Outline

- Review of Poisson Distributions
- ▶ GLMs for Poisson Response Data
- Models for Rates
- Overdispersion and Negative Binomial Regression

Review of Poisson Distributions

A random variable Y has a Poisson distribution with parameter $\lambda > 0$ if

$$P(Y=k) = \frac{\lambda^k}{k!}e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

denoted as

$$Y \sim \mathsf{Poisson}(\lambda).$$

One can show that

$$\mathbb{E}[Y] = \lambda$$
, $\operatorname{Var}(Y) = \lambda \Rightarrow \operatorname{SD}(Y) = \sqrt{\lambda}$.

Poisson - 2

Poisson - 1

Poisson Approximation to Binomial

If $Y \sim \text{binomial}(n, p)$ with huge *n* and tiny *p* such that *np* moderate, then

Y approx. ~ Poisson(np).

The following shows the values of P(Y = k), k = 0, 1, 2, ..., 8 for

$$Y \sim \text{Binomial}(n = 50, p = 0.03), \text{ and}$$

 $Y \sim \text{Poisson}(\lambda = 50 \times 0.03 = 1.5).$

> dpois(0:5, lambda = 50*0.03) # Poisson(lambda = 50*0.03)
[1] 0.22313016 0.33469524 0.25102143 0.12551072 0.04706652 0.01411996

Example (Fatalities From Horse Kicks)

The number of fatalities in a year that resulted from being kicked by a horse or mule was recorded for each of 10 corps of Prussian cavalry over a period of 20 years, giving 200 corps-years worth of data¹.

$\# ext{ of Deaths (in a corp in a year)}$	0	1	2	3	4	Total
Frequency	109	65	22	3	1	200

The count of deaths due to horse kicks in a corp in a given year may have a Poisson distribution because

- $p = P(a \text{ soldier died from horsekicks in a given year}) \approx 0;$
- n = # of soldiers in a corp was large (100's or 1000's);
- whether a soldier was kicked was (at least nearly) independent of whether others were kicked

¹von Bortkiewicz (1898) *Das Gesetz der Kleinen Zahlen*. Leipzig: Teubner. Poisson - 4

Example (Fatalities From Horse Kicks — Cont'd)

- Suppose all 10 corps had the same n and p throughout the 20 year period. Then we may assume that the 200 counts all have the Poisson distn. with the same rate λ = np.
- How to estimate λ ?
- MLE for the rate λ of a Poisson distribution is the sample mean Y.
- So for the horsekick data:

# of Deaths (in a corp in a year)	0	1	2	3	4	Total
Frequency	109	65	22	3	1	200

the MLE for λ is

$$\widehat{\lambda} = rac{0 imes 109 + 1 imes 65 + 2 imes 22 + 3 imes 3 + 4 imes 1}{200} = 0.61$$

When Poisson Distributions Come Up

Variables that are generally Poisson:

- # of misprints on a page of a book
- # of calls coming into an exchange during a unit of time (if the exchange services a large number of customers who act more or less independently.)
- $\blacktriangleright~\#$ of people in a community who survive to age 100
- $\blacktriangleright~\#$ of customers entering a post office on a given day
- # of vehicles that pass a marker on a roadway during a unit of time (for light traffic only. In heavy traffic, however, one vehicle's movement may influence another)

Example (Fatalities From Horse Kicks — Cont'd)

The fitted Poisson probability to have k deaths from horsekicks is

$$P(Y = k) = e^{-\widehat{\lambda}} \widehat{\lambda}^k / k! = e^{-0.61} (0.61)^k / k!, \quad , k = 0, 1, 2, \dots$$

	Observed	Fitted Poisson Freq.
k	Frequency	$= 200 \times P(Y = k)$
0	109	108.7
1	65	66.3
2	22	20.2
3	3	4.1
4	1	0.6
Total	200	199.9

> round(200*dpois(0:4, 0.61),1)
[1] 108.7 66.3 20.2 4.1 0.6

Poisson - 6

GLMs for Poisson Response Data

Assume the response $Y \sim \text{Poisson}(\mu(x))$, where x is an explanatory variable.

Commonly used link functions for Poisson distributions are

- identity link: $\mu(x) = \alpha + \beta x$
 - sometimes problematic because μ(x) must be > 0, but
 α + βx may not
- ▶ log link: $\log(\mu(x)) = \alpha + \beta x \iff \mu(x) = e^{\alpha + \beta x}$.
 - $\mu(x) > 0$ always

• Whenever x increases by 1 unit, $\mu(x)$ is multiplied by e^{β} Loglinear models use Poisson with log link

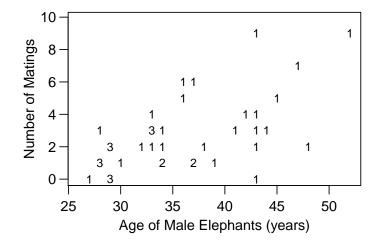
Inference of Parameters

- \blacktriangleright Wald, LR tests and CIs for β 's work as in logistic models
- ► Goodness of fit:

Deviance =
$$G^2 = 2 \sum_i y_i \log\left(\frac{y_i}{\widehat{\mu}_i}\right) = -2(L_M - L_S)$$

Pearson's chi-squared = $X^2 = 2 \sum_i \frac{(y_i - \widehat{\mu}_i)^2}{\widehat{\mu}_i}$

 G^2 and X^2 are approx. $\sim \chi^2_{n-p}$, when all $\hat{\mu}_i$'s are large (≥ 10), where n = num. of observations, and p = num. of parameters in the model.



On the plot, '3' means there are 3 points at the same location.

Example (Mating and Age of Male Elephants)

Joyce Poole studied a population of African elephants in Amboseli National Park, Kenya, for 8 years².

- Response: number of successful matings in the 8 years of 41 male elephants.
- Predictor: estimated ages of the male elephants at beginning of the study.

Age	Matings	Age	Matings	Age	Matings	Age	Matings
27	0	30	1	36	5	43	3
28	1	32	2	36	6	43	4
28	1	33	4	37	1	43	9
28	1	33	3	37	1	44	3
28	3	33	3	37	6	45	5
29	0	33	3	38	2	47	7
29	0	33	2	39	1	48	2
29	0	34	1	41	3	52	9
29	2	34	1	42	4		
29	2	34	2	43	0		
29	2	34	3	43	2		

²Data from J. H. Poole, "Mate Guarding, Reproductive Success and Female Choice in African Elephants", *Animal Behavior* **37** (1989): 842-499. Poisson - 10

Example (Elephant)

Let Y = number of successful matings ~ Poisson(μ);

Model 1 : $\mu = \alpha + \beta Age$ (identity link)

> Age = c(27,28,28,28,28,29,29,29,29,29,30,32,33,33,33,33,34,34, 34,34,36,36,37,37,37,38,39,41,42,43,43,43,43,43,43,44,45,47,48,52) > Matings = c(0,1,1,1,3,0,0,0,2,2,2,1,2,4,3,3,3,2,1,1,2,3, 5,6,1,1,6,2,1,3,4,0,2,3,4,9,3,5,7,2,9) > eleph.id = glm(Matings ~ Age, family=poisson(link="identity")) > summary(eleph.id) Coefficients: Estimate Std. Error z value Pr(|z|)(Intercept) -4.55205 1.33916 -3.399 0.000676 *** 5.016 5.29e-07 *** Age 0.20179 0.04023 Null deviance: 75.372 on 40 degrees of freedom Residual deviance: 50.058 on 39 degrees of freedom AIC: 155.5 Fitted model 1: $\hat{\mu} = \hat{\alpha} + \hat{\beta}Age = -4.55 + 0.20$ Age $\triangleright \approx \widehat{\beta} = 0.20$ more matings if the elephant is 1 year older Poisson - 12

Poisson - 9

Example (Mating and Age of Male Elephants)

Example (Elephant)

```
Model 2 : \log(\mu) = \alpha + \beta Age
                                                 (log link)
> eleph.log = glm(Matings ~ Age, family=poisson(link="log"))
> summary(eleph.log)
Coefficients:
            Estimate Std. Error z value Pr(|z|)
(Intercept) -1.58201
                         0.54462
                                  -2.905
                                          0.00368 **
             0.06869
                         0.01375
                                   4.997 5.81e-07 ***
Age
    Null deviance: 75.372 on 40
                                   degrees of freedom
Residual deviance: 51.012 on 39 degrees of freedom
AIC: 156.46
```

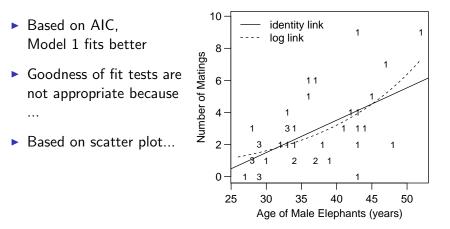
Fitted model 2: $\log(\hat{\mu}) = -1.582 + 0.0687$ Age



- expected number of matings increase by 7.1% for every extra year of age
- ▶ for a 40 year-old male, the expected number of matings is $\hat{\mu} = \exp(-1.582 + 0.0687(40)) \approx 3.2.$ Poisson - 13

Which Model Better Fits the Data?

	AIC	Deviance	df
Model 1 (identity link)	155.50	50.058	39
Model 2 (log link)	156.46	51.012	39



Residuals

Deviance residual:

$$d_i = \operatorname{sign}(y_i - \widehat{\mu}_i) \sqrt{2 \left[y_i \log(y_i / \widehat{\mu}_i) - y_i + \widehat{\mu}_i
ight]}$$

- Pearson's residual: $e_i = \frac{y_i \hat{\mu}_i}{\sqrt{\hat{\mu}_i}}$
- Standardized Pearson's residual = $\frac{e_i}{\sqrt{1-h_i}}$
- Standardized Deviance residual = $\frac{a_i}{\sqrt{1-h_i}}$ where h_i = leverage of *i*th observation
- \blacktriangleright potential outlier if |standardized residual| > 2 or 3
- R function residuals() gives deviance residuals by default, and Pearson residuals with option type="pearson".
- R function rstandard() gives standardized deviance residuals by default, and standardized Pearson residuals with option type="pearson".

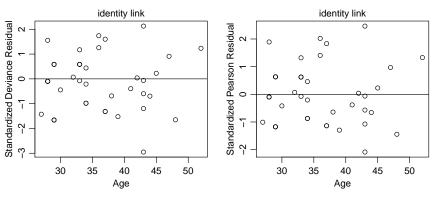
Residual Plots

plot(Age, rstandard(eleph.id),

ylab="Standardized Deviance Residual", main="identity link")
abline(h=0)

plot(Age, rstandard(eleph.id, type="pearson"),

ylab="Standardized Pearson Residual", main = "identity link")
abline(h=0)

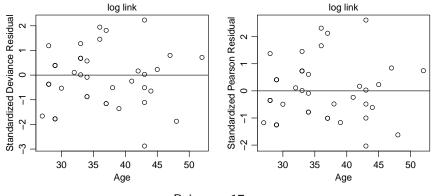


Poisson - 16

Residual Plots

```
plot(Age, rstandard(eleph.log),
    ylab="Standardized Deviance Residual", main="log link")
abline(h=0)
```

```
plot(Age, rstandard(eleph.log, type="pearson"),
    ylab="Standardized Pearson Residual", main = "log link")
abline(h=0)
```



Poisson - 17

Example (British Train Accidents over Time)

Have collisions between trains and road vehicles become more prevalent over time?

- Total number of train-km (in millions) varies from year to year.
- Model annual rate of train-road collisions per million train-km with base t = annual number of train-km, and x = num. of years since 1975

```
> trains = read.table("traincollisions.dat", head=T)
> trains
   Year KM Train TrRd
   2003 518
                 0
                      3
2
                      3
   2002 516
                 1
3
   2001 508
                      4
                 0
   2000
        503
                 1
                      3
5
   1999 505
                 1
                      2
                      8
27 1977 425
                 1
                     12
   1976 426
                 2
28
                 5
29 1975 436
                      2
```

Models for Rates

Sometimes y_i have different bases (e.g., number murders for cities with different pop. sizes)

Let y = count with base t. Assume $y \sim \text{Poisson}(\mu)$, where

 $\mu = \lambda t$

more relevant to model rate λ at which events occur.

Loglinear model:

$$\log \lambda = \log(\mu/t) = \alpha + \beta x$$

i.e.,

$$\log(\mu) - \log(t) = \alpha + \beta x$$

log(t) is an offset. See pp. 82-84 of text for discussion.

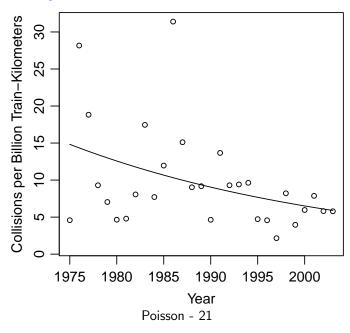
Poisson - 18

```
> trains1 = glm(TrRd ~ I(Year-1975), offset = log(KM),
                  family=poisson, data=trains)
> summary(trains1)
                 Estimate Std. Error z value Pr(|z|)
(Intercept)
                 -4.21142
                                          -26.50
                               0.15892
                                                   < 2e-16 ***
I(Year - 1975) -0.03292
                               0.01076
                                           -3.06
                                                   0.00222 **
    Null deviance: 47.376 on 28 degrees of freedom
Residual deviance: 37.853 on 27 degrees of freedom
AIC: 133.52
Fitted Model: \log(\hat{\lambda}) = \log(\hat{\mu}/t) = -4.21 - 0.0329x
 \widehat{\lambda} = \frac{\widehat{\mu}}{t} = e^{-4.21 - 0.0329 \times} = e^{-4.21} (e^{-0.0329})^{\times} = (0.0148)(0.968)^{\times}
  ▶ Rate estimated to decrease by 3.2% per yr from 1975 to 2003.
  • Est. rate for 1975 (x = 0) is 0.0148 per million km (15 per
```

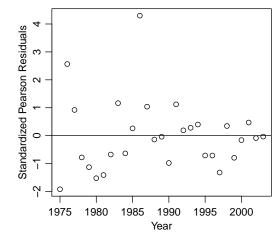
billion).
Est. rate for 2003 (x = 28) is 0.0059 per million km (6 per billion).

plot(trains\$Year, 1000*trains\$TrRd/trains\$KM,xlab="Year",

ylab="Collisions per Billion Train-Kilometers",ylim=c(1,31.4))
curve(1000*exp(trains1\$coef[1]+trains1\$coef[2]*(x-1975)), add=T)



Train Data — Standardized Pearson Residuals

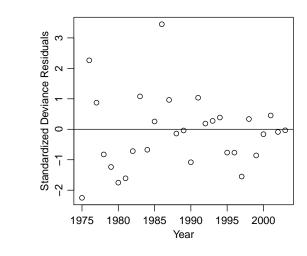


There were 13 train-road collisions in 1986, a lot higher than the fitted mean 4.3 for that year. Poisson - 23

Train Data — Standardized Deviance Residuals

plot(trains\$Year, rstandard(trains1),

xlab="Year", ylab="Standardized Deviance Residuals")
abline(h=0)



Poisson - 22

Models for Rate Data With Identity Link

For $y \sim \text{Poisson}(\mu)$ with base *t*, where

 $\mu = \lambda t$

the loglinear model

$$\log \lambda = \log(\mu/t) = \alpha + \beta x$$

assumes the effect of the explanatory variable on the response to be multiplicative.

Alternatively, if we want the effect to be additive,

$$\lambda = \mu/t = \alpha + \beta x$$
$$\Leftrightarrow \quad \mu = \alpha t + \beta t x$$

we may fit a GLM model with identity link, using t and tx as explanatory variables and with no intercept or offset terms.

Train Data — Identity Link

base t = annual num. of train-km, x = num. of years since 1975

```
> trains2 = glm(TrRd ~ -1 + KM + I(KM*(Year-1975)),
                family=poisson(link="identity"), data=trains)
> summary(trains2)
                        Estimate Std. Error z value Pr(>|z|)
KΜ
                       1.426e-02 1.888e-03
                                              7.557 4.14e-14 ***
I(KM * (Year - 1975)) -3.239e-04
                                 9.924e-05
                                             -3.264
                                                      0.0011 **
   Null deviance:
                      Inf on 29
                                 degrees of freedom
Residual deviance: 37.287
                          on 27 degrees of freedom
AIC: 132.95
```

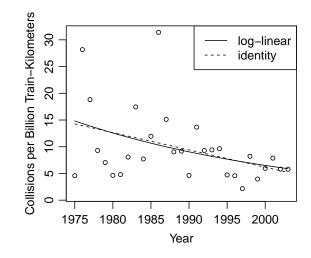
Fitted Model: $\widehat{\lambda} = \widehat{\mu}/t = 0.0143 - 0.000324x$

- Estimated rate decreases by 0.00032 per million km (0.32 per billion km) per yr from 1975 to 2003.
- Est. rate for 1975 (x = 0) is 0.0143 per million km (14.3 per billion km).
- Est. rate for 2003 (x = 28) is 0.0052 per million km (5.2 per billion km).

Poisson - 25

plot(trains\$Year, 1000*trains\$TrRd/trains\$KM,xlab="Year",

ylab="Collisions per Billion Train-Kilometers",ylim=c(1,31.4))
curve(1000*exp(trains1\$coef[1]+trains1\$coef[2]*(x-1975)), add=T)
curve(1000*trains2\$coef[1]+1000*trains2\$coef[2]*(x-1975), add=T, lty=2)
legend("topright", c("log-linear","identity"), lty=1:2)



The loglinear fit and the linear fit (identity link) are nearly identital. Poisson - 26

Overdispersion: Greater Variability than Expected

One of the defining characteristics of Poisson regression is its lack of a parameter for variability:

$$\mathbb{E}(Y) = \operatorname{Var}(Y),$$

and no parameter is available to adjust that relationship

- In practice, when working with Poisson regression, it is often the case that the variability of y_i about λ
 _i is larger than what λ
 _i predicts
- This implies that there is more variability around the model's fitted values than is consistent with the Poisson distribution
- This phenomenon is *overdispersion*.

3.3.4 Overdispersion and Negative Binomial Regression

Common Causes of Overdispersion

- Subject heterogeneity
 - subjects have different μ
 e.g., rates of infestation may differ from location to location on the same tree and may differ from tree to tree
 - ▶ there are important predictors not included in the model
- Observations are not independent clustering

Poisson - 29

Example (Known Victims of Homicide)

A recent General Social Survey asked subjects,

"Within the past 12 months, how many people have you known personally that were victims of homicide?"

Number of Victims	0	1	2	3	4	5	6	Total
Black Subjects	119	16	12	7	3	2	0	159
White Subjects	1070	60	14	4	0	0	1	1149

If fit a Poisson distribution to the data from blacks, MLE for λ is the sample mean

$$\widehat{\lambda} = \frac{0 \cdot 119 + 1 \cdot 16 + 2 \cdot 12 + \dots + 6 \cdot 0}{159} = \frac{83}{159} \approx 0.522$$

Fitted $P(Y = k)$ is $e^{-\frac{83}{159}} \left(\frac{83}{150}\right)^k / k!, \ k = 0, 1, 2, \dots$

> round(dpois(0:6, lambda = 83/159),3)

- [1] 0.593 0.310 0.081 0.014 0.002 0.000 0.000
- > round(c(119,16,12,7,3,2,0)/159, 3) # sample relative freq.
 [1] 0.748 0.101 0.075 0.044 0.019 0.013 0.000

Poisson - 31

Negative Binomial Distribution

If Y has a negative binomial distribution, with mean μ and dispersion parameter $D = 1/\theta$, then

$$P(Y=k) = \frac{\Gamma(k+\theta)}{k!\Gamma(\theta)} \left(\frac{\theta}{\mu+\theta}\right)^{\theta} \left(\frac{\mu}{\mu+\theta}\right)^{k}, \quad k=0,1,2,\ldots$$

One can show that

F

$$\mathbb{E}[Y] = \mu$$
, $\operatorname{Var}(Y) = \mu + \frac{\mu^2}{\theta} = \mu + D\mu^2$.

- As $D = 1/\theta \downarrow 0$, negative binomial \rightarrow Poisson.
- Negative binomial is a gamma mixture of Poissons, where the Poisson mean varies according to a gamma distribution.
- MLE for μ is the sample mean. MLE for θ has no close form formula.

Poisson - 30

Example (Known Victims of Homicide)

Num. of Victims										
Black	119	16	12	7	3	2	0	159	0.522	1.150
White	1070	60	14	4	0	0	1	1149	0.092	0.155

Likewise, if we fit a Poisson distribution to the data from whites, MLE for λ is

$$\widehat{\lambda} = \frac{0 \cdot 1070 + 1 \cdot 60 + 2 \cdot 14 + \dots + 6 \cdot 1}{1149} = \frac{106}{1149} \approx 0.092$$

itted $P(Y = k)$ is $e^{-\frac{106}{1149}} \left(\frac{106}{1149}\right)^k / k!$, $k = 0, 1, 2, \dots$

> round(dpois(0:6, lambda = 106/1149), 3) # fitted Poisson prob.
[1] 0.912 0.084 0.004 0.000 0.000 0.000 0.000
> round(c(1070,60,14,4,0,0,1)/1149, 3) # sample relative freq.
[1] 0.931 0.052 0.012 0.003 0.000 0.000 0.001

- Too many 0's and too many large counts for both races than expected if the samples were drawn from Poisson distributions.
- It is not surprising that Poisson distributions do not fit the data because of the large discrepancies between sample mean and sample variance. Poisson - 32

Example (Known Victims of Homicide)

Data:

 $Y_{b,1}, Y_{b,2}, \dots, Y_{b,159}$ answers from black subjects $Y_{w,1}, Y_{w,2}, \dots, Y_{w,1149}$ answers from white subjects

Poisson Model:

$$Y_{b,j} \sim \mathsf{Poisson}(\mu_b), \quad Y_{w,j} \sim \mathsf{Poisson}(\mu_w)$$

Neg. Bin. Model:

$$Y_{b,i} \sim \mathsf{NB}(\mu_b, \theta), \quad Y_{w,i} \sim \mathsf{NB}(\mu_w, \theta)$$

Goal: Test whether $\mu_b = \mu_w$. Equivalent to test $\beta = 0$ in the log-linear model.

$$\mathsf{log}(\mu) = lpha + eta x, \quad x = egin{cases} 1 & \mathsf{if \ black} \ 0 & \mathsf{if \ white}, \end{cases}$$

Note $\mu_b = e^{\alpha + \beta}$, $\mu_w = e^{\alpha}$. So $e^{\beta} = \mu_b / \mu_w$. Poisson - 33

Example (Known Victims of Homicide) — Poisson Fits

> summary(hom.poi)
Call:
glm(formula = nvics ~ race, family = poisson, data = homicide,
 weights = freq)

Deviance Residuals:

Min	1Q	Median	ЗQ	Max	
-14.051	0.000	5.257	6.216	13.306	

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) -2.38321 0.09713 -24.54 <2e-16 *** raceBlack 1.73314 0.14657 11.82 <2e-16 ***

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 962.80 on 10 degrees of freedom Residual deviance: 844.71 on 9 degrees of freedom AIC: 1122

```
Number of Fisher Scoring iterations: 6
Poisson - 35
```

Example (Known Victims of Homicide)

Negative binomial regression models can be fit using glm.nb function in the MASS package.

```
> nvics = c(0:6,0:6)
> race = c(rep("Black", 7),rep("White",7))
> freq = c(119,16,12,7,3,2,0,1070,60,14,4,0,0,1)
> data.frame(nvics,race,freq)
   nvics race freq
1
      0 Black 119
2
      1 Black
                16
3
       2 Black 12
... (omit) ...
12
      4 White
                  0
13
      5 White
                  0
      6 White
14
                 1
> race = factor(race, levels=c("White","Black"))
> hom.poi = glm(nvics ~ race, weights=freq, family=poisson)
> library(MASS)
> hom.nb = glm.nb(nvics ~ race, weights=freq)
```

Poisson - 34

Example (Known Victims of Homicide) - Neg. Binomial

-12.754 0.000 2.086 3.283 9.114

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) -0.6501 0.2077 -3.130 0.00175 ** raceWhite -1.7331 0.2385 -7.268 3.66e-13 ***

(Dispersion parameter for Negative Binomial(0.2023) family taken to be 1)

```
Null deviance: 471.57 on 10 degrees of freedom
Residual deviance: 412.60 on 9 degrees of freedom
AIC: 1001.8
```

```
Number of Fisher Scoring iterations: 1
Theta: 0.2023
Std. Err.: 0.0409
2 x log-likelihood: -995.7980
```

> hom.nb\$fit 2 6 7 1 3 4 0.52201258 0.52201258 0.52201258 0.52201258 0.52201258 0.52201258 0.52201258 10 11 12 13 8 9 14 0.09225413 0.09225413 0.09225413 0.09225413 0.09225413 0.09225413 0.09225413 > hom.nb\$theta [1] 0.2023119

- ► Fitted values given by the Neg. Bin model are simply the sample means 0.522 (= ⁸³/₁₅₉) for blacks and 0.0922 (= ¹⁰⁶/₁₁₄₉) for whites.
- Estimated common dispersion parameter is $\hat{\theta} = 0.2023119$ with SE = 0.0409.
- Fitted P(Y = k) is

$$\frac{\Gamma(k+\widehat{\theta})}{k!\Gamma(\widehat{\theta})} \left(\frac{\widehat{\theta}}{\widehat{\mu}+\widehat{\theta}}\right)^{\theta} \left(\frac{\widehat{\mu}}{\widehat{\mu}+\widehat{\theta}}\right)^{k}, \text{ where } \widehat{\mu} = \begin{cases} \frac{83}{159} & \text{for blacks} \\ \frac{106}{1149} & \text{for whites.} \end{cases}$$

• Textbook uses $D = 1/\theta$ as the dispersion parameter, estimated as $\widehat{D} = 1/\widehat{\theta} = 1/0.2023 \approx 4.94$.

Poisson - 37

Example (Known Victims of Homicide)

Model: $\log(\mu) = \alpha + \beta x$, $x = \begin{cases} 1 \text{ if black} \\ 0 \text{ if white,} \end{cases}$

Model	$\widehat{\alpha}$	\widehat{eta}	$SE(\widehat{\beta})$	Wald 95% CI for $e^eta=\mu_B/\mu_A$
Poisson	-2.38	1.73	0.147	$\exp(1.73 \pm 1.96 \cdot 0.147) = (4.24, 7.54)$
Neg. Binom.	-2.38	1.73	0.238	$\exp(1.73 \pm 1.96 \cdot 0.238) = (3.54, 9.03)$

Poisson and negative binomial models give

- identical estimates for coefficients (this data set only, not always the case)
- but different SEs for $\hat{\beta}$ (Neg. Binom. gives bigger SE)

To account for overdispersion, neg. binom. model gives \underline{wider} Wald CIs (and also wider LR CIs).

<u>Remark</u>. Observe $e^{\hat{\beta}} = e^{1.73} = 5.7$ is the ratio of the two sample means $\overline{y}_{black}/\overline{y}_{white} = 0.522/0.092$.

Example (Known Victims of Homicide)

Black Subjects

Num. of Victims	0	1	2	3	4	5	6	Total
observed freq.	119	16	12	7	3	2	0	159
relative freq.	0.748	0.101	0.075	0.044	0.019	0.013	0	1
poisson fit	0.593	0.310	0.081	0.014	0.002	0.000	0.000	1
neg. bin.fit	0.773	0.113	0.049	0.026	0.015	0.009	0.006	0.991

White Subjects:

num. of victims	0	1	2	3	4	5	6	Total
observed freq.	1070	60	14	4	0	0	1	1149
	0.931							
poisson fit	0.912	0.084	0.004	0.000	0.000	0.000	0.000	1
	0.927							

neg. bin fit

> round(dnbinom(0:6, size = hom.nb\$theta, mu = 83/159),3) # black
[1] 0.773 0.113 0.049 0.026 0.015 0.009 0.006
> round(dnbinom(0:6,size = hom.nb\$theta, mu=106/1149),3) # white
[1] 0.927 0.059 0.011 0.003 0.001 0.000 0.000

Poisson - 38

Wald CIs

> confint.de	efault(hom.poi)
	2.5 % 97.5 %
(Intercept)	-2.573577 -2.192840
raceBlack	1.445877 2.020412
> exp(confin	nt.default(hom.poi))
	2.5 % 97.5 %
(Intercept)	0.0762623 0.1115994
raceBlack	4.2455738 7.5414329
> confint.de	efault(hom.nb)
	2.5 % 97.5 %
(Intercept)	-2.612916 -2.153500
raceBlack	1.265738 2.200551
> exp(confin	nt.default(hom.nb))
	2.5 % 97.5 %
(Intercept)	0.07332043 0.1160771
raceBlack	3.54571025 9.0299848

Likelihood Ratio Cls

> confint(hom.poi) Waiting for profiling to be done... 2.5 % 97.5 % (Intercept) -2.579819 -2.198699 raceBlack 1.443698 2.019231 > exp(confint(hom.poi)) Waiting for profiling to be done... 2.5 % 97.5 % (Intercept) 0.0757877 0.1109474 raceBlack 4.2363330 7.5325339 > confint(hom.nb) Waiting for profiling to be done... 2.5 % 97.5 % (Intercept) -2.616478 -2.156532 raceBlack 1.274761 2.211746 > exp(confint(hom.nb)) Waiting for profiling to be done... 2.5 % 97.5 % (Intercept) 0.07305976 0.1157258 raceBlack 3.57784560 9.1316443 Poisson - 41

How to Check for Overdispersion?

- Think about whether overdispersion is likely e.g., important explanatory variables are not available, or dependence in observations.
- Compare the sample variances to the sample means computed for groups of responses with identical explanatory variable values.
- Large deviance relative to its deviance
- Examine residuals to see if a large deviance statistic may be due to outliers
- Large numbers of outliers are usually signs of overdispersion
- Check standardized residuals and plot them against them fitted values \$\hat{\mu}_i\$.

- SEs are underestimated
- Cls will be too narrow
- Significance of variables will be over stated (reported P values are lower than the actual ones)

Poisson - 42

Train Data Revisit

Recall Pearson's residual:

$$\mathbf{e}_i = \frac{\mathbf{y}_i - \widehat{\mu}_i}{\sqrt{\widehat{\mu}_i}}$$

If no overdispersion, then

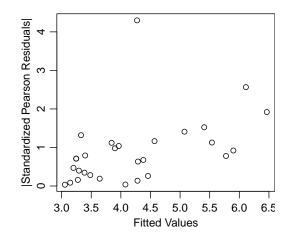
$$\operatorname{Var}(Y) \approx (y_i - \widehat{\mu}_i)^2 \approx \mathbb{E}(Y) \approx \widehat{\mu}_i$$

So the size of Pearson's residuals should be around 1. With overdispersion,

$$\operatorname{Var}(Y) = \mu + D\mu^2$$

then the size of Pearson's residuals may increase with μ . We may check the plot of the absolute value of (standardized) Pearson's residuals against fitted values $\hat{\mu}_i$.

Train Data — Checking Overdispersion



The size of standardized Pearson's residuals tend to increase with fitted values. This is a sign of overdisperson.

Poisson - 45

Train Data — Neg. Bin. Model

> trains.nb = glm.nb(TrRd ~ I(Year-1975)+offset(log(KM)), data=trains) > summary(trains.nb) Coefficients: Estimate Std. Error z value Pr(|z|)0.19584 -21.446 (Intercept) -4.19999< 2e-16 *** I(Year - 1975) -0.03367 -2.615 0.00893 ** 0.01288 ____ (Dispersion parameter for Negative Binomial(10.1183) family taken to be 1 Null deviance: 32.045 on 28 degrees of freedom Residual deviance: 25.264 on 27 degrees of freedom AIC: 132.69 Theta: 10.12 Std. Err.: 8.00 2 x log-likelihood: -126.69

For year effect, the estimated coefficients are similar (0.0337 for neg. bin. model compared to 0.032 for Poisson model), but less significant (P-value = 0.009 in neg. bin. model compared to 0.002 in Poisson model) Poisson - 46