Section 3.3 Generalized Linear Models For Count Data

Outline

- Review of Poisson Distributions
- GLMs for Poisson Response Data
- Models for Rates
- Overdispersion and Negative Binomial Regression

Poisson-1

Poisson Approximation to Binomial

If $Y \sim \operatorname{binomial}(n, p)$ with huge n and tiny p such that $n p$ moderate, then

$$
Y \text { approx. } \sim \operatorname{Poisson}(n p) .
$$

The following shows the values of $\mathrm{P}(Y=k), k=0,1,2, \ldots, 8$ for

$$
\begin{aligned}
& Y \sim \operatorname{Binomial}(n=50, p=0.03), \text { and } \\
& Y \sim \operatorname{Poisson}(\lambda=50 \times 0.03=1.5) .
\end{aligned}
$$

[^0]A random variable Y has a Poisson distribution with parameter $\lambda>0$ if

$$
\mathrm{P}(Y=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, \quad k=0,1,2, \ldots
$$

denoted as

$$
Y \sim \operatorname{Poisson}(\lambda)
$$

One can show that

$$
\mathbb{E}[Y]=\lambda, \quad \operatorname{Var}(Y)=\lambda \Rightarrow \operatorname{SD}(Y)=\sqrt{\lambda}
$$

Example (Fatalities From Horse Kicks)

The number of fatalities in a year that resulted from being kicked by a horse or mule was recorded for each of 10 corps of Prussian cavalry over a period of 20 years, giving 200 corps-years worth of data ${ }^{1}$.

$$
\begin{array}{c|ccccc|c}
\text { \# of Deaths (in a corp in a year) } & 0 & 1 & 2 & 3 & 4 & \text { Total } \\
\hline \text { Frequency } & 109 & 65 & 22 & 3 & 1 & 200
\end{array}
$$

The count of deaths due to horse kicks in a corp in a given year may have a Poisson distribution because

- $p=P$ (a soldier died from horsekicks in a given year) ≈ 0;
- $n=\#$ of soldiers in a corp was large (100's or 1000's);
- whether a soldier was kicked was (at least nearly) independent of whether others were kicked

[^1]
Example (Fatalities From Horse Kicks - Cont'd)

- Suppose all 10 corps had the same n and p throughout the 20 year period. Then we may assume that the 200 counts all have the Poisson distn. with the same rate $\lambda=n p$.
- How to estimate λ ?
- MLE for the rate λ of a Poisson distribution is the sample mean \bar{Y}.
- So for the horsekick data:

\# of Deaths (in a corp in a year)	0	1	2	3	4	Total
Frequency	109	65	22	3	1	200

the MLE for λ is

$$
\widehat{\lambda}=\frac{0 \times 109+1 \times 65+2 \times 22+3 \times 3+4 \times 1}{200}=0.61
$$

When Poisson Distributions Come Up

Variables that are generally Poisson:

- \# of misprints on a page of a book
- \# of calls coming into an exchange during a unit of time (if the exchange services a large number of customers who act more or less independently.)
- \# of people in a community who survive to age 100
- \# of customers entering a post office on a given day
- \# of vehicles that pass a marker on a roadway during a unit of time (for light traffic only. In heavy traffic, however, one vehicle's movement may influence another)

Example (Fatalities From Horse Kicks - Cont'd)

The fitted Poisson probability to have k deaths from horsekicks is

$$
\mathrm{P}(Y=k)=e^{-\hat{\lambda}} \widehat{\lambda}^{k} / k!=e^{-0.61}(0.61)^{k} / k!, \quad, k=0,1,2, \ldots
$$

\(\left.$$
\begin{array}{ccc}\text { Observed }\end{array}
$$ \begin{array}{ccc}Fitted Poisson Freq.

Frequency

=200 \times P(Y=k)\end{array}\right]\)| | 109 | 66.3 |
| :---: | :---: | :---: |
| 0 | 65 | 20.2 |
| 1 | 22 | 4.1 |
| 2 | 3 | 0.6 |
| 3 | 1 | 199.9 |

$>$ round $(200 *$ dpois $(0: 4,0.61), 1)$
$\begin{array}{llllll}{[1]} & 108.7 & 66.3 & 20.2 & 4.1 & 0.6\end{array}$

Poisson-6

GLMs for Poisson Response Data

Assume the response $Y \sim \operatorname{Poisson}(\mu(x))$, where x is an explanatory variable.
Commonly used link functions for Poisson distributions are

- identity link: $\mu(x)=\alpha+\beta x$
- sometimes problematic because $\mu(x)$ must be >0, but $\alpha+\beta \times$ may not
- log link: $\log (\mu(x))=\alpha+\beta x \quad \Longleftrightarrow \quad \mu(x)=e^{\alpha+\beta x}$.
- $\mu(x)>0$ always
- Whenever x increases by 1 unit, $\mu(x)$ is multiplied by e^{β} Loglinear models use Poisson with log link

Inference of Parameters

- Wald, LR tests and Cls for β 's work as in logistic models
- Goodness of fit:

$$
\begin{aligned}
\text { Deviance } & =G^{2}=2 \sum_{i} y_{i} \log \left(\frac{y_{i}}{\widehat{\mu}_{i}}\right)=-2\left(L_{M}-L_{S}\right) \\
\text { Pearson's chi-squared } & =X^{2}
\end{aligned}=2 \sum_{i} \frac{\left(y_{i}-\widehat{\mu}_{i}\right)^{2}}{\widehat{\mu}_{i}} \quad, ~ \$
$$

G^{2} and X^{2} are approx. $\sim \chi_{n-p}^{2}$, when all $\widehat{\mu}_{i}$'s are large (≥ 10), where $n=$ num. of observations, and $p=$ num. of parameters in the model.

Poisson-9

Example (Mating and Age of Male Elephants)

Joyce Poole studied a population of African elephants in Amboseli National Park, Kenya, for 8 years ${ }^{2}$.

- Response: number of successful matings in the 8 years of 41 male elephants.
- Predictor: estimated ages of the male elephants at beginning of the study.

Age	Matings	Age	Matings	Age	Matings	Age	Matings
27	0	30	1	36	5	43	3
28	1	32	2	36	6	43	4
28	1	33	4	37	1	43	9
28	1	33	3	37	1	44	3
28	3	33	3	37	6	45	5
29	0	33	3	38	2	47	7
29	0	33	2	39	1	48	2
29	0	34	1	41	3	52	9
29	2	34	1	42	4		
29	2	34	2	43	0		
29	2	34	3	43	2		

[^2]Example (Elephant)
Let $Y=$ number of successful matings $\sim \operatorname{Poisson}(\mu)$;

$$
\text { Model 1: } \mu=\alpha+\beta \text { Age } \quad \text { (identity link) }
$$

$>$ Age $=c(27,28,28,28,28,29,29,29,29,29,29,30,32,33,33,33,33,33,34,34$,
$34,34,36,36,37,37,37,38,39,41,42,43,43,43,43,43,44,45,47,48,52)$
$>$ Matings $=c(0,1,1,1,3,0,0,0,2,2,2,1,2,4,3,3,3,2,1,1,2,3$,

$$
5,6,1,1,6,2,1,3,4,0,2,3,4,9,3,5,7,2,9)
$$

> eleph.id = glm(Matings ~ Age, family=poisson(link="identity"))
> summary (eleph.id)
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -4.55205 $1.33916-3.3990 .000676$ ***
Age $0.20179 \quad 0.04023 \quad 5.016 \quad 5.29 \mathrm{e}-07$ ***
Null deviance: 75.372 on 40 degrees of freedom
Residual deviance: 50.058 on 39 degrees of freedom
AIC: 155.5
Fitted model 1: $\widehat{\mu}=\widehat{\alpha}+\widehat{\beta}$ Age $=-4.55+0.20$ Age

- $\approx \widehat{\beta}=0.20$ more matings if the elephant is 1 year older

Example (Elephant)

$$
\text { Model 2: } \log (\mu)=\alpha+\beta \text { Age } \quad(\log \text { link })
$$

> eleph.log = glm(Matings ~ Age, family=poisson(link="log"))
> summary (eleph.log)
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -1.58201 $0.54462-2.9050 .00368$ **
Age
0.06869
$0.013754 .9975 .81 \mathrm{e}-07$ ***

Null deviance: 75.372 on 40 degrees of freedom
Residual deviance: 51.012 on 39 degrees of freedom
AIC: 156.46
Fitted model 2: $\log (\widehat{\mu})=-1.582+0.0687$ Age

$$
\widehat{\mu}=\exp (-1.582+0.0687 \text { Age })=0.205(1.071)^{\text {Age }}
$$

- expected number of matings increase by 7.1% for every extra year of age
- for a 40 year-old male, the expected number of matings is $\widehat{\mu}=\exp (-1.582+0.0687(40)) \approx 3.2$.

Poisson - 13

Residuals

- Deviance residual:

$$
d_{i}=\operatorname{sign}\left(y_{i}-\widehat{\mu}_{i}\right) \sqrt{2\left[y_{i} \log \left(y_{i} / \widehat{\mu}_{i}\right)-y_{i}+\widehat{\mu}_{i}\right]}
$$

- Pearson's residual: $e_{i}=\frac{y_{i}-\widehat{\mu}_{i}}{\sqrt{\widehat{\mu}_{i}}}$
- Standardized Pearson's residual $=\frac{e_{i}}{\sqrt{1-h_{i}}}$
- Standardized Deviance residual $=\frac{d_{i}}{\sqrt{1-h_{i}}}$
where $h_{i}=$ leverage of i th observation
- potential outlier if \mid standardized residual $\mid>2$ or 3
- R function residuals() gives deviance residuals by default, and Pearson residuals with option type="pearson".
- R function rstandard() gives standardized deviance residuals by default, and standardized Pearson residuals with option type="pearson".

Which Model Better Fits the Data?

	AIC	Deviance	df
Model 1 (identity link)	155.50	50.058	39
Model 2 (log link)	156.46	51.012	39

- Based on AIC, Model 1 fits better
- Goodness of fit tests are not appropriate because ...
- Based on scatter plot...

Poisson-14

Residual Plots

plot(Age, rstandard(eleph.id),
ylab="Standardized Deviance Residual", main="identity link") abline(h=0)
plot(Age, rstandard(eleph.id, type="pearson"),
ylab="Standardized Pearson Residual", main = "identity link") abline ($\mathrm{h}=0$)

Residual Plots

plot(Age, rstandard(eleph.log),
ylab="Standardized Deviance Residual", main="log link")
abline ($\mathrm{h}=0$)
plot(Age, rstandard(eleph.log, type="pearson"),
ylab="Standardized Pearson Residual", main = "log link")
abline (h=0)

Example (British Train Accidents over Time)

Have collisions between trains and road vehicles become more prevalent over time?

- Total number of train-km (in millions) varies from year to year.
- Model annual rate of train-road collisions per million train-km with base $t=$ annual number of train- km , and $x=$ num. of years since 1975

	Year	KM	in	Rd
1	2003	518	0	3
2	2002	516	1	3
3	2001	508	0	4
4	2000	503	1	3
5	1999	505	1	2
27	1977	425	1	8
	1976	426	2	12
29	1975	436	5	2

Models for Rates

Sometimes y_{i} have different bases (e.g., number murders for cities with different pop. sizes)
Let $y=$ count with base t. Assume $y \sim \operatorname{Poisson}(\mu)$, where

$$
\mu=\lambda t
$$

more relevant to model rate λ at which events occur.
Loglinear model:

$$
\log \lambda=\log (\mu / t)=\alpha+\beta x
$$

i.e.,

$$
\log (\mu)-\log (t)=\alpha+\beta x
$$

$\log (t)$ is an offset.
See pp. 82-84 of text for discussion.
Poisson-18
> trains1 = glm(TrRd ~ I (Year-1975), offset $=\log (K M)$, family=poisson, data=trains)
> summary(trains1)
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
$\begin{array}{lllrr}\text { (Intercept) } & -4.21142 & 0.15892 & -26.50 & <2 e-16 * * * \\ \text { I (Year - 1975) } & -0.03292 & 0.01076 & -3.06 & 0.00222 * *\end{array}$
I(Year - 1975) -0.03292 0.01076 -3.06 0.00222 **
Null deviance: 47.376 on 28 degrees of freedom
Residual deviance: 37.853 on 27 degrees of freedom AIC: 133.52

Fitted Model: $\log (\widehat{\lambda})=\log (\widehat{\mu} / t)=-4.21-0.0329 x$

$$
\widehat{\lambda}=\frac{\widehat{\mu}}{t}=e^{-4.21-0.0329 x}=e^{-4.21}\left(e^{-0.0329}\right)^{x}=(0.0148)(0.968)^{x}
$$

- Rate estimated to decrease by 3.2% per yr from 1975 to 2003.
- Est. rate for $1975(x=0)$ is 0.0148 per million km (15 per billion).
- Est. rate for $2003(x=28)$ is 0.0059 per million km (6 per billion).
plot(trains\$Year, 1000*trains\$TrRd/trains\$KM, xlab="Year",
ylab="Collisions per Billion Train-Kilometers",ylim=c(1,31.4)) curve(1000*exp(trains1\$coef [1]+trains1\$coef [2]*(x-1975)), add=T)

Train Data — Standardized Pearson Residuals

plot(trains\$Year, rstandard(trains1,type="pearson"),
xlab="Year", ylab="Standardized Pearson Residuals")
abline (h=0)

There were 13 train-road collisions in 1986, a lot higher than the fitted mean 4.3 for that year ${ }_{\text {Ṕoisson }}-23$

Train Data - Standardized Deviance Residuals

plot(trains\$Year, rstandard(trains1),
xlab="Year", ylab="Standardized Deviance Residuals") abline (h=0)

Poisson-22

Models for Rate Data With Identity Link

For $y \sim \operatorname{Poisson}(\mu)$ with base t, where

$$
\mu=\lambda t
$$

the loglinear model

$$
\log \lambda=\log (\mu / t)=\alpha+\beta x
$$

assumes the effect of the explanatory variable on the response to be multiplicative.
Alternatively, if we want the effect to be additive,

$$
\begin{aligned}
& \lambda=\mu / t=\alpha+\beta x \\
\Leftrightarrow \quad & \mu=\alpha t+\beta t x
\end{aligned}
$$

we may fit a GLM model with identity link, using t and $t x$ as explanatory variables and with no intercept or offset terms.

Poisson - 24

Train Data - Identity Link

base $t=$ annual num. of train- $k m, x=$ num. of years since 1975
> trains2 $=\operatorname{glm}(\operatorname{TrRd} \sim-1+K M+I(K M *($ Year-1975) $)$,
family=poisson(link="identity"), data=trains)
> summary (trains2)
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

Null deviance: \quad Inf on 29 degrees of freedom
Residual deviance: 37.287 on 27 degrees of freedom
AIC: 132.95

$$
\text { Fitted Model: } \quad \widehat{\lambda}=\widehat{\mu} / t=0.0143-0.000324 x
$$

- Estimated rate decreases by 0.00032 per million km (0.32 per billion km) per yr from 1975 to 2003.
- Est. rate for $1975(x=0)$ is 0.0143 per million km (14.3 per billion km).
- Est. rate for $2003(x=28)$ is 0.0052 per million km (5.2 per billion km).

Poisson-25
plot(trains\$Year, 1000*trains\$TrRd/trains\$KM,xlab="Year"
ylab="Collisions per Billion Train-Kilometers",ylim=c(1,31.4)) curve(1000*exp(trains1\$coef[1]+trains1\$coef[2]*(x-1975)), add=T) curve (1000*trains $2 \$ \operatorname{coef}[1]+1000 * \operatorname{trains} 2 \$ \operatorname{coef}[2] *(x-1975)$, add=T, lty=2) legend("topright", c("log-linear","identity"), lty=1:2)

The loglinear fit and the linear fit (identity link) are nearly identital. Poisson-26

Overdispersion: Greater Variability than Expected

- One of the defining characteristics of Poisson regression is its lack of a parameter for variability:

$$
\mathbb{E}(Y)=\operatorname{Var}(Y)
$$

and no parameter is available to adjust that relationship

- In practice, when working with Poisson regression, it is often the case that the variability of y_{i} about $\hat{\lambda}_{i}$ is larger than what $\hat{\lambda}_{i}$ predicts
- This implies that there is more variability around the model's fitted values than is consistent with the Poisson distribution
- This phenomenon is overdispersion.

Common Causes of Overdispersion

- Subject heterogeneity
- subjects have different μ
e.g., rates of infestation may differ from location to location on the same tree and may differ from tree to tree
- there are important predictors not included in the model
- Observations are not independent - clustering

Example (Known Victims of Homicide)

A recent General Social Survey asked subjects,
"Within the past 12 months, how many people have you known personally that were victims of homicide?"

Number of Victims	0	1	2	3	4	5	6	Total
Black Subjects	119	16	12	7	3	2	0	159
White Subjects	1070	60	14	4	0	0	1	1149

If fit a Poisson distribution to the data from blacks, MLE for λ is the sample mean

$$
\widehat{\lambda}=\frac{0 \cdot 119+1 \cdot 16+2 \cdot 12+\cdots+6 \cdot 0}{159}=\frac{83}{159} \approx 0.522
$$

Fitted $P(Y=k)$ is $e^{-\frac{83}{159}}\left(\frac{83}{159}\right)^{k} / k!, k=0,1,2, \ldots$.
$>$ round (dpois $(0: 6$, lambda $=83 / 159), 3)$
[1] 0.5930 .3100 .0810 .0140 .0020 .0000 .000
> round $(\mathrm{c}(119,16,12,7,3,2,0) / 159,3) \quad \#$ sample relative freq. [1] 0.7480 .1010 .0750 .0440 .0190 .0130 .000

Poisson - 31

Negative Binomial Distribution

If Y has a negative binomial distribution, with mean μ and dispersion parameter $D=1 / \theta$, then

$$
P(Y=k)=\frac{\Gamma(k+\theta)}{k!\Gamma(\theta)}\left(\frac{\theta}{\mu+\theta}\right)^{\theta}\left(\frac{\mu}{\mu+\theta}\right)^{k}, \quad k=0,1,2, \ldots
$$

One can show that

$$
\mathbb{E}[Y]=\mu, \quad \operatorname{Var}(Y)=\mu+\frac{\mu^{2}}{\theta}=\mu+D \mu^{2}
$$

- As $D=1 / \theta \downarrow 0$, negative binomial \rightarrow Poisson.
- Negative binomial is a gamma mixture of Poissons, where the Poisson mean varies according to a gamma distribution.
- MLE for μ is the sample mean. MLE for θ has no close form formula.

Poisson-30

Example (Known Victims of Homicide)

Num. of Victims	0	1	2	3	4	5	6	Total	Mean	Variance
Black	119	16	12	7	3	2	0	159	0.522	1.150
White	1070	60	14	4	0	0	1	1149	0.092	0.155

Likewise, if we fit a Poisson distribution to the data from whites, MLE for λ is

$$
\widehat{\lambda}=\frac{0 \cdot 1070+1 \cdot 60+2 \cdot 14+\cdots+6 \cdot 1}{1149}=\frac{106}{1149} \approx 0.092
$$

Fitted $P(Y=k)$ is $e^{-\frac{106}{1149}}\left(\frac{106}{1149}\right)^{k} / k!, k=0,1,2, \ldots$.
> round(dpois (0:6, lambda $=106 / 1149)$, 3) \# fitted Poisson prob.
[1] 0.9120 .0840 .0040 .0000 .0000 .0000 .000
> round $(c(1070,60,14,4,0,0,1) / 1149,3) \quad$ \# sample relative freq.
[1] $0.9310 .0520 .0120 .0030 .000 \quad 0.000 \quad 0.001$

- Too many 0 's and too many large counts for both races than expected if the samples were drawn from Poisson distributions.
- It is not surprising that Poisson distributions do not fit the data because of the large discrepancies between sample mean and sample variance. Poisson-32

Example (Known Victims of Homicide)

Data:

$$
\begin{aligned}
& Y_{b, 1}, Y_{b, 2}, \ldots, Y_{b, 159} \\
& Y_{w, 1}, Y_{w, 2}, \ldots \ldots, Y_{w, 1149}
\end{aligned}
$$

answers from black subjects answers from white subjects

Poisson Model:

$$
Y_{b, j} \sim \operatorname{Poisson}\left(\mu_{b}\right), \quad Y_{w, j} \sim \operatorname{Poisson}\left(\mu_{w}\right)
$$

Neg. Bin. Model:

$$
Y_{b, j} \sim \operatorname{NB}\left(\mu_{b}, \theta\right), \quad Y_{w, j} \sim \operatorname{NB}\left(\mu_{w}, \theta\right)
$$

Goal: Test whether $\mu_{b}=\mu_{w}$.
Equivalent to test $\beta=0$ in the log-linear model.

$$
\log (\mu)=\alpha+\beta x, \quad x=\left\{\begin{array}{l}
1 \text { if black } \\
0 \text { if white }
\end{array}\right.
$$

Note $\mu_{b}=e^{\alpha+\beta}, \mu_{w}=e^{\alpha}$. So $e^{\beta}=\mu_{b} / \mu_{w}$.

$$
\text { Poisson - } 33
$$

Example (Known Victims of Homicide) — Poisson Fits

```
> summary(hom.poi)
Call:
glm(formula = nvics ~ race, family = poisson, data = homicide,
    weights = freq)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-14.051 & 0.000 & 5.257 & 6.216 & 13.306
\end{tabular}
```

Coefficients:

$$
\text { Estimate Std. Error } z \text { value } \operatorname{Pr}(>|z|)
$$

(Intercept)	-2.38321	0.09713	-24.54	$<2 \mathrm{e}-16 * * *$
raceBlack	1.73314	0.14657	11.82	$<2 \mathrm{e}-16 * * *$

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 962.80 on 10 degrees of freedom
Residual deviance: 844.71 on 9 degrees of freedom
AIC: 1122

Number of Fisher Scoring iterations: 6

Example (Known Victims of Homicide)

Negative binomial regression models can be fit using glm.nb function in the MASS package.
$>$ nvics $=c(0: 6,0: 6)$
$>$ race $=c($ rep $(" B l a c k ", 7)$, rep("White", 7) $)$
$>$ freq $=c(119,16,12,7,3,2,0,1070,60,14,4,0,0,1)$
> data.frame(nvics,race,freq)
nvics race freq
0 Black 119
21 Black 16
32 Black 12
.. (omit) ...
4 White 0
135 White 0
146 White 1
> race $=$ factor(race, levels=c("White", "Black"))
> hom.poi = glm(nvics ~ race, weights=freq, family=poisson)
> library (MASS)
> hom.nb = glm.nb(nvics ~ race, weights=freq)

Poisson - 34

Example (Known Victims of Homicide) — Neg. Binomial
$>$ summary (hom.nb)
Call:
glm.nb(formula $=$ nvics \sim race, weights $=$ freq, init.theta $=0.2023119205$, link $=\log$)

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-12.754	0.000	2.086	3.283	9.114

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
$\begin{array}{llllll}\text { (Intercept) } & -0.6501 & 0.2077 & -3.130 & 0.00175 & \text { ** } \\ \text { raceWhite } & -1.7331 & 0.2385 & -7.268 & 3.66 \mathrm{e}-13 & \text { *** }\end{array}$
aceWhite
(Dispersion parameter for Negative Binomial(0.2023) family taken to be 1)

```
    Null deviance: 471.57 on 10 degrees of freedom
Residual deviance: 412.60 on 9 degrees of freedom
AIC: 1001.8
Number of Fisher Scoring iterations: 1
    Theta: 0.2023
    Std. Err.: 0.0409
2 x log-likelihood: -995.7980
```

> hom.nb\$fit
$\begin{array}{rrrrrrr}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0.52201258 & 0.52201258 & 0.52201258 & 0.52201258 & 0.52201258 & 0.52201258 & 0.52201258 \\ 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$
0.092254130 .092254130 .092254130 .092254130 .092254130 .092254130 .09225413
> hom.nb\$theta
[1] 0.2023119

- Fitted values given by the Neg. Bin model are simply the sample means - $0.522\left(=\frac{83}{159}\right)$ for blacks and 0.0922 $\left(=\frac{106}{1149}\right)$ for whites.
- Estimated common dispersion parameter is $\widehat{\theta}=0.2023119$ with $\mathrm{SE}=0.0409$.
- Fitted $P(Y=k)$ is

$$
\frac{\Gamma(k+\widehat{\theta})}{k!\Gamma(\widehat{\theta})}\left(\frac{\widehat{\theta}}{\widehat{\mu}+\widehat{\theta}}\right)^{\theta}\left(\frac{\widehat{\mu}}{\widehat{\mu}+\widehat{\theta}}\right)^{k}, \text { where } \widehat{\mu}= \begin{cases}\frac{83}{159} & \text { for blacks } \\ \frac{106}{1149} & \text { for whites. }\end{cases}
$$

- Textbook uses $D=1 / \theta$ as the dispersion parameter, estimated as $\widehat{D}=1 / \widehat{\theta}=1 / 0.2023 \approx 4.94$.

Poisson-37

Example (Known Victims of Homicide)

$$
\text { Model: } \quad \log (\mu)=\alpha+\beta x, \quad x=\left\{\begin{array}{l}
1 \text { if black } \\
0 \text { if white }
\end{array}\right.
$$

Model	$\widehat{\alpha}$	$\widehat{\beta}$	$\mathrm{SE}(\widehat{\beta})$	Wald $95 \% \mathrm{Cl}$ for $e^{\beta}=\mu_{B} / \mu_{A}$
Poisson	-2.38	1.73	0.147	$\exp (1.73 \pm 1.96 \cdot 0.147)=(4.24,7.54)$
Neg. Binom.	-2.38	1.73	0.238	$\exp (1.73 \pm 1.96 \cdot 0.238)=(3.54,9.03)$

Poisson and negative binomial models give

- identical estimates for coefficients
(this data set only, not always the case)
- but different SEs for $\widehat{\beta}$ (Neg. Binom. gives bigger SE)

To account for overdispersion, neg. binom. model gives wider
Wald Cls (and also wider LR Cls).
Remark. Observe $e^{\widehat{\beta}}=e^{1.73}=5.7$ is the ratio of the two sample means $\bar{y}_{\text {black }} / \bar{y}_{\text {white }}=0.522 / 0.092$.

Example (Known Victims of Homicide)

Black Subjects								
Num. of Victims	0	1	2	3	4	5	6	Total
observed freq.	119	16	12	7	3	2	0	159
relative freq.	0.748	0.101	0.075	0.044	0.019	0.013	0	1
poisson fit	0.593	0.310	0.081	0.014	0.002	0.000	0.000	1
neg. bin.fit	0.773	0.113	0.049	0.026	0.015	0.009	0.006	0.991
White Subjects: num. of victims	0	1	2	3	4	5	6	Total
observed freq.	1070	60	14	4	0	0	1	1149
relative freq.	0.931	0.052	0.012	0.003	0.000	0.000	0.001	0.999
poisson fit	0.912	0.084	0.004	0.000	0.000	0.000	0.000	1
neg. bin.fit	0.927	0.059	0.011	0.003	0.001	0.000	0.000	1.001
\# neg. bin fit								
> round(dnbinom(0:6, size $=$ hom.nb\$theta, mu $=83 / 159$),3)								
[1] 0.7730 .1130 .0490 .0260 .0150 .0090 .006								
> round(dnbinom(0:6,size = hom.nb\$theta, mu=106/1149),3)								
[1] 0.9270 .0590 .0110 .0030 .0010 .0000 .000								

Poisson-38

Wald Cls

```
> confint.default(hom.poi)
            2.5 % 97.5 %
(Intercept) -2.573577 -2.192840
raceBlack 1.445877 2.020412
> exp(confint.default(hom.poi))
    2.5 % 97.5 %
(Intercept) 0.0762623 0.1115994
raceBlack 4.2455738 7.5414329
> confint.default(hom.nb)
    2.5% 97.5 %
(Intercept) -2.612916 -2.153500
raceBlack 1.265738 2.200551
> exp(confint.default(hom.nb))
    2.5% 97.5 %
(Intercept) 0.07332043 0.1160771
raceBlack 3.54571025 9.0299848
```


Likelihood Ratio Cls

> confint(hom.poi)
Waiting for profiling to be done..

$$
2.5 \% \quad 97.5 \%
$$

(Intercept) -2.579819 -2.198699
raceBlack $1.443698 \quad 2.019231$
> exp(confint(hom.poi))
Waiting for profiling to be done..

$$
2.5 \% \quad 97.5 \%
$$

(Intercept) 0.07578770 .1109474
raceBlack 4.23633307 .5325339
> confint(hom.nb)
Waiting for profiling to be done...
2.5 \% 97.5%
(Intercept) $-2.616478-2.156532$
raceBlack 1.2747612 .211746
> exp(confint(hom.nb))
Waiting for profiling to be done...

$$
2.5 \% \quad 97.5 \%
$$

(Intercept) 0.073059760 .1157258
raceBlack 3.577845609 .1316443

$$
\text { Poisson - } 41
$$

How to Check for Overdispersion?

- Think about whether overdispersion is likely - e.g. important explanatory variables are not available, or dependence in observations.
- Compare the sample variances to the sample means computed for groups of responses with identical explanatory variable values.
- Large deviance relative to its deviance
- Examine residuals to see if a large deviance statistic may be due to outliers
- Large numbers of outliers are usually signs of overdispersion
- Check standardized residuals and plot them against them fitted values $\widehat{\mu}_{i}$.

If Not Taking Overdispersion Into Account ...

- SEs are underestimated
- Cls will be too narrow
- Significance of variables will be over stated (reported P values are lower than the actual ones)

Train Data Revisit

Recall Pearson's residual:

$$
e_{i}=\frac{y_{i}-\widehat{\mu}_{i}}{\sqrt{\widehat{\mu}_{i}}}
$$

If no overdispersion, then

$$
\operatorname{Var}(Y) \approx\left(y_{i}-\widehat{\mu}_{i}\right)^{2} \approx \mathbb{E}(Y) \approx \widehat{\mu}_{i}
$$

So the size of Pearson's residuals should be around 1. With overdispersion,

$$
\operatorname{Var}(Y)=\mu+D \mu^{2}
$$

then the size of Pearson's residuals may increase with μ.
We may check the plot of the absolute value of (standardized)
Pearson's residuals against fitted values $\widehat{\mu}_{i}$.

Train Data - Checking Overdispersion

plot(trains1\$fit, abs(rstandard(trains1, type="pearson")), xlab="Fitted Values", ylab="|Standardized Pearson Residuals|")

The size of standardized Pearson's residuals tend to increase with fitted values. This is a sign of overdisperson.

Poisson - 45

Train Data - Neg. Bin. Model

```
> trains.nb = glm.nb(TrRd ~ I(Year-1975)+offset(log(KM)), data=trains)
> summary(trains.nb)
Coefficients:
    Estimate Std. Error z value Pr(>|z|)
    (Intercept) -4.19999 0.19584-21.446 < 2e-16 ***
    I(Year - 1975) -0.03367 0.01288 -2.615 0.00893 **
    ---
    (Dispersion parameter for Negative Binomial(10.1183) family taken to be
    Null deviance: 32.045 on 28 degrees of freedom
Residual deviance: 25.264 on 27 degrees of freedom
AIC: 132.69
    Theta: 10.12
    Std. Err.: 8.00
2 x log-likelihood: -126.69
```

For year effect, the estimated coefficients are similar (0.0337 for neg. bin. model compared to 0.032 for Poisson model), but less significant (P-value $=0.009$ in neg. bin. model compared to 0.002 in Poisson model)

Poisson-46

[^0]: > dbinom(0:5, size=50, p=0.03)
 \# Binomial (n=50, p=0.03)
 [1] $0.218065380 .33721450 \quad 0.25551820 \quad 0.12644200 \quad 0.04594928 \quad 0.01307423$

 | $>$ dpois $(0: 5, l a m b d a=50 * 0.03)$ | \# Poisson $(l a m b d a=50 * 0.03)$ |
 | :--- | :---: |
 | $[1] 0.223130160 .334695240 .25102143$ | 0.12551072 | 0.047066520 .01411996

[^1]: ${ }^{1}$ von Bortkiewicz (1898) Das Gesetz der Kleinen Zahlen. Leipzig: Teubner. Poisson-4

[^2]: ${ }^{2}$ Data from J. H. Poole, "Mate Guarding, Reproductive Success and Female Choice in African Elephants", Animal Behavior 37 (1989): 842-499. Poisson-10

