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Review of Poisson Distributions

A random variable Y has a Poisson distribution with parameter
λ > 0 if

P(Y = k) =
λk

k!
e−λ, k = 0, 1, 2, . . .

denoted as
Y ∼ Poisson(λ).

One can show that

E[Y ] = λ, Var(Y ) = λ ⇒ SD(Y ) =
√
λ.
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Poisson Approximation to Binomial

If Y ∼ binomial(n, p) with huge n and tiny p such that np
moderate, then

Y approx. ∼ Poisson(np).

The following shows the values of P(Y = k), k = 0, 1, 2, . . . , 8 for

Y ∼ Binomial(n = 50, p = 0.03), and

Y ∼ Poisson(λ = 50× 0.03 = 1.5).

> dbinom(0:5, size=50, p=0.03) # Binomial(n=50, p=0.03)

[1] 0.21806538 0.33721450 0.25551820 0.12644200 0.04594928 0.01307423

> dpois(0:5, lambda = 50*0.03) # Poisson(lambda = 50*0.03)

[1] 0.22313016 0.33469524 0.25102143 0.12551072 0.04706652 0.01411996
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Example (Fatalities From Horse Kicks)

The number of fatalities in a year that resulted from being kicked
by a horse or mule was recorded for each of 10 corps of Prussian
cavalry over a period of 20 years, giving 200 corps-years worth of
data1.

# of Deaths (in a corp in a year) 0 1 2 3 4 Total

Frequency 109 65 22 3 1 200

The count of deaths due to horse kicks in a corp in a given year
may have a Poisson distribution because

I p = P(a soldier died from horsekicks in a given year) ≈ 0;

I n = # of soldiers in a corp was large (100’s or 1000’s);

I whether a soldier was kicked was (at least nearly) independent
of whether others were kicked

1von Bortkiewicz (1898) Das Gesetz der Kleinen Zahlen. Leipzig: Teubner.
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Example (Fatalities From Horse Kicks — Cont’d)

I Suppose all 10 corps had the same n and p throughout the 20
year period. Then we may assume that the 200 counts all
have the Poisson distn. with the same rate λ = np.

I How to estimate λ?

I MLE for the rate λ of a Poisson distribution is the sample
mean Y .

I So for the horsekick data:

# of Deaths (in a corp in a year) 0 1 2 3 4 Total

Frequency 109 65 22 3 1 200

the MLE for λ is

λ̂ =
0× 109 + 1× 65 + 2× 22 + 3× 3 + 4× 1

200
= 0.61
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Example (Fatalities From Horse Kicks — Cont’d)

The fitted Poisson probability to have k deaths from horsekicks is

P(Y = k) = e−λ̂λ̂k/k! = e−0.61(0.61)k/k!, , k = 0, 1, 2, . . .

Observed Fitted Poisson Freq.
k Frequency = 200× P(Y = k)
0 109 108.7
1 65 66.3
2 22 20.2
3 3 4.1
4 1 0.6

Total 200 199.9

> round(200*dpois(0:4, 0.61),1)

[1] 108.7 66.3 20.2 4.1 0.6
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When Poisson Distributions Come Up

Variables that are generally Poisson:

I # of misprints on a page of a book

I # of calls coming into an exchange during a unit of time (if
the exchange services a large number of customers who act
more or less independently.)

I # of people in a community who survive to age 100

I # of customers entering a post office on a given day

I # of vehicles that pass a marker on a roadway during a unit
of time (for light traffic only. In heavy traffic, however, one
vehicle’s movement may influence another)
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GLMs for Poisson Response Data

Assume the response Y ∼ Poisson(µ(x)), where x is an
explanatory variable.

Commonly used link functions for Poisson distributions are
I identity link: µ(x) = α + βx

I sometimes problematic because µ(x) must be > 0, but
α + βx may not

I log link: log(µ(x)) = α + βx ⇐⇒ µ(x) = eα+βx .

I µ(x) > 0 always
I Whenever x increases by 1 unit, µ(x) is multiplied by eβ

Loglinear models use Poisson with log link
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Inference of Parameters

I Wald, LR tests and CIs for β’s work as in logistic models

I Goodness of fit:

Deviance = G 2 = 2
∑
i

yi log

(
yi
µ̂i

)
= −2(LM − LS)

Pearson’s chi-squared = X 2 = 2
∑
i

(yi − µ̂i )2

µ̂i

G 2 and X 2 are approx. ∼ χ2
n−p, when all µ̂i ’s are large (≥ 10),

where n = num. of observations,
and p = num. of parameters in the model.
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Example (Mating and Age of Male Elephants)
Joyce Poole studied a population of African elephants in Amboseli
National Park, Kenya, for 8 years2.

I Response: number of successful matings in the 8 years of 41
male elephants.

I Predictor: estimated ages of the male elephants at beginning
of the study.

Age Matings Age Matings Age Matings Age Matings
27 0 30 1 36 5 43 3
28 1 32 2 36 6 43 4
28 1 33 4 37 1 43 9
28 1 33 3 37 1 44 3
28 3 33 3 37 6 45 5
29 0 33 3 38 2 47 7
29 0 33 2 39 1 48 2
29 0 34 1 41 3 52 9
29 2 34 1 42 4
29 2 34 2 43 0
29 2 34 3 43 2

2Data from J. H. Poole, “Mate Guarding, Reproductive Success and Female
Choice in African Elephants”, Animal Behavior 37 (1989): 842-499.
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Example (Mating and Age of Male Elephants)
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Example (Elephant)
Let Y = number of successful matings ∼ Poisson(µ);

Model 1 : µ = α + βAge (identity link)

> Age = c(27,28,28,28,28,29,29,29,29,29,29,30,32,33,33,33,33,33,34,34,

34,34,36,36,37,37,37,38,39,41,42,43,43,43,43,43,44,45,47,48,52)

> Matings = c(0,1,1,1,3,0,0,0,2,2,2,1,2,4,3,3,3,2,1,1,2,3,

5,6,1,1,6,2,1,3,4,0,2,3,4,9,3,5,7,2,9)

> eleph.id = glm(Matings ~ Age, family=poisson(link="identity"))

> summary(eleph.id)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.55205 1.33916 -3.399 0.000676 ***

Age 0.20179 0.04023 5.016 5.29e-07 ***

---

Null deviance: 75.372 on 40 degrees of freedom

Residual deviance: 50.058 on 39 degrees of freedom

AIC: 155.5

Fitted model 1: µ̂ = α̂ + β̂Age = −4.55 + 0.20 Age
I ≈ β̂ = 0.20 more matings if the elephant is 1 year older
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Example (Elephant)

Model 2 : log(µ) = α + βAge (log link)

> eleph.log = glm(Matings ~ Age, family=poisson(link="log"))

> summary(eleph.log)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.58201 0.54462 -2.905 0.00368 **

Age 0.06869 0.01375 4.997 5.81e-07 ***

---

Null deviance: 75.372 on 40 degrees of freedom

Residual deviance: 51.012 on 39 degrees of freedom

AIC: 156.46

Fitted model 2: log(µ̂) = −1.582 + 0.0687Age

µ̂ = exp(−1.582 + 0.0687Age) = 0.205(1.071)Age

.
I expected number of matings increase by 7.1% for every extra

year of age
I for a 40 year-old male, the expected number of matings is
µ̂ = exp(−1.582 + 0.0687(40)) ≈ 3.2.
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Which Model Better Fits the Data?

AIC Deviance df
Model 1 (identity link) 155.50 50.058 39
Model 2 (log link) 156.46 51.012 39

I Based on AIC,
Model 1 fits better

I Goodness of fit tests are
not appropriate because
...

I Based on scatter plot...
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Residuals

I Deviance residual:

di = sign(yi − µ̂i )
√

2 [yi log(yi/µ̂i )− yi + µ̂i ]

I Pearson’s residual: ei =
yi − µ̂i√

µ̂i

I Standardized Pearson’s residual =
ei√

1− hi

I Standardized Deviance residual =
di√

1− hi
where hi = leverage of ith observation

I potential outlier if |standardized residual| > 2 or 3

I R function residuals() gives deviance residuals by default,
and Pearson residuals with option type="pearson".

I R function rstandard() gives standardized deviance residuals
by default, and standardized Pearson residuals with option
type="pearson".
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Residual Plots

plot(Age, rstandard(eleph.id),

ylab="Standardized Deviance Residual", main="identity link")

abline(h=0)

plot(Age, rstandard(eleph.id, type="pearson"),

ylab="Standardized Pearson Residual", main = "identity link")

abline(h=0)
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Residual Plots

plot(Age, rstandard(eleph.log),

ylab="Standardized Deviance Residual", main="log link")

abline(h=0)

plot(Age, rstandard(eleph.log, type="pearson"),

ylab="Standardized Pearson Residual", main = "log link")

abline(h=0)
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Models for Rates

Sometimes yi have different bases (e.g., number murders for cities
with different pop. sizes)

Let y = count with base t. Assume y ∼ Poisson(µ), where

µ = λt

more relevant to model rate λ at which events occur.

Loglinear model:

log λ = log(µ/t) = α + βx

i.e.,
log(µ)− log(t) = α + βx

log(t) is an offset.
See pp. 82-84 of text for discussion.
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Example (British Train Accidents over Time)
Have collisions between trains and road vehicles become more
prevalent over time?

I Total number of train-km (in millions) varies from year to
year.

I Model annual rate of train-road collisions per million train-km
with base t = annual number of train-km, and x = num. of
years since 1975

> trains = read.table("traincollisions.dat", head=T)

> trains

Year KM Train TrRd

1 2003 518 0 3

2 2002 516 1 3

3 2001 508 0 4

4 2000 503 1 3

5 1999 505 1 2

...

27 1977 425 1 8

28 1976 426 2 12

29 1975 436 5 2

Poisson - 19

> trains1 = glm(TrRd ~ I(Year-1975), offset = log(KM),

family=poisson, data=trains)

> summary(trains1)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.21142 0.15892 -26.50 < 2e-16 ***

I(Year - 1975) -0.03292 0.01076 -3.06 0.00222 **

---

Null deviance: 47.376 on 28 degrees of freedom

Residual deviance: 37.853 on 27 degrees of freedom

AIC: 133.52

Fitted Model: log(λ̂) = log(µ̂/t) = −4.21− 0.0329x

λ̂ =
µ̂

t
= e−4.21−0.0329x = e−4.21(e−0.0329)x = (0.0148)(0.968)x

I Rate estimated to decrease by 3.2% per yr from 1975 to 2003.
I Est. rate for 1975 (x = 0) is 0.0148 per million km (15 per

billion).
I Est. rate for 2003 (x = 28) is 0.0059 per million km (6 per

billion).

Poisson - 20



plot(trains$Year, 1000*trains$TrRd/trains$KM,xlab="Year",

ylab="Collisions per Billion Train-Kilometers",ylim=c(1,31.4))

curve(1000*exp(trains1$coef[1]+trains1$coef[2]*(x-1975)), add=T)
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Train Data — Standardized Deviance Residuals

plot(trains$Year, rstandard(trains1),

xlab="Year", ylab="Standardized Deviance Residuals")

abline(h=0)
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Train Data — Standardized Pearson Residuals

plot(trains$Year, rstandard(trains1,type="pearson"),

xlab="Year", ylab="Standardized Pearson Residuals")

abline(h=0)
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There were 13 train-road collisions in 1986, a lot higher than the
fitted mean 4.3 for that year.
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Models for Rate Data With Identity Link

For y ∼ Poisson(µ) with base t, where

µ = λt

the loglinear model

log λ = log(µ/t) = α + βx

assumes the effect of the explanatory variable on the response to
be multiplicative.
Alternatively, if we want the effect to be additive,

λ = µ/t = α + βx

⇔ µ = αt + βtx

we may fit a GLM model with identity link, using t and tx as
explanatory variables and with no intercept or offset terms.
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Train Data — Identity Link
base t = annual num. of train-km, x = num. of years since 1975

> trains2 = glm(TrRd ~ -1 + KM + I(KM*(Year-1975)),

family=poisson(link="identity"), data=trains)

> summary(trains2)

Estimate Std. Error z value Pr(>|z|)

KM 1.426e-02 1.888e-03 7.557 4.14e-14 ***

I(KM * (Year - 1975)) -3.239e-04 9.924e-05 -3.264 0.0011 **

---

Null deviance: Inf on 29 degrees of freedom

Residual deviance: 37.287 on 27 degrees of freedom

AIC: 132.95

Fitted Model: λ̂ = µ̂/t = 0.0143− 0.000324x

I Estimated rate decreases by 0.00032 per million km (0.32 per
billion km) per yr from 1975 to 2003.

I Est. rate for 1975 (x = 0) is 0.0143 per million km (14.3 per
billion km).

I Est. rate for 2003 (x = 28) is 0.0052 per million km (5.2 per
billion km).
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plot(trains$Year, 1000*trains$TrRd/trains$KM,xlab="Year",

ylab="Collisions per Billion Train-Kilometers",ylim=c(1,31.4))

curve(1000*exp(trains1$coef[1]+trains1$coef[2]*(x-1975)), add=T)

curve(1000*trains2$coef[1]+1000*trains2$coef[2]*(x-1975), add=T, lty=2)

legend("topright", c("log-linear","identity"), lty=1:2)
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The loglinear fit and the linear fit (identity link) are nearly identital.
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3.3.4 Overdispersion and
Negative Binomial Regression
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Overdispersion: Greater Variability than Expected

I One of the defining characteristics of Poisson regression is its
lack of a parameter for variability:

E(Y ) = Var(Y ),

and no parameter is available to adjust that relationship

I In practice, when working with Poisson regression, it is often
the case that the variability of yi about λ̂i is larger than what
λ̂i predicts

I This implies that there is more variability around the model’s
fitted values than is consistent with the Poisson distribution

I This phenomenon is overdispersion.
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Common Causes of Overdispersion

I Subject heterogeneity

I subjects have different µ
e.g., rates of infestation may differ from location to location
on the same tree and may differ from tree to tree

I there are important predictors not included in the model

I Observations are not independent – clustering

Poisson - 29

Negative Binomial Distribution

If Y has a negative binomial distribution, with mean µ and
dispersion parameter D = 1/θ, then

P(Y = k) =
Γ(k + θ)

k!Γ(θ)

(
θ

µ+ θ

)θ ( µ

µ+ θ

)k

, k = 0, 1, 2, . . .

One can show that

E[Y ] = µ, Var(Y ) = µ+
µ2

θ
= µ+ Dµ2.

I As D = 1/θ ↓ 0, negative binomial → Poisson.

I Negative binomial is a gamma mixture of Poissons, where the
Poisson mean varies according to a gamma distribution.

I MLE for µ is the sample mean. MLE for θ has no close form
formula.
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Example (Known Victims of Homicide)
A recent General Social Survey asked subjects,

“Within the past 12 months, how many people have you
known personally that were victims of homicide?”

Number of Victims 0 1 2 3 4 5 6 Total
Black Subjects 119 16 12 7 3 2 0 159
White Subjects 1070 60 14 4 0 0 1 1149

If fit a Poisson distribution to the data from blacks, MLE for λ is
the sample mean

λ̂ =
0 · 119 + 1 · 16 + 2 · 12 + · · ·+ 6 · 0

159
=

83

159
≈ 0.522

Fitted P(Y = k) is e−
83
159

(
83
159

)k
/k!, k = 0, 1, 2, . . . .

> round(dpois(0:6, lambda = 83/159),3)

[1] 0.593 0.310 0.081 0.014 0.002 0.000 0.000

> round(c(119,16,12,7,3,2,0)/159, 3) # sample relative freq.

[1] 0.748 0.101 0.075 0.044 0.019 0.013 0.000
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Example (Known Victims of Homicide)
Num. of Victims 0 1 2 3 4 5 6 Total Mean Variance

Black 119 16 12 7 3 2 0 159 0.522 1.150
White 1070 60 14 4 0 0 1 1149 0.092 0.155

Likewise, if we fit a Poisson distribution to the data from whites,
MLE for λ is

λ̂ =
0 · 1070 + 1 · 60 + 2 · 14 + · · ·+ 6 · 1

1149
=

106

1149
≈ 0.092

Fitted P(Y = k) is e−
106
1149

(
106
1149

)k
/k!, k = 0, 1, 2, . . . .

> round(dpois(0:6, lambda = 106/1149), 3) # fitted Poisson prob.

[1] 0.912 0.084 0.004 0.000 0.000 0.000 0.000

> round(c(1070,60,14,4,0,0,1)/1149, 3) # sample relative freq.

[1] 0.931 0.052 0.012 0.003 0.000 0.000 0.001

I Too many 0’s and too many large counts for both races than
expected if the samples were drawn from Poisson distributions.

I It is not surprising that Poisson distributions do not fit the
data because of the large discrepancies between sample mean
and sample variance. Poisson - 32



Example (Known Victims of Homicide)
Data:

Yb,1,Yb,2, . . . ,Yb,159 answers from black subjects

Yw ,1,Yw ,2, . . . . . . ,Yw ,1149 answers from white subjects

Poisson Model:

Yb,j ∼ Poisson(µb), Yw ,j ∼ Poisson(µw )

Neg. Bin. Model:

Yb,j ∼ NB(µb, θ), Yw ,j ∼ NB(µw , θ)

Goal: Test whether µb = µw .
Equivalent to test β = 0 in the log-linear model.

log(µ) = α + βx , x =

{
1 if black

0 if white,

Note µb = eα+β, µw = eα. So eβ = µb/µw .
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Example (Known Victims of Homicide)

Negative binomial regression models can be fit using glm.nb

function in the MASS package.

> nvics = c(0:6,0:6)

> race = c(rep("Black", 7),rep("White",7))

> freq = c(119,16,12,7,3,2,0,1070,60,14,4,0,0,1)

> data.frame(nvics,race,freq)

nvics race freq

1 0 Black 119

2 1 Black 16

3 2 Black 12

... (omit) ...

12 4 White 0

13 5 White 0

14 6 White 1

> race = factor(race, levels=c("White","Black"))

> hom.poi = glm(nvics ~ race, weights=freq, family=poisson)

> library(MASS)

> hom.nb = glm.nb(nvics ~ race, weights=freq)
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Example (Known Victims of Homicide) — Poisson Fits

> summary(hom.poi)

Call:

glm(formula = nvics ~ race, family = poisson, data = homicide,

weights = freq)

Deviance Residuals:

Min 1Q Median 3Q Max

-14.051 0.000 5.257 6.216 13.306

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.38321 0.09713 -24.54 <2e-16 ***

raceBlack 1.73314 0.14657 11.82 <2e-16 ***

---

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 962.80 on 10 degrees of freedom

Residual deviance: 844.71 on 9 degrees of freedom

AIC: 1122

Number of Fisher Scoring iterations: 6
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Example (Known Victims of Homicide) — Neg. Binomial
> summary(hom.nb)

Call:

glm.nb(formula = nvics ~ race, weights = freq, init.theta = 0.2023119205,

link = log)

Deviance Residuals:

Min 1Q Median 3Q Max

-12.754 0.000 2.086 3.283 9.114

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6501 0.2077 -3.130 0.00175 **

raceWhite -1.7331 0.2385 -7.268 3.66e-13 ***

---

(Dispersion parameter for Negative Binomial(0.2023) family taken to be 1)

Null deviance: 471.57 on 10 degrees of freedom

Residual deviance: 412.60 on 9 degrees of freedom

AIC: 1001.8

Number of Fisher Scoring iterations: 1

Theta: 0.2023

Std. Err.: 0.0409

2 x log-likelihood: -995.7980
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> hom.nb$fit

1 2 3 4 5 6 7

0.52201258 0.52201258 0.52201258 0.52201258 0.52201258 0.52201258 0.52201258

8 9 10 11 12 13 14

0.09225413 0.09225413 0.09225413 0.09225413 0.09225413 0.09225413 0.09225413

> hom.nb$theta

[1] 0.2023119

I Fitted values given by the Neg. Bin model are simply the
sample means — 0.522 (= 83

159) for blacks and 0.0922
(= 106

1149) for whites.

I Estimated common dispersion parameter is θ̂ = 0.2023119
with SE = 0.0409.

I Fitted P(Y = k) is

Γ(k + θ̂)

k!Γ(θ̂)

(
θ̂

µ̂+ θ̂

)θ (
µ̂

µ̂+ θ̂

)k

, where µ̂ =

{
83
159 for blacks
106
1149 for whites.

I Textbook uses D = 1/θ as the dispersion parameter,
estimated as D̂ = 1/θ̂ = 1/0.2023 ≈ 4.94.
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Example (Known Victims of Homicide)
Black Subjects
Num. of Victims 0 1 2 3 4 5 6 Total
observed freq. 119 16 12 7 3 2 0 159
relative freq. 0.748 0.101 0.075 0.044 0.019 0.013 0 1
poisson fit 0.593 0.310 0.081 0.014 0.002 0.000 0.000 1
neg. bin.fit 0.773 0.113 0.049 0.026 0.015 0.009 0.006 0.991

White Subjects:
num. of victims 0 1 2 3 4 5 6 Total
observed freq. 1070 60 14 4 0 0 1 1149
relative freq. 0.931 0.052 0.012 0.003 0.000 0.000 0.001 0.999
poisson fit 0.912 0.084 0.004 0.000 0.000 0.000 0.000 1
neg. bin.fit 0.927 0.059 0.011 0.003 0.001 0.000 0.000 1.001

# neg. bin fit

> round(dnbinom(0:6, size = hom.nb$theta, mu = 83/159),3) # black

[1] 0.773 0.113 0.049 0.026 0.015 0.009 0.006

> round(dnbinom(0:6,size = hom.nb$theta, mu=106/1149),3) # white

[1] 0.927 0.059 0.011 0.003 0.001 0.000 0.000
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Example (Known Victims of Homicide)

Model: log(µ) = α + βx , x =

{
1 if black

0 if white,

Model α̂ β̂ SE(β̂) Wald 95% CI for eβ = µB/µA

Poisson −2.38 1.73 0.147 exp(1.73± 1.96 · 0.147) = (4.24, 7.54)
Neg. Binom. −2.38 1.73 0.238 exp(1.73± 1.96 · 0.238) = (3.54, 9.03)

Poisson and negative binomial models give

I identical estimates for coefficients
(this data set only, not always the case)

I but different SEs for β̂ (Neg. Binom. gives bigger SE)

To account for overdispersion, neg. binom. model gives wider
Wald CIs (and also wider LR CIs).

Remark. Observe e β̂ = e1.73 = 5.7 is the ratio of the two sample
means yblack/ywhite = 0.522/0.092.
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Wald CIs

> confint.default(hom.poi)

2.5 % 97.5 %

(Intercept) -2.573577 -2.192840

raceBlack 1.445877 2.020412

> exp(confint.default(hom.poi))

2.5 % 97.5 %

(Intercept) 0.0762623 0.1115994

raceBlack 4.2455738 7.5414329

> confint.default(hom.nb)

2.5 % 97.5 %

(Intercept) -2.612916 -2.153500

raceBlack 1.265738 2.200551

> exp(confint.default(hom.nb))

2.5 % 97.5 %

(Intercept) 0.07332043 0.1160771

raceBlack 3.54571025 9.0299848
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Likelihood Ratio CIs

> confint(hom.poi)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -2.579819 -2.198699

raceBlack 1.443698 2.019231

> exp(confint(hom.poi))

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) 0.0757877 0.1109474

raceBlack 4.2363330 7.5325339

> confint(hom.nb)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -2.616478 -2.156532

raceBlack 1.274761 2.211746

> exp(confint(hom.nb))

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) 0.07305976 0.1157258

raceBlack 3.57784560 9.1316443
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If Not Taking Overdispersion Into Account . . .

I SEs are underestimated

I CIs will be too narrow

I Significance of variables will be over stated (reported P values
are lower than the actual ones)
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How to Check for Overdispersion?

I Think about whether overdispersion is likely — e.g.,
important explanatory variables are not available, or
dependence in observations.

I Compare the sample variances to the sample means computed
for groups of responses with identical explanatory variable
values.

I Large deviance relative to its deviance

I Examine residuals to see if a large deviance statistic may be
due to outliers

I Large numbers of outliers are usually signs of overdispersion

I Check standardized residuals and plot them against them
fitted values µ̂i .
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Train Data Revisit

Recall Pearson’s residual:

ei =
yi − µ̂i√

µ̂i

If no overdispersion, then

Var(Y ) ≈ (yi − µ̂i )2 ≈ E(Y ) ≈ µ̂i

So the size of Pearson’s residuals should be around 1.
With overdispersion,

Var(Y ) = µ+ Dµ2

then the size of Pearson’s residuals may increase with µ.
We may check the plot of the absolute value of (standardized)
Pearson’s residuals against fitted values µ̂i .
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Train Data — Checking Overdispersion

plot(trains1$fit, abs(rstandard(trains1, type="pearson")),

xlab="Fitted Values", ylab="|Standardized Pearson Residuals|")

●●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

0
1

2
3

4

Fitted Values

|S
ta

nd
ar

di
ze

d 
P

ea
rs

on
 R

es
id

ua
ls

|

The size of standardized Pearson’s residuals tend to increase with
fitted values. This is a sign of overdisperson.
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Train Data — Neg. Bin. Model

> trains.nb = glm.nb(TrRd ~ I(Year-1975)+offset(log(KM)), data=trains)

> summary(trains.nb)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.19999 0.19584 -21.446 < 2e-16 ***

I(Year - 1975) -0.03367 0.01288 -2.615 0.00893 **

---

(Dispersion parameter for Negative Binomial(10.1183) family taken to be 1)

Null deviance: 32.045 on 28 degrees of freedom

Residual deviance: 25.264 on 27 degrees of freedom

AIC: 132.69

Theta: 10.12

Std. Err.: 8.00

2 x log-likelihood: -126.69

For year effect, the estimated coefficients are similar (0.0337 for
neg. bin. model compared to 0.032 for Poisson model), but less
significant (P-value = 0.009 in neg. bin. model compared to 0.002
in Poisson model)
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