { Total of } 10\} & =\{(4,6),(6,4),(5,5)\} \text { and } \\
B=\{\text { Double }\} & =\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}
\end{aligned}
$$

Their intersection is $A \cap B=\{(5,5)\}$.
$P$ (Total of $10 \cup$ double)

$$
=P(\text { Total of } 10)+P(\text { Double })-P(\text { Total of } 10 \cap \text { double })
$$

$$
=\frac{3}{36}+\frac{6}{36}-\frac{1}{36}=\frac{8}{36}=\frac{2}{9}
$$

## Conditional Probability

## Example - Poker

A card is drawn from a well-shuffled deck.


- What is the probability that the card is a King $(K)$ ?
$P($ got a King $)=\frac{4}{52}$.
- If the card drawn is known to be a face card $(J, Q, K)$, what is the probability that it is a $K$ ?


## Example - Poker

A card is drawn from a well-shuffled deck.


- What is the probability that the card is a King $(K)$ ?
$P($ got a King $)=\frac{4}{52}$.
- If the card drawn is known to be a face card $(J, Q, K)$, what is the probability that it is a $K ? \frac{4}{12}=\frac{1}{3}$


## Conditional Probabilities

Given two events $A$ and $B$. We denote the probability of event $A$ happens given that event $B$ is known to happen as

$$
P(A \mid B)
$$

read as the probability of "A given $B$."
For the example on the previous slide, let

$$
\begin{aligned}
& A=\text { the card is a King }(\mathrm{K}) \\
& B=\text { the card is a face card }(\mathrm{J}, \mathrm{Q}, \mathrm{~K}) .
\end{aligned}
$$

We have

$$
P(A \mid B)=\frac{4}{12} \neq P(A)=\frac{4}{52} .
$$

Current information (face card) has changed (restricted) the sample space (possible outcomes).

## Exercise

In the previous example, what is
$P\left(B \mid A^{c}\right)=P($ the card is a face card $\mid$ the card is not a King $) ?$

## Exercise

In the previous example, what is
$P\left(B \mid A^{c}\right)=P($ the card is a face card $\mid$ the card is not a King $) ?$

- If the card is not a King, as there are 4 Kings in a deck, then the card must be one of the remaining 48, among which 8 are face cards (4 Jacks and 4 Queens). So the answer is 8/48.


## Exercise

In the previous example, what is
$P\left(B \mid A^{c}\right)=P($ the card is a face card $\mid$ the card is not a King $) ?$

- If the card is not a King, as there are 4 Kings in a deck, then the card must be one of the remaining 48, among which 8 are face cards (4 Jacks and 4 Queens). So the answer is 8/48.
$P(B \mid A)=P$ (the card is a face card | the card is a King)?


## Exercise

In the previous example, what is
$P\left(B \mid A^{c}\right)=P($ the card is a face card $\mid$ the card is not a King $) ?$

- If the card is not a King, as there are 4 Kings in a deck, then the card must be one of the remaining 48, among which 8 are face cards (4 Jacks and 4 Queens). So the answer is 8/48.
$P(B \mid A)=P$ (the card is a face card | the card is a King)?
- = 1, since a King is a face card.


## Exercise

In the previous example, what is
$P\left(B \mid A^{c}\right)=P($ the card is a face card $\mid$ the card is not a King $) ?$

- If the card is not a King, as there are 4 Kings in a deck, then the card must be one of the remaining 48, among which 8 are face cards (4 Jacks and 4 Queens). So the answer is 8/48.
$P(B \mid A)=P$ (the card is a face card | the card is a King)?
- = 1, since a King is a face card.
$P\left(A \mid B^{c}\right)=P($ the card is a King $\mid$ the card is not a face card)?


## Exercise

In the previous example, what is
$P\left(B \mid A^{c}\right)=P($ the card is a face card $\mid$ the card is not a King $) ?$

- If the card is not a King, as there are 4 Kings in a deck, then the card must be one of the remaining 48, among which 8 are face cards (4 Jacks and 4 Queens). So the answer is 8/48.
$P(B \mid A)=P$ (the card is a face card | the card is a King)?
- = 1, since a King is a face card.
$P\left(A \mid B^{c}\right)=P($ the card is a King | the card is not a face card)?
- = 0, since a King is a face card. If it's not a face card, it cannot be a King.


## Definition of Conditional Probability

The MMSA textbook defines the conditional probability $P(A \mid B)$ as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad \text { if } P(B)>0
$$

Example.

- $\mathrm{P}($ face card $)=12 / 52$
- $P($ face card $\cap$ King $)=P($ King $)=4 / 52$

By definition of conditional probability,

$$
P(\text { King } \mid \text { face card })=\frac{P(\text { face card } \cap \text { King })}{P(\text { face card })}=\frac{4 / 52}{12 / 52}=\frac{4}{12}
$$

## Example (Credit Cards)

Consider randomly selecting a student at a certain university, and let

- $\mathrm{V}=$ the event that the selected student has a Visa credit card
- $M=$ the analogous event for a MasterCard.

Suppose that $P(V)=0.5, P(M)=0.4$, and $P(V \cap M)=0.25$.
Interpret and calculate the probability $P(V \mid M)$

## Example (Credit Cards)

Consider randomly selecting a student at a certain university, and let

- $\mathrm{V}=$ the event that the selected student has a Visa credit card
- $M=$ the analogous event for a MasterCard.

Suppose that $P(V)=0.5, P(M)=0.4$, and $P(V \cap M)=0.25$.
Interpret and calculate the probability $P(V \mid M)$
$P(V \mid M)=$ the proportion of Visa card owners among those who already have a MasterCard.

## Example (Credit Cards)

Consider randomly selecting a student at a certain university, and let

- $\mathrm{V}=$ the event that the selected student has a Visa credit card
- $M=$ the analogous event for a MasterCard.

Suppose that $P(V)=0.5, P(M)=0.4$, and $P(V \cap M)=0.25$.
Interpret and calculate the probability $P(V \mid M)$
$P(V \mid M)=$ the proportion of Visa card owners among those who already have a MasterCard.

$$
P(V \mid M)=\frac{P(V \cap M)}{P(M)}=\frac{0.25}{0.4}=0.625 .
$$

## Example (Credit Cards, Cont'd )

Interpret and calculate the probability $P\left(V \mid M^{c}\right)$

## Example (Credit Cards, Cont'd )

Interpret and calculate the probability $P\left(V \mid M^{c}\right)$
$P\left(V \mid M^{c}\right)=$ the proportion of Visa card owners among those who have no MasterCard.

## Example (Credit Cards, Cont'd )

Interpret and calculate the probability $P\left(V \mid M^{c}\right)$
$P\left(V \mid M^{c}\right)=$ the proportion of Visa card owners among those who have no MasterCard.

$$
P\left(V \mid M^{c}\right)=\frac{P\left(V \cap M^{c}\right)}{P\left(M^{c}\right)}
$$

by definition of cond. prob.

## Example (Credit Cards, Cont'd )

Interpret and calculate the probability $P\left(V \mid M^{c}\right)$
$P\left(V \mid M^{c}\right)=$ the proportion of Visa card owners among those who have no MasterCard.

$$
\begin{aligned}
P\left(V \mid M^{c}\right) & =\frac{P\left(V \cap M^{c}\right)}{P\left(M^{c}\right)} \\
& =\frac{P\left(V \cap M^{c}\right)}{1-P(M)}
\end{aligned}
$$

by definition of cond. prob.
complement rule

## Example (Credit Cards, Cont'd )

Interpret and calculate the probability $P\left(V \mid M^{c}\right)$
$P\left(V \mid M^{c}\right)=$ the proportion of Visa card owners among those who have no MasterCard.

$$
\begin{array}{rlr}
P\left(V \mid M^{c}\right) & =\frac{P\left(V \cap M^{c}\right)}{P\left(M^{c}\right)} & \text { by definition of cond. prob. } \\
& =\frac{P\left(V \cap M^{c}\right)}{1-P(M)} & \text { complement rule } \\
& =\frac{P(V)-P(V \cap M)}{1-P(M)} & \text { Venn Diagram }
\end{array}
$$

## Example (Credit Cards, Cont'd )

Interpret and calculate the probability $P\left(V \mid M^{c}\right)$
$P\left(V \mid M^{c}\right)=$ the proportion of Visa card owners among those who have no MasterCard.

$$
\begin{array}{rlr}
P\left(V \mid M^{c}\right) & =\frac{P\left(V \cap M^{c}\right)}{P\left(M^{c}\right)} & \text { by definition of cond. prob. } \\
& =\frac{P\left(V \cap M^{c}\right)}{1-P(M)} & \text { complement rule } \\
& =\frac{P(V)-P(V \cap M)}{1-P(M)} & \text { Venn Diagram } \\
& =\frac{0.5-0.25}{1-0.4} &
\end{array}
$$

## Calculation of Conditional Probabilities

Do NOT always calculate conditional probabilities by the definition.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Sometimes one can calculate $P(A \mid B)$ by thinking about how $B$ has changed the sample space instead of finding $P(A \cap B)$ and $P(B)$ and calculating their ratio.

Example. A deck of cards is well-shuffled and the two cards are drawn w/o replacement. What is the probability that second card is a King

- given that the first card is a King?


## Calculation of Conditional Probabilities

Do NOT always calculate conditional probabilities by the definition.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Sometimes one can calculate $P(A \mid B)$ by thinking about how $B$ has changed the sample space instead of finding $P(A \cap B)$ and $P(B)$ and calculating their ratio.

Example. A deck of cards is well-shuffled and the two cards are drawn w/o replacement. What is the probability that second card is a King

- given that the first card is a King? 3/51


## Calculation of Conditional Probabilities

Do NOT always calculate conditional probabilities by the definition.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Sometimes one can calculate $P(A \mid B)$ by thinking about how $B$ has changed the sample space instead of finding $P(A \cap B)$ and $P(B)$ and calculating their ratio.

Example. A deck of cards is well-shuffled and the two cards are drawn w/o replacement. What is the probability that second card is a King

- given that the first card is a King? 3/51
- given that the first card is NOT a King?


## Calculation of Conditional Probabilities

Do NOT always calculate conditional probabilities by the definition.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Sometimes one can calculate $P(A \mid B)$ by thinking about how $B$ has changed the sample space instead of finding $P(A \cap B)$ and $P(B)$ and calculating their ratio.

Example. A deck of cards is well-shuffled and the two cards are drawn w/o replacement. What is the probability that second card is a King

- given that the first card is a King? 3/51
- given that the first card is NOT a King? 4/51


## Example (Age and Rank of Professors)

The table below cross-classifies faculty members in a certain university by age and rank.

| Age <br> (year) | Full <br> professor | Associate <br> professor | Assistant <br> professor | Lecturer | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Under 40 | 54 | 173 | 220 | 23 | 470 |
| $40-49$ | 156 | 125 | 61 | 6 | 348 |
| $50-59$ | 145 | 68 | 36 | 4 | 253 |
| $60+$ | 75 | 15 | 3 | 0 | 93 |
| Total | 430 | 381 | 320 | 33 | 1164 |

Find $P$ (full prof. | under 40)

- by restricting the sample space;
- by definition.


## Example (Age and Rank of Professors)

The table below cross-classifies faculty members in a certain university by age and rank.

| Age <br> (year) | Full <br> professor | Associate <br> professor | Assistant <br> professor | Lecturer | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Under 40 | 54 | 173 | 220 | 23 | 470 |
| $40-49$ | 156 | 125 | 61 | 6 | 348 |
| $50-59$ | 145 | 68 | 36 | 4 | 253 |
| $60+$ | 75 | 15 | 3 | 0 | 93 |
| Total | 430 | 381 | 320 | 33 | 1164 |

Find $P$ (full prof. | under 40)

- by restricting the sample space; 54/470
- by definition.


## Example (Age and Rank of Professors)

The table below cross-classifies faculty members in a certain university by age and rank.

| Age <br> (year) | Full <br> professor | Associate <br> professor | Assistant <br> professor | Lecturer | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Under 40 | 54 | 173 | 220 | 23 | 470 |
| $40-49$ | 156 | 125 | 61 | 6 | 348 |
| $50-59$ | 145 | 68 | 36 | 4 | 253 |
| $60+$ | 75 | 15 | 3 | 0 | 93 |
| Total | 430 | 381 | 320 | 33 | 1164 |

Find $P$ (full prof. | under 40)

- by restricting the sample space; 54/470
- by definition.
$P($ full prof. $\mid$ under 40$)=\frac{P(\text { full prof. } \cap \text { under } 40)}{P(\text { under } 40)}=\frac{54 / 1164}{470 / 1164}=\frac{54}{470}$

General Multiplication Rule

## General Multiplication Rule

The formula for conditional probability

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

can be used the other way around. Multiplying both sides by $P(A)$, we get the General Multiplication Rule:

$$
P(A \cap B)=P(A) \times P(B \mid A)
$$

If we want $P(A \cap B)$, and both $P(A), P(B \mid A)$ are known or are easy to compute, we can use the General Multiplication Rule.

## Example: General Multiplication Rule

A deck of cards is shuffled and the two top cards are placed face down on a table. What is the probability that both cards are Kings?

Solution. Let

$$
\begin{aligned}
& A=1 \mathrm{st} \text { card is a King, } \\
& B=2 \text { nd card is a King. }
\end{aligned}
$$

- $P(A)=P($ the 1 st card is a King $)=$
- Given that the 1st card is a King, the conditional probability that the 2nd card is a King =?
- So the probability that both cards are Kings = ?


## Example: General Multiplication Rule

A deck of cards is shuffled and the two top cards are placed face down on a table. What is the probability that both cards are Kings?

Solution. Let

$$
\begin{aligned}
& A=1 \text { st card is a King, } \\
& B=2 \text { nd card is a King. }
\end{aligned}
$$

- $P(A)=P$ (the 1st card is a King) $=4 / 52$.
- Given that the 1st card is a King, the conditional probability that the 2nd card is a King =?
- So the probability that both cards are Kings = ?


## Example: General Multiplication Rule

A deck of cards is shuffled and the two top cards are placed face down on a table. What is the probability that both cards are Kings?

Solution. Let

$$
\begin{aligned}
& A=1 \text { st card is a King, } \\
& B=2 \text { nd card is a King. }
\end{aligned}
$$

- $P(A)=P$ (the 1st card is a King) $=4 / 52$.
- Given that the 1st card is a King, the conditional probability that the 2 nd card is a King $=? P(B \mid A)=\frac{3}{51}$.
- So the probability that both cards are Kings = ?


## Example: General Multiplication Rule

A deck of cards is shuffled and the two top cards are placed face down on a table. What is the probability that both cards are Kings?

Solution. Let

$$
\begin{aligned}
& A=1 \text { st card is a King, } \\
& B=2 \text { nd card is a King. }
\end{aligned}
$$

- $P(A)=P$ (the 1st card is a King) $=4 / 52$.
- Given that the 1st card is a King, the conditional probability that the 2 nd card is a King $=? P(B \mid A)=\frac{3}{51}$.
- So the probability that both cards are Kings =?

$$
P(A \cap B)=P(A) \times P(B \mid A)=\frac{4}{52} \times \frac{3}{51}=\frac{1}{221} \approx 0.0045
$$

## Example: General Multiplication Rule

A deck of cards is shuffled and the two top cards are placed face down on a table. What is the probability that neither card is a K ?

Sol.

- $P\left(A^{c}\right)=P($ the 1 st card is not a K$)=$
- Given that the 1st card is not a K, the conditional probability that the 2nd card is not a $\mathrm{K}=$ ?
- So the probability that neither card is a $\mathrm{K}=$ ?
- $\mathrm{P}($ at least one of the two cards is a K$)=$ ?


## Example: General Multiplication Rule

A deck of cards is shuffled and the two top cards are placed face down on a table. What is the probability that neither card is a K ?

Sol.

- $P\left(A^{c}\right)=P($ the 1 st card is not a K$)=48 / 52$.
- Given that the 1 st card is not a K, the conditional probability that the 2nd card is not a $\mathrm{K}=$ ?
- So the probability that neither card is a $\mathrm{K}=$ ?
- $\mathrm{P}($ at least one of the two cards is a K$)=$ ?


## Example: General Multiplication Rule

A deck of cards is shuffled and the two top cards are placed face down on a table. What is the probability that neither card is a K ?

Sol.

- $P\left(A^{c}\right)=P($ the 1 st card is not a K$)=48 / 52$.
- Given that the 1 st card is not a K , the conditional probability that the 2nd card is not a $\mathrm{K}=? P\left(B^{c} \mid A^{c}\right)=\frac{47}{51}$.
- So the probability that neither card is a $K=$ ?
- $\mathrm{P}($ at least one of the two cards is a K$)=$ ?


## Example: General Multiplication Rule

A deck of cards is shuffled and the two top cards are placed face down on a table. What is the probability that neither card is a K ?

Sol.

- $P\left(A^{c}\right)=P($ the 1 st card is not a K$)=48 / 52$.
- Given that the 1 st card is not a K , the conditional probability that the 2nd card is not a $\mathrm{K}=? P\left(B^{c} \mid A^{c}\right)=\frac{47}{51}$.
- So the probability that neither card is a $K=$ ?
$P\left(A^{c} \cap B^{c}\right)=P\left(A^{c}\right) \times P\left(B^{c} \mid A^{c}\right)=\frac{48}{52} \times \frac{47}{51}=\frac{188}{221} \approx 0.851$.
- P (at least one of the two cards is a K$)=$ ?


## Example: General Multiplication Rule

A deck of cards is shuffled and the two top cards are placed face down on a table. What is the probability that neither card is a K?

Sol.

- $P\left(A^{c}\right)=P($ the 1 st card is not a K$)=48 / 52$.
- Given that the 1 st card is not a K , the conditional probability that the 2nd card is not a $\mathrm{K}=? P\left(B^{c} \mid A^{c}\right)=\frac{47}{51}$.
- So the probability that neither card is a $K=$ ?
$P\left(A^{c} \cap B^{c}\right)=P\left(A^{c}\right) \times P\left(B^{c} \mid A^{c}\right)=\frac{48}{52} \times \frac{47}{51}=\frac{188}{221} \approx 0.851$.
- $P($ at least one of the two cards is a K$)=$ ?
\{at least a K$\}^{c}=\{$ neither is a K$\}$
So, $\mathrm{P}($ at least a K$)=1-\mathrm{P}($ neither is K$)=1-0.851=0.149$.


## General Multiplication Rule for Several Events

$$
\begin{aligned}
P(A B C) & =P(A) \times P(B \mid A) \times P(C \mid A B) \\
P(A B C D) & =P(A) \times P(B \mid A) \times P(C \mid A B) \times P(D \mid A B C) \\
P(A B C D E) & =P(A) \times P(B \mid A) \times P(C \mid A B) \times P(D \mid A B C) \times P(E \mid A B C D)
\end{aligned}
$$

and so on

## Example: General Multiplication Rule for Several Events

Five cards are dealt from a deck of well-shuffled card. What is the chance that none of them are hearts $\triangleright$ ?

Sol. Let $A_{i}$ be the event that the $i$ th card dealt is not a $\varphi$.

- $P\left(A_{1}\right)=P(1$ st card is not a $\vee)=39 / 52$


## Example: General Multiplication Rule for Several Events

Five cards are dealt from a deck of well-shuffled card. What is the chance that none of them are hearts $\vee$ ?

Sol. Let $A_{i}$ be the event that the $i$ th card dealt is not a $\odot$.

- $P\left(A_{1}\right)=P(1$ st card is not a $\vee)=39 / 52$
- Given the 1st card is not a $\triangle$, the conditional probability that the 2nd is not a $\vee=P\left(A_{2} \mid A_{1}\right)=\frac{38}{51}$.


## Example: General Multiplication Rule for Several Events

Five cards are dealt from a deck of well-shuffled card. What is the chance that none of them are hearts $\triangleright$ ?

Sol. Let $A_{i}$ be the event that the $i$ th card dealt is not a $\odot$.

- $P\left(A_{1}\right)=P(1$ st card is not a $\vee)=39 / 52$
- Given the 1st card is not a $\triangle$, the conditional probability that the 2nd is not a $\vee=P\left(A_{2} \mid A_{1}\right)=\frac{38}{51}$.
- Given neither of the first two cards is a $\Omega$, the condition probability that the 3rd is not a $\vee=P\left(A_{3} \mid A_{1} A_{2}\right)=\frac{37}{50}$.


## Example: General Multiplication Rule for Several Events

Five cards are dealt from a deck of well-shuffled card. What is the chance that none of them are hearts $\triangleright$ ?

Sol. Let $A_{i}$ be the event that the $i$ th card dealt is not a $\odot$.

- $P\left(A_{1}\right)=P(1$ st card is not a $\vee)=39 / 52$
- Given the 1st card is not a $\varsigma$, the conditional probability that the 2nd is not a $\vee=P\left(A_{2} \mid A_{1}\right)=\frac{38}{51}$.
- Given neither of the first two cards is a $\Omega$, the condition probability that the 3rd is not a $\vee=P\left(A_{3} \mid A_{1} A_{2}\right)=\frac{37}{50}$.
- Likewise, $P\left(A_{4} \mid A_{1} A_{2} A_{3}\right)=\frac{36}{49}, P\left(A_{5} \mid A_{1} A_{2} A_{3} A_{4}\right)=\frac{35}{48}$


## Example: General Multiplication Rule for Several Events

Five cards are dealt from a deck of well-shuffled card. What is the chance that none of them are hearts $\vee$ ?

Sol. Let $A_{i}$ be the event that the $i$ th card dealt is not a $\odot$.

- $P\left(A_{1}\right)=P(1$ st card is not a $\vee)=39 / 52$
- Given the 1st card is not a $\odot$, the conditional probability that the 2nd is not a $\vee=P\left(A_{2} \mid A_{1}\right)=\frac{38}{51}$.
- Given neither of the first two cards is a $\Omega$, the condition probability that the 3rd is not a $\otimes=P\left(A_{3} \mid A_{1} A_{2}\right)=\frac{37}{50}$.
- Likewise, $P\left(A_{4} \mid A_{1} A_{2} A_{3}\right)=\frac{36}{49}, P\left(A_{5} \mid A_{1} A_{2} A_{3} A_{4}\right)=\frac{35}{48}$
- By the General Multiplication Rule,

$$
P\left(A_{1} A_{2} A_{3} A_{4} A_{5}\right)=\frac{39}{52} \times \frac{38}{51} \times \frac{37}{50} \times \frac{36}{49} \times \frac{35}{48} \approx 0.222
$$

Continue the previous slide, what is the probability of getting at least one heart $\odot$ among the five cards?

Sol. Since $\{\text { at least one } \triangleright\}^{c}=\{$ no $\vee\}$, by the complement rule,

$$
P(\text { at least one } \vee)=1-P(\text { no } \vee)=1-0.222=0.778 \text {. }
$$

## Independence

## Independence

Two events $A$ and $B$ are said to be independent if any of the following is true

- $P(A \mid B)=P(A)$
$B$ happens doesn't affect how likely $A$ happens
- $P(A \mid B)=P\left(A \mid B^{c}\right)$
...... How likely $A$ happens is not affected by $B$ happens or not
- $P(B \mid A)=P(B)$
$A$ happens doesn't affect how likely $B$ happens
- $P(A \cap B)=P(A) \times P(B)$

If any of the identities above is true, then all remaining identities will also be true.

## Proof of $P(A \mid B)=P(A)$ implies $P(B \mid A)=P(B)$

$$
\begin{aligned}
P(B \mid A) & =\frac{P(A \cap B)}{P(A)} & \text { definition of conditional prob. } \\
& =\frac{P(B) P(A \mid B)}{P(A)} & \text { General multiplication rule } \\
& =\frac{P(B) P(A)}{P(A)} & \text { since } P(A \mid B)=P(A) \\
& =P(B) &
\end{aligned}
$$

Thus, $P(A \mid B)=P(A)$ implies $P(B \mid A)=P(B)$.

## Proof of $P(B \mid A)=P(B)$ implies $P(A \cap B)=P(A) P(B)$

$$
\begin{array}{rlr}
P(A \cap B) & =P(A) P(B \mid A) & \text { (by General multiplication rule) } \\
& =P(A) P(B) & (\text { since } P(B \mid A)=P(B))
\end{array}
$$

## Practice - Checking Independence

Between January 9-12, 2013, SurveyUSA interviewed a random sample of 500 NC residents asking them whether they think widespread gun ownership protects law abiding citizens from crime, or makes society more dangerous. $58 \%$ of all respondents said it protects citizens. $67 \%$ of White respondents, $28 \%$ of Black respondents, and $64 \%$ of Hispanic respondents shared this view. Are opinion on gun ownership and race ethnicity independent?

## Practice - Checking Independence

Between January 9-12, 2013, SurveyUSA interviewed a random sample of 500 NC residents asking them whether they think widespread gun ownership protects law abiding citizens from crime, or makes society more dangerous. $58 \%$ of all respondents said it protects citizens. $67 \%$ of White respondents, $28 \%$ of Black respondents, and $64 \%$ of Hispanic respondents shared this view. Are opinion on gun ownership and race ethnicity independent?

$$
\begin{aligned}
P(\text { protects citizens }) & =0.58 \\
P(\text { protects citizens } \mid \text { White }) & =0.67 \\
P(\text { protects citizens } \mid \text { Black }) & =0.28 \\
P(\text { protects citizens } \mid \text { Hispanic }) & =0.64
\end{aligned}
$$

## Practice - Checking Independence

Between January 9-12, 2013, SurveyUSA interviewed a random sample of 500 NC residents asking them whether they think widespread gun ownership protects law abiding citizens from crime, or makes society more dangerous. $58 \%$ of all respondents said it protects citizens. $67 \%$ of White respondents, $28 \%$ of Black respondents, and $64 \%$ of Hispanic respondents shared this view. Are opinion on gun ownership and race ethnicity independent?

$$
\begin{aligned}
P(\text { protects citizens }) & =0.58 \\
P(\text { protects citizens } \mid \text { White }) & =0.67 \\
P(\text { protects citizens } \mid \text { Black }) & =0.28 \\
P(\text { protects citizens } \mid \text { Hispanic }) & =0.64
\end{aligned}
$$

P (protects citizens) varies by race/ethnicity, therefore opinion on gun ownership and race ethnicity are dependent.

## Independent Events vs Disjoint Events

- If $A$ and $B$ are independent, $P(A \cap B)=P(A) \times P(B)$.
- If $A$ and $B$ are disjoint: $A \cap B=\varnothing \Rightarrow P(A \cap B)=0$.
- If $P(A)>0$ and $P(B)>0$,
- Independent events cannot be disjoint.
- Disjoint events cannot be independent.
- Conceptually, $A$ and $B$ are disjoint means that one happens prevents the other from happening, so one's occurrence definitely affects the other's.


## Multiplication Rule for Independent Events

When $A$ and $B$ are independent

$$
P(A \cap B)=P(A) \times P(B)
$$

- This is simply the general multiplication rule:
$P(A \cap B)=P(A) \times P(B \mid A)$ in which $P(B \mid A)$ reduce to $P(B)$ when $A$ and $B$ are independent
- More generally,

$$
P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{k}\right)=P\left(A_{1}\right) \times P\left(A_{2}\right) \times \cdots \times P\left(A_{k}\right)
$$

if $A_{1}, \ldots, A_{k}$ are independent.

## Multiplication Rule for Independent Events

When $A$ and $B$ are independent

$$
P(A \cap B)=P(A) \times P(B)
$$

- This is simply the general multiplication rule:
$P(A \cap B)=P(A) \times P(B \mid A)$ in which $P(B \mid A)$ reduce to $P(B)$
when $A$ and $B$ are independent
- More generally,

$$
P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{k}\right)=P\left(A_{1}\right) \times P\left(A_{2}\right) \times \cdots \times P\left(A_{k}\right)
$$

if $A_{1}, \ldots, A_{k}$ are independent.
Exercise: You roll a 6-face die twice, what is the probability of getting two aces in a row?

## Multiplication Rule for Independent Events

When $A$ and $B$ are independent

$$
P(A \cap B)=P(A) \times P(B)
$$

- This is simply the general multiplication rule:
$P(A \cap B)=P(A) \times P(B \mid A)$ in which $P(B \mid A)$ reduce to $P(B)$
when $A$ and $B$ are independent
- More generally,

$$
P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{k}\right)=P\left(A_{1}\right) \times P\left(A_{2}\right) \times \cdots \times P\left(A_{k}\right)
$$

if $A_{1}, \ldots, A_{k}$ are independent.
Exercise: You roll a 6-face die twice, what is the probability of getting two aces in a row?
$P($ ace in the 1 st roll $) \times P($ ace on the 2 nd roll $)=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}$

## Abuse of the Multiplication Rule

As estimated in 2020, of the U.S. population,

- 2.0\% were 85 or older, and
- $49.5 \%$ were male.

True or False and explain: $0.495 \times 0.02 \approx 1 \%$ of the U.S. population are males and age 85+.

## Abuse of the Multiplication Rule

As estimated in 2020, of the U.S. population,

- $2.0 \%$ were 85 or older, and
- $49.5 \%$ were male.

True or False and explain: $0.495 \times 0.02 \approx 1 \%$ of the U.S. population are males and age 85+.

False, Age and Gender are dependent.
In particular, as women on average live longer than men, there are more old women than old men.

Among 85+ year-olds, only 36.5\% are male, not 49.5\%.
Of the U.S. population in 2020, only

$$
P(M \cap 85+)=P(85+) P(M \mid 85+)=0.02 \times 0.365 \approx 0.0073=0.73 \%
$$

were males age 85+.

