STAT 226 Lecture 27

Section 8.3 Comparing Proportions for Nominal Matched-Pairs Response

Yibi Huang

A survey recorded the brand choice for a sample of buyers of instant decaffeinated coffee. At a later coffee purchase by these subjects, the brand choice was again recorded.

Purchase	High Pt	Taster's	Sanka	Nescafe	Brim	Total
First				36		541
	(31.6%)	(13.9%)	(37.7%)	(6.7%)	(10.2%)	
Second	135	82	231	33	60	541
Second	(25.0%)	(15.2%)	(42.7%)	(6.1%)	(11.1%)	

Question: Do the market shares of the 5 coffee brands change between the two purchases?

Can one test using Pearson's X^2 test, which indicates little evidence of changes between the two purchases (*P*-value ≈ 0.16).

```
coffeetab = matrix(c(171,75,204,36,55,135,82,231,33,60)),
                  nrow=2, byrow=TRUE)
coffeetab
     [,1] [,2] [,3] [,4] [,5]
[1.] 171 75 204 36
                          55
[2.] 135 82 231 33
                          60
chisq.test(coffeetab)
   Pearson's Chi-squared test
data: coffeetab
X-squared = 6.57108, df = 4, p-value = 0.16037
```

Can one test using Pearson's X^2 test, which indicates little evidence of changes between the two purchases (*P*-value ≈ 0.16).

```
coffeetab = matrix(c(171,75,204,36,55,135,82,231,33,60)),
                  nrow=2, byrow=TRUE)
coffeetab
     [,1] [,2] [,3] [,4] [,5]
[1.] 171 75 204 36
                          55
[2,] 135
           82 231
                     33
                          60
chisq.test(coffeetab)
   Pearson's Chi-squared test
data: coffeetab
X-squared = 6.57108, df = 4, p-value = 0.16037
```

Paired data — each customer in the data made two purchases. Cannot regard the two purchases as independent observations — Pearson's X^2 test isn't applicable Data: *n* pairs of observations (y_1, y_2)

 (y_{11}, y_{12}) (y_{21}, y_{22}) (y_{31}, y_{32}) \vdots (y_{n1}, y_{n2})

Both y_{i1} and y_{i2} are categorical w/ (J > 2) categories

Data are usually summarize as a square $J \times J$ table that the (i, j) cell is

$$n_{ij}$$
 = count of pairs w/ $y_1 = i$ and $y_2 = j$.

Data display that reflect the dependence of the two purchases:

First		Second Purchase							
Purchase	High Pt	Taster's	Sanka	Nescafe	Brim	Total	(%)		
High Pt	93	17	44	7	10	171	(31.6%)		
Taster's	9	46	11	0	9	75	(13.9%)		
Sanka	17	11	155	9	12	204	(37.7%)		
Nescafe	6	4	9	15	2	36	(6.7%)		
Brim	10	4	12	2	27	55	(10.2%)		
Total	135	82	231	33	60	541	(100%)		
(%)	(25.0%)	(15.2%)	(42.7%)	(6.1%)	(11.1%)				

Large cell counts on the main diagnal

- \Rightarrow Most buyers didn't change their choice
- \Rightarrow The two purchases of a buyer are dependent

Population probabilities:

First	Second Purchase						
Purchase	High Pt	Taster's	Sanka	Nescafe	Brim	Total	
High Pt	π_{11}	π_{12}	π_{13}	π_{14}	π_{15}	π_{1+}	
Taster's	π_{21}	π_{22}	π_{23}	π_{24}	π_{25}	π_{2+}	
Sanka	π_{31}	π_{32}	π_{33}	π_{34}	π_{35}	π_{3+}	
Nescafe	π_{41}	π_{42}	π_{43}	π_{44}	π_{45}	π_{4+}	
Brim	π_{51}	π_{52}	π_{53}	π_{54}	π_{55}	π_{5+}	
Total	π_{+1}	π_{+2}	π_{+3}	π_{+4}	π_{+5}	1	

Question: Whether the coffee brand market shares change between the two purchases,

$$P(Y_1 = i) = \pi_{i+} = \pi_{+i} = P(Y_2 = i)$$

for i = 1, ..., J. under which each row marginal probability equals the corresponding column marginal probability, called *marginal homogeneity*.

Test of Marginal Homogeneity

We will estimate $\pi_{i+} - \pi_{+i}$ by

$$d_i = \widehat{\pi}_{i+} - \widehat{\pi}_{+i} = \frac{n_{i+}}{n} - \frac{n_{+i}}{n}, \text{ for } i = 1, \dots, J.$$

To test $(\pi_{1+}, \pi_{2+}, \dots, \pi_{J+}) = (\pi_{+1}, \pi_{+2}, \dots, \pi_{+J})$, we use all of

$$\mathbf{d} = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_{J-1} \end{pmatrix} = \begin{pmatrix} \widehat{\pi}_{1+} - \widehat{\pi}_{+1} \\ \widehat{\pi}_{2+} - \widehat{\pi}_{+2} \\ \vdots \\ \widehat{\pi}_{(J-1)+} - \widehat{\pi}_{+(J-1)} \end{pmatrix}$$

It's redundant to include d_J since

$$\sum_{i=1}^{J} d_i = \sum_{i=1}^{J} \widehat{\pi}_{i+} - \sum_{i=1}^{J} \widehat{\pi}_{+i} = 1 - 1 = 0.$$

Wald Test of Marginal Homogeneity

One can show that $\sqrt{n}(\mathbf{d} - \mathbf{E}(\mathbf{d}))$ has an asymptotic multivariate normal distribution with the covariance matrix V with the elements below.

$$V_{ab} = n \operatorname{Cov}(d_a, d_b) = -(\pi_{ab} + \pi_{ba}) - (\pi_{a+} - \pi_{+a})(\pi_{b+} - \pi_{+b}) \quad \text{for } a \neq b$$
$$V_{aa} = n \operatorname{Var}(d_a) = \pi_{a+} + \pi_{+a} - 2\pi_{aa} - (\pi_{a+} - \pi_{+a})^2$$

Wald statistic for testing the H₀ of marginal homogeneity is

$$W = n\mathbf{d}^T \widehat{\mathbf{V}}^{-1} \mathbf{d}$$

which has an approx. chi-squared distribution w/ df = J - 1. Here V is the estimate of the covariance matrix V that π_{i+} , π_{+i} and π_{ab} are estimated by

$$\widehat{\pi}_{i+} = \frac{n_{i+}}{n}, \quad \widehat{\pi}_{+i} = \frac{n_{+i}}{n}, \quad \text{and} \quad \widehat{\pi}_{ab} = \frac{n_{ab}}{n}.$$

Score Test of Marginal Homogeneity

The score test estimates the covariance matrix \mathbf{V} under the H₀ of marginal homogeneity: $\pi_{i+} = \pi_{+i}$ using the matrix $\widehat{\mathbf{V}}_0$ with the elements below

$$\widehat{V}_{ab0} = -(\widehat{\pi}_{ab} + \widehat{\pi}_{ba}) = -\frac{n_{ab} + n_{ba}}{n} \quad \text{for } a \neq b$$
$$\widehat{V}_{aa0} = \widehat{\pi}_{a+} + \widehat{\pi}_{+a} - 2\widehat{\pi}_{aa} = \frac{n_{a+} + n_{+a} - 2n_{aa}}{n}$$

Score statistic for testing the H_0 of marginal homogeneity is

$$n\mathbf{d}^T \widehat{\mathbf{V}}_{\mathbf{0}}^{-1}\mathbf{d}$$

which has an approx. chi-squared distribution w/ df = J - 1. Here \widehat{V}_0 is the estimate of the covariance matrix V_0 that π_{i+} , π_{+i} and π_{ab} are estimated by

$$\widehat{\pi}_{i+} = \frac{n_{i+}}{n}, \quad \widehat{\pi}_{+i} = \frac{n_{+i}}{n}, \quad \text{and} \quad \widehat{\pi}_{ab} = \frac{n_{ab}}{n}.$$

Coffee Brand Market Share Data in R

```
coffee = read.table(
    "http://www.stat.ufl.edu/~aa/cat/data/Coffee.dat",
    header=TRUE)
```

- # purchase = 1 for first purchase
- # purchase = 0 for second purchase

person purchase y

1	1	1	1	
2	1	0	1	
3	2	1	1	
4	2	0	1	
5	3	1	1	
6	3	0	1	
())			
	person	purchas	se	у
1079	540		1	5
1080	540		0	5
1081	541		1	5
1082	541		0	5

```
library(reshape2)
coffee.w = dcast(coffee, person ~ purchase, value.var="y")
head(coffee.w)
 person 0 1
1
      1 1 1
2
 2 1 1
3
  3 1 1
4 4 1 1
5
  511
6
  6 1 1
colnames(coffee.w)[2:3] = c("y2", "y1")
head(coffee.w)
 person y2 y1
      1 1 1
1
2
  2 1 1
3
  3 1 1
      4 1 1
4
5
      5 1 1
6
      6 1 1
```

# wi	de f	orma	at to	2-1	vay t	table	
tab	= xt	abs((~y1+	y2,	data	=coffee.w);	tab
У	2						
y1	1	2	3	4	5		
1	93	17	44	7	10		
2	9	46	11	0	9		
3	17	11	155	9	12		
4	6	4	9	15	2		
5	10	4	12	2	27		

 $\widehat{\pi}_{ab} = n_{ab}/n$ can be obtained as follows.

```
ptab = prop.table(tab); ptab
y2
y1 1 2 3 4 5
1 0.171904 0.031423 0.081331 0.012939 0.018484
2 0.016636 0.085028 0.020333 0.000000 0.016636
3 0.031423 0.020333 0.286506 0.016636 0.022181
4 0.011091 0.007394 0.016636 0.027726 0.003697
5 0.018484 0.007394 0.022181 0.003697 0.049908
```

$$\widehat{\pi}_{a+} = n_{a+}/n$$

 $\widehat{\pi}_{+a} = n_{+a}/n$

Sample Covariance Matrix for Wald Statistic in R

J v

} v

$$\widehat{V}_{ab} = -(\widehat{\pi}_{ab} + \widehat{\pi}_{ba}) - (\widehat{\pi}_{a+} - \widehat{\pi}_{+a})(\widehat{\pi}_{b+} - \widehat{\pi}_{+b}) \text{ for } a \neq b$$

$$\widehat{V}_{aa} = \widehat{\pi}_{a+} + \widehat{\pi}_{+a} - 2\widehat{\pi}_{aa} - (\widehat{\pi}_{a+} - \widehat{\pi}_{+a})^2$$

$$J = \dim(tab)[1] \qquad \# J = 5 \text{ for Coffee Data}$$

$$V = \operatorname{array}(\dim=c(J-1,J-1)) \ \# \text{ creating a } (J-1)x(J-1) \ \text{empty array}$$

$$for(a \text{ in } 1:(J-1))\{$$

$$v[a,b] = - (ptab[a,b]+ptab[b,a]) - (py1[a]-py2[a])*(py1[b]-py2[b])$$

$$v[b,a] = v[a,b]$$

$$\}$$

$$V[a,a] = py1[a] + py2[a] - 2*ptab[a,a] - (py1[a]-py2[a])^2$$

$$\}$$

$$V \ \# Sample \ covariance \ matrix \ calculated$$

$$[,1] \quad [,2] \quad [,3] \quad [,4]$$

$$[1,] \quad 0.2174 \ -0.047198 \ -0.04131 \ -0.007322$$

$$[3,] \ -0.1094 \ -0.041311 \ 0.22856 \ -0.032995$$

$$[4,] \ -0.0244 \ -0.007322 \ -0.03299 \ 0.072058$$

$$14$$

Wald Statistic for Marginal Homogeneity

```
Wald statistic: W = n\mathbf{d}^T \widehat{\mathbf{V}}^{-1}\mathbf{d}. Recall \mathbf{d} = \begin{pmatrix} \widehat{\pi}_{1+} - \widehat{\pi}_{+1} \\ \widehat{\pi}_{2+} - \widehat{\pi}_{+2} \\ \vdots \\ \widehat{\pi}_{(J-1)+} - \widehat{\pi}_{+(J-1)} \end{pmatrix}
```

```
n = sum(tab) # n = number of customers (pairs)
d = py1[1:(J-1)] - py2[1:(J-1)]
Wald = n*t(d) %*% solve(V, d);
Wald # output is a 1x1 matrix
[,1]
[1,] 12.58
Wald = as.numeric(Wald); Wald # Convert the matrix to a number
[1] 12.58
pchisq(Wald, df=J-1, lower.tail=F) # Wald P-value
[1] 0.01354
```

Wald statistic is 12.5771 with df = 4, P-value = 0.0135, giving some evidence of changes in market shares between the two purchases. ¹⁵

Sample Covariance Matrix for Score Statistic:

```
\widehat{V}_{ab0} = -(\widehat{\pi}_{ab} + \widehat{\pi}_{ba}), \quad \widehat{V}_{aa0} = \widehat{\pi}_{a+} + \widehat{\pi}_{+a} - 2\widehat{\pi}_{aa}
V0 = array(dim=c(J-1, J-1))
for(i in 1:(J-1)){
   for(j in 1:(i-1)){
     VO[i,j] = - (ptab[i,j]+ptab[j,i])
     VO[j,i] = VO[i,j]
  }
  VO[i,i] = py1[i] + py2[i] - 2*ptab[i,i]
}
Score statistic: W_0 = n \mathbf{d}^T \widehat{\mathbf{V}}_0^{-1} \mathbf{d}
Score = as.numeric(n*t(d) %*% solve(V0, d)); Score
[1] 12.29135
pchisq(Score, df=J-1, lower.tail=F)
```

[1] 0.01531125

Score statistic is 12.2913 with df = 4, P-value = 0.0153, giving some evidence of changes in market shares between the two purchases.

mantelhaen.test() Does Score Test of Marginal Homogeneity

mantelhaen.test(xtabs(~purchase + y + person, data=coffee))

Cochran-Mantel-Haenszel test

data: xtabs(~purchase + y + person, data = coffee)
Cochran-Mantel-Haenszel M² = 12.2913, df = 4, p-value = 0.015311

with(coffee, mantelhaen.test(purchase, y, person))

Cochran-Mantel-Haenszel test

data: purchase and y and person Cochran-Mantel-Haenszel M² = 12.2913, df = 4, p-value = 0.015311

Observe the CMH statistic $M^2 = 12.2913$ is exactly the score statistic we computed.

As Wald & Score tests indicate changes in market share between purchases, least one of 5 brands must have $\pi_{i+} \neq \pi_{+i}$.

First							
Purchase	High Pt	Taster's	Sanka	Nescafe	Brim	Total	(%)
High Pt	93	17	44	7	10	171	(31.6%)
Taster's	9	46	11	0	9	75	(13.9%)
Sanka	17	11	155	9	12	204	(37.7%)
Nescafe	6	4	9	15	2	36	(6.7%)
Brim	10	4	12	2	27	55	(10.2%)
Total	135	82	231	33	60	541	(100%)
(%)	(25.0%)	(15.2%)	(42.7%)	(6.1%)	(11.1%)		

To test the change for a given brand, e.g., High Pt, we can combine the other categories and use the methods of Section 8.1.

First	2nd Purchase			
Purchase	High Pt	Other		
High Pt	93	78		
Other	42	328		

First	2nd Purchase			
Purchase	High Pt	Other		
High Pt	93	78		
Other	42	328		

McNemar's test

$$\frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21}}} = \frac{78 - 42}{\sqrt{78 + 42}} \approx 3.286$$

541 P-value ≈ 0.00071 .

2*pnorm(3.386, lower.tail=FALSE)
[1] 0.00070919384

95% CI for
$$\pi_{1+} - \pi_{+1}$$

 $\widehat{\pi}_{1+} - \widehat{\pi}_{+1} \pm 1.96\text{SE} = \frac{n_{12} - n_{21}}{n} \pm 1.96\frac{1}{n}\sqrt{n_{12} + n_{21} - \frac{(n_{12} - n_{21})^2}{n}}$
 $= \frac{78 - 42}{541} \pm 1.96\frac{1}{541}\sqrt{78 + 42 - \frac{(78 - 42)^2}{541}}$
 $= 0.0665 \pm 0.0393 = (0.0272, 0.1058)$

The brand share of High Pt. dropped 2.7% to 10.6% between the two purchases, with 95% confidence.