STAT 226 Lecture 27

Section 8.3 Comparing Proportions for Nominal Matched-Pairs Response

Yibi Huang

Example: Coffee Brand Market Share

A survey recorded the brand choice for a sample of buyers of instant decaffeinated coffee. At a later coffee purchase by these subjects, the brand choice was again recorded.

Purchase	High Pt	Taster's	Sanka	Nescafe	Brim	Total
First	171	75	204	36	55	541
	(31.6%)	(13.9%)	(37.7%)	(6.7%)	(10.2%)	
Second	135	82	231	33	60	541
	(25.0%)	(15.2%)	(42.7%)	(6.1%)	(11.1%)	

Question: Do the market shares of the 5 coffee brands change between the two purchases?

Can one test using Pearson's X^{2} test, which indicates little evidence of changes between the two purchases (P-value ≈ 0.16).

```
coffeetab = matrix(c(171,75,204,36,55,135,82,231,33,60),
    nrow=2, byrow=TRUE)
coffeetab
    [,1] [, 2] [,3] [,4] [,5]
[1,] 171 75 204 36 55
[2,] 135 82 231 33 60
chisq.test(coffeetab)
    Pearson's Chi-squared test
data: coffeetab
X-squared = 6.57108, df = 4, p-value = 0.16037
```

Can one test using Pearson's X^{2} test, which indicates little evidence of changes between the two purchases (P-value ≈ 0.16).

```
coffeetab = matrix(c(171,75,204,36,55,135,82,231,33,60),
    nrow=2, byrow=TRUE)
coffeetab
    [,1] [, 2] [,3] [,4] [,5]
[1,] 171 75 204 36 55
[2,] 135 82 231 33 60
chisq.test(coffeetab)
Pearson's Chi-squared test
data: coffeetab
X-squared = 6.57108, df = 4, p-value = 0.16037
```

Paired data - each customer in the data made two purchases.
Cannot regard the two purchases as independent observations Pearson's X^{2} test isn't applicable

Categorical Matched-Pairs Analyses w/ $J>2$ Categories

Data: n pairs of observations $\left(y_{1}, y_{2}\right)$

$$
\begin{gathered}
\left(y_{11}, y_{12}\right) \\
\left(y_{21}, y_{22}\right) \\
\left(y_{31}, y_{32}\right) \\
\vdots \\
\left(y_{n 1}, y_{n 2}\right)
\end{gathered}
$$

Both $y_{i 1}$ and $y_{i 2}$ are categorical $\mathrm{w} /(J>2)$ categories
Data are usually summarize as a square $J \times J$ table that the (i, j) cell is

$$
n_{i j}=\text { count of pairs } \mathrm{w} / y_{1}=i \text { and } y_{2}=j .
$$

Example: Coffee Brand Market Share

Data display that reflect the dependence of the two purchases:

First	Second Purchase						
Purchase	High Pt	Taster's	Sanka	Nescafe	Brim	Total	$(\%)$
High Pt	93	17	44	7	10	171	(31.6%)
Taster's	9	46	11	0	9	75	(13.9%)
Sanka	17	11	155	9	12	204	(37.7%)
Nescafe	6	4	9	15	2	36	(6.7%)
Brim	10	4	12	2	27	55	(10.2%)
Total	135	82	231	33	60	541	(100%)
$(\%)$	(25.0%)	(15.2%)	(42.7%)	(6.1%)	(11.1%)		

Large cell counts on the main diagnal
\Rightarrow Most buyers didn't change their choice
\Rightarrow The two purchases of a buyer are dependent

Population probabilities:

First	Second Purchase					
Purchase	High Pt	Taster's	Sanka	Nescafe	Brim	Total
High Pt	π_{11}	π_{12}	π_{13}	π_{14}	π_{15}	π_{1+}
Taster's	π_{21}	π_{22}	π_{23}	π_{24}	π_{25}	π_{2+}
Sanka	π_{31}	π_{32}	π_{33}	π_{34}	π_{35}	π_{3+}
Nescafe	π_{41}	π_{42}	π_{43}	π_{44}	π_{45}	π_{4+}
Brim	π_{51}	π_{52}	π_{53}	π_{54}	π_{55}	π_{5+}
Total	π_{+1}	π_{+2}	π_{+3}	π_{+4}	π_{+5}	1

Question: Whether the coffee brand market shares change between the two purchases,

$$
P\left(Y_{1}=i\right)=\pi_{i+}=\pi_{+i}=P\left(Y_{2}=i\right)
$$

for $i=1, \ldots, J$. under which each row marginal probability equals the corresponding column marginal probability, called marginal homogeneity.

Test of Marginal Homogeneity

We will estimate $\pi_{i+}-\pi_{+i}$ by

$$
d_{i}=\widehat{\pi}_{i+}-\widehat{\pi}_{+i}=\frac{n_{i+}}{n}-\frac{n_{+i}}{n}, \quad \text { for } \quad i=1, \ldots, J .
$$

To test $\left(\pi_{1+}, \pi_{2+}, \ldots, \pi_{J+}\right)=\left(\pi_{+1}, \pi_{+2}, \ldots, \pi_{+J}\right)$, we use all of

$$
\mathbf{d}=\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{J-1}
\end{array}\right)=\left(\begin{array}{c}
\widehat{\pi}_{1+}-\widehat{\pi}_{+1} \\
\widehat{\pi}_{2+}-\widehat{\pi}_{+2} \\
\vdots \\
\widehat{\pi}_{(J-1)+}-\widehat{\pi}_{+(J-1)}
\end{array}\right)
$$

It's redundant to include d_{J} since

$$
\sum_{i=1}^{J} d_{i}=\sum_{i=1}^{J} \widehat{\pi}_{i+}-\sum_{i=1}^{J} \widehat{\pi}_{+i}=1-1=0
$$

Wald Test of Marginal Homogeneity

One can show that $\sqrt{n}(\mathbf{d}-\mathrm{E}(\mathbf{d}))$ has an asymptotic multivariate normal distribution with the covariance matrix \mathbf{V} with the elements below.

$$
\begin{aligned}
& V_{a b}=n \operatorname{Cov}\left(d_{a}, d_{b}\right)=-\left(\pi_{a b}+\pi_{b a}\right)-\left(\pi_{a+}-\pi_{+a}\right)\left(\pi_{b+}-\pi_{+b}\right) \quad \text { for } a \neq b \\
& V_{a a}=n \operatorname{Var}\left(d_{a}\right)=\pi_{a+}+\pi_{+a}-2 \pi_{a a}-\left(\pi_{a+}-\pi_{+a}\right)^{2}
\end{aligned}
$$

Wald statistic for testing the H_{0} of marginal homogeneity is

$$
W=n \mathbf{d}^{T} \widehat{\mathbf{V}}^{-1} \mathbf{d}
$$

which has an approx. chi-squared distribution $\mathrm{w} / \mathrm{df}=J-1$. Here \widehat{V} is the estimate of the covariance matrix V that π_{i+}, π_{+i} and $\pi_{a b}$ are estimated by

$$
\widehat{\pi}_{i+}=\frac{n_{i+}}{n}, \quad \widehat{\pi}_{+i}=\frac{n_{+i}}{n}, \quad \text { and } \quad \widehat{\pi}_{a b}=\frac{n_{a b}}{n} .
$$

Score Test of Marginal Homogeneity

The score test estimates the covariance matrix \mathbf{V} under the H_{0} of marginal homogeneity: $\pi_{i+}=\pi_{+i}$ using the matrix $\widehat{\mathbf{V}}_{0}$ with the elements below

$$
\begin{aligned}
& \widehat{V}_{a b 0}=-\left(\widehat{\pi}_{a b}+\widehat{\pi}_{b a}\right)=-\frac{n_{a b}+n_{b a}}{n} \text { for } a \neq b \\
& \widehat{V}_{a a 0}=\widehat{\pi}_{a+}+\widehat{\pi}_{+a}-2 \widehat{\pi}_{a a}=\frac{n_{a+}+n_{+a}-2 n_{a a}}{n}
\end{aligned}
$$

Score statistic for testing the H_{0} of marginal homogeneity is

$$
n \mathbf{d}^{T} \widehat{\mathbf{V}}_{\mathbf{0}}^{-1} \mathbf{d}
$$

which has an approx. chi-squared distribution w/df $=J-1$. Here \widehat{V}_{0} is the estimate of the covariance matrix V_{0} that π_{i+}, π_{+i} and $\pi_{a b}$ are estimated by

$$
\widehat{\pi}_{i+}=\frac{n_{i+}}{n}, \quad \widehat{\pi}_{+i}=\frac{n_{+i}}{n}, \quad \text { and } \quad \widehat{\pi}_{a b}=\frac{n_{a b}}{n}
$$

Coffee Brand Market Share Data in R

```
coffee = read.table(
    "http://www.stat.ufl.edu/~aa/cat/data/Coffee.dat",
    header=TRUE)
# purchase = 1 for first purchase
# purchase = 0 for second purchase
    person purchase y
1 1 1 1
2 1 0 1
3 2 1 1
4 2 0 1
5 3 1 1
6 0 0 1
(...)
person purchase y
1079 540 1 5
1080 540 0 5
1081 541 1 5
1087 541 ก 5
```


Converting Data to Wide-Format


```
# wide format to 2-way table
tab = xtabs(~y1+y2, data=coffee.w); tab
    y2
\begin{tabular}{rrrrrr}
y 1 & 1 & 2 & 3 & 4 & 5 \\
1 & 93 & 17 & 44 & 7 & 10 \\
2 & 9 & 46 & 11 & 0 & 9 \\
3 & 17 & 11 & 155 & 9 & 12 \\
4 & 6 & 4 & 9 & 15 & 2 \\
5 & 10 & 4 & 12 & 2 & 27
\end{tabular}
```

$\widehat{\pi}_{a b}=n_{a b} / n$ can be obtained as follows.

```
ptab = prop.table(tab); ptab
```

 y2
 $\begin{array}{llllll}y 1 & 1 & 2 & 3 & 4 & 5\end{array}$
10.1719040 .0314230 .0813310 .0129390 .018484
20.0166360 .0850280 .0203330 .0000000 .016636
30.0314230 .0203330 .2865060 .0166360 .022181
40.0110910 .0073940 .0166360 .0277260 .003697
50.0184840 .0073940 .0221810 .0036970 .049908

```
\mp@subsup{\boldsymbol{\pi}}{a+}{}=\mp@subsup{n}{a+}{}/n
py1 = prop.table(margin.table(tab, "y1"))
py1
y1
\begin{tabular}{rrrrr}
1 & 2 & 3 & 4 & 5 \\
0.31608 & 0.13863 & 0.37708 & 0.06654 & 0.10166
\end{tabular}
\mp@subsup{\widehat{\pi}}{+a}{}=\mp@subsup{n}{+a}{}/n
py2 = prop.table(margin.table(tab, "y2"))
py2
y2
\begin{tabular}{rrrrr}
1 & 2 & 3 & 4 & 5 \\
0.2495 & 0.1516 & 0.4270 & 0.0610 & 0.1109
\end{tabular}
```


Sample Covariance Matrix for Wald Statistic in R

```
        \mp@subsup{V}{ab}{}=-(\mp@subsup{\widehat{\pi}}{ab}{}+\mp@subsup{\widehat{\pi}}{ba}{})-(\mp@subsup{\widehat{\pi}}{a+}{}-\mp@subsup{\widehat{\pi}}{+a}{})(\mp@subsup{\widehat{\pi}}{b+}{}-\mp@subsup{\widehat{\pi}}{+b}{})\quad\mathrm{ for }a\not=b
                \mp@subsup{V}{aa}{}=\mp@subsup{\widehat{\pi}}{a+}{}+\mp@subsup{\widehat{\pi}}{+a}{}-2\mp@subsup{\widehat{\pi}}{aa}{}-(\mp@subsup{\widehat{\pi}}{a+}{}-\mp@subsup{\widehat{\pi}}{+a}{}\mp@subsup{)}{}{2}
```



```
for(a in 1:(J-1)){
    for(b in 1:(a-1)){
        V[a,b] = - (ptab[a,b]+ptab[b,a]) - (py1[a]-py2[a])*(py1[b]-py2[b])
        V[b,a] = V[a,b]
    }
    V[a,a] = py1[a] + py2[a] - 2*ptab[a,a] - (py1[a]-py2[a])^2
}
V # Sample covariance matrix calculated
        [,1] [,2] [,3] [,4]
[1,] 0.2174 -0.047198 -0.10943 -0.024399
[2,] -0.0472 0.119980 -0.04131 -0.007322
[3,] -0.1094 -0.041311 0.22856 -0.032995
[4,] -0.0244-0.007322-0.03299 0.072058

\section*{Wald Statistic for Marginal Homogeneity}

Wald statistic: \(W=n \mathbf{d}^{T} \widehat{\mathbf{V}}^{-1} \mathbf{d}\). Recall \(\mathbf{d}=\left(\begin{array}{c}\widehat{\pi}_{1+}-\widehat{\pi}_{+1} \\ \widehat{\pi}_{2+}-\widehat{\pi}_{+2} \\ \vdots \\ \widehat{\pi}_{(J-1)+}-\widehat{\pi}_{+(J-1)}\end{array}\right)\)
```

n = sum(tab) \# n = number of customers (pairs)

```
\(\mathrm{d}=\operatorname{py1}[1:(\mathrm{J}-1)]-\operatorname{py2}[1:(J-1)]\)
Wald \(=n * t(d) \% * \%\) solve(V, d);
Wald \# output is a 1x1 matrix
    [,1]
\([1]\),
Wald = as.numeric(Wald); Wald \# Convert the matrix to a number
[1] 12.58
pchisq(Wald, df=J-1, lower.tail=F) \# Wald P-value
[1] 0.01354

Wald statistic is 12.5771 with \(\mathrm{df}=4, P\)-value \(=0.0135\), giving some evidence of changes in market shares between the two purchases.

Sample Covariance Matrix for Score Statistic:
\[
\widehat{V}_{a b 0}=-\left(\widehat{\pi}_{a b}+\widehat{\pi}_{b a}\right), \quad \widehat{V}_{a a 0}=\widehat{\pi}_{a+}+\widehat{\pi}_{+a}-2 \widehat{\pi}_{a a}
\]
```

VQ = array(dim=c(J-1,J-1))
for(i in 1:(J-1)){
for(j in 1:(i-1)){
VQ[i,j] = - (ptab[i,j]+ptab[j,i])
VQ[j,i] = VQ[i,j]
}
VQ[i,i] = py1[i] + py2[i] - 2*ptab[i,i]
}

```

Score statistic: \(W_{0}=n \mathbf{d}^{T} \widehat{\mathbf{V}}_{\mathbf{0}}^{\mathbf{- 1}} \mathbf{d}\)
Score \(=\) as.numeric(n*t(d) \%*\% solve(VQ, d)); Score
[1] 12.29135
pchisq(Score, df=J-1, lower.tail=F)
[1] 0.01531125
Score statistic is 12.2913 with \(\mathrm{df}=4, P\)-value \(=0.0153\), giving some evidence of changes in market shares between the two purchases.

\section*{mantelhaen. test() Does Score Test of Marginal Homogeneity}
mantelhaen.test(xtabs(~purchase \(+y+\) person, data=coffee))

Cochran-Mantel-Haenszel test
data: xtabs(~purchase + y + person, data \(=\) coffee)
Cochran-Mantel-Haenszel M^2 = 12.2913, df = 4, p-value \(=0.015311\)
with(coffee, mantelhaen.test(purchase, y, person))

Cochran-Mantel-Haenszel test
data: purchase and y and person
Cochran-Mantel-Haenszel \(M^{\wedge} 2=12.2913, \mathrm{df}=4\), p -value \(=0.015311\)

Observe the CMH statistic \(M^{\wedge} 2=12.2913\) is exactly the score statistic we computed.

\section*{Testing the Change in One Category (1)}

As Wald \& Score tests indicate changes in market share between purchases, least one of 5 brands must have \(\pi_{i+} \neq \pi_{+i}\).
\begin{tabular}{c|ccccc|r|} 
First & \multicolumn{6}{|c}{ Second Purchase } \\
\cline { 2 - 6 } Purchase & High Pt & Taster's & Sanka & Nescafe & Brim & Total \((\%)\) \\
\hline High Pt & 93 & 17 & 44 & 7 & 10 & \(171(31.6 \%)\) \\
Taster's & 9 & 46 & 11 & 0 & 9 & \(75(13.9 \%)\) \\
Sanka & 17 & 11 & 155 & 9 & 12 & \(204(37.7 \%)\) \\
Nescafe & 6 & 4 & 9 & 15 & 2 & \(36(6.7 \%)\) \\
Brim & 10 & 4 & 12 & 2 & 27 & \(55(10.2 \%)\) \\
\hline Total & 135 & 82 & 231 & 33 & 60 & \(541(100 \%)\) \\
\((\%)\) & \((25.0 \%)\) & \((15.2 \%)\) & \((42.7 \%)\) & \((6.1 \%)\) & \((11.1 \%)\) &
\end{tabular}

To test the change for a given brand, e.g., High Pt, we can combine the other categories and use the methods of Section 8.1.
\begin{tabular}{c|cc} 
First & \multicolumn{2}{|c}{ 2nd Purchase } \\
\cline { 2 - 3 } Purchase & High Pt Other \\
\hline High Pt & 93 & 78 \\
Other & 42 & 328
\end{tabular}


2*pnorm(3.386, lower.tail=FALSE)
[1] 0.00070919384
\(95 \% \mathrm{Cl}\) for \(\pi_{1+}-\pi_{+1}\)
\[
\begin{aligned}
\widehat{\pi}_{1+}-\widehat{\pi}_{+1} \pm 1.96 \mathrm{SE} & =\frac{n_{12}-n_{21}}{n} \pm 1.96 \frac{1}{n} \sqrt{n_{12}+n_{21}-\frac{\left(n_{12}-n_{21}\right)^{2}}{n}} \\
& =\frac{78-42}{541} \pm 1.96 \frac{1}{541} \sqrt{78+42-\frac{(78-42)^{2}}{541}} \\
& =0.0665 \pm 0.0393=(0.0272,0.1058)
\end{aligned}
\]

The brand share of High Pt. dropped 2.7\% to \(10.6 \%\) between the two purchases, with 95\% confidence.```

