Multi-way Contingency Tables

Outline

- Multiway Contingency Tables
- Flat Contingency Tables
- How to effectively convey information in multiway contingency tables?
- Manipulation of 'Flat" Contingency Tables in R
- Logistic Models for Multi-way Contingency Tables

Multiway - 1

A better table:

MuscleWeight Drug		Type $1 \mid$ Type 2 Tension				Conditional odds ratios between Drug and Tension:		
		High	Low\|	\| High	Low	Wt.	Muscle	
High	1	3	3	23	41		Type 1	Type 2
	2	21	10	11	21	High	$\frac{3 \times 10}{2 \times 21} \approx 0.48$	$\frac{23 \times 21}{41 \times 10} \approx 1.07$
Low	1	22	45	4	6	High	$3 \times 21 \approx 0.48$	$\frac{1 \times 11}{41 \times 1.07}$
	2	32	23	12	22	Low	$\frac{22 \times 23}{45 \times 32} \approx 0.35$	$\frac{4 \times 22}{6 \times 12} \approx 1.22$

- The table splits in to four partial tables for the primary predictor (Drug) and the response (Tension), controlling for the other two variables.
- Conditional odds ratios between Drug and Tension can be easily computed from this table but not from the table on the previous slide.
- Tip: response and the primary predictor (if any) should be placed in the inner most layer of the table

Example (Mouse Muscle Tension)

A study to examine relationship between two drugs and muscle tension
Response: Tension — change in muscle tension: High, Low
Explanatory variables

- Drug: drug 1, drug (primary)
- Weight: weight of muscle: High, Low
- Muscle: muscle type: 1,2

A four-way "flat" contingency table $(2 \times 2 \times 2 \times 2)$:

Tension	Weight	Drug 1 Drug 2 Muscle Type			
		1	2	1	2
High	High	3	23	21	11
	Low	22	4	32	12
Low	High	3	41	10	21
	Low	45	6	23	22

This flat table is bad because ...
Multiway - 2

Example (Mouse Muscle Tension)

Conditional distributions of Tension given Drug, Weight, and Muscle type:					
Weight	Drug	Muscle			
			${ }^{1}$	Type 2	
		High	Low	High	Low
High		$\begin{aligned} & 50 \% \\ & 68 \% \end{aligned}$	$\begin{aligned} & 50 \% \\ & 32 \% \end{aligned}$	$\begin{aligned} & 36 \% \\ & 34 \% \end{aligned}$	64% 66%
Low	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 33 \% \\ & 58 \% \end{aligned}$	$\begin{aligned} & 67 \% \\ & 42 \% \end{aligned}$	$\begin{aligned} & 40 \% \\ & 35 \% \end{aligned}$	60\%

Observation:

- For Type 1 muscle, Drug 1 looks more effective in lowering muscle tension than Drug 2 does
- For Type 2 muscle, the effect of the two drugs looks similar

Another Example of "Flat" Contingency Tables

Example (Titanic)

Four-way table: $(2 \times 2 \times 4 \times 2)$
Breakup of people on Titanic by Sex, Age, Class, and Survival

Class	Sex Age Survived	Adult				Child			
		Female		Male		Female		Male	
		No	Yes	No	Yes	No	Yes	No	Yes
1st		4	140	118	57	0	1	0	5
2nd		13	80	154	14	0	13	0	11
3 rd		89	76	387	75	17	14	35	13
Crew		3	20	670	192	0	0	0	0

Multiway - 5

High	1	1	High	3
High	1	2	High	21
High	2	1	High	23
High	2	2	High	11
Low	1	1	High	22
Low	1	2	High	32
Low	2	1	High	4
Low	2	2	High	12
High	1	1	Low	3
High	1	2	Low	10
High	2	1	Low	41
High	2	2	Low	21
Low	1	1	Low	45
Low	1	2	Low	23
Low	2	1	Low	6
Low	2	2	Low	22

Manipulating Flat Contingency Tables in R

Multiway - 6
xtabs creates multiway tables in R, but the output is awkward.
> muscle.tab $=$ xtabs(Freq ${ }^{\sim}$ weight + muscle + drug + tension)
$>$ muscle.tab
, , drug = 1, tension = High
muscle
weight 12
High 323
Low 224
, , drug $=2$, tension $=$ High muscle
weight 12
High 2111
Low 3212
, , drug = 1 , tension = Low muscle
weight 12
High 341
Low 456
, , drug $=2$, tension $=$ Low
muscle
weight 12
High 1021
Low 2322
ftable() can print flat multi-way tables. Row and column variables in a flat table can be specified using row.vars and col.vars, and they are ordered from outer to inner layers.

$\begin{gathered} >\text { ftable(muscle.tab, row.vars=c("weight","drug"), } \\ \text { col.vars=c("muscle","tension")) } \end{gathered}$					
tension High Low High Low					
weight drug					
High	1	3	3	23	41
	2	21	10	11	21
Low	1	22	45	4	6
	2	32	23	12	22
$\begin{aligned} &>\text { ftable(muscle.tab, row.vars=c("tension", "weight"), } \\ & \text { col.vars=c("drug","muscle")) } \end{aligned}$					
$\begin{array}{lll} \text { drug } & 1 & 2 \end{array}$					
		1	2		
tension weight					
High	High	3	232		
	Low	22	43		
Low	High	3	4110		
	Low	45	62		
Multiway - 9					

Flat Table for Conditional Distributions

First compute the conditional distributions of tension given the rest using prop.table, and then print it using ftable.

$\begin{gathered} \text { > ftable(muscle.p.tab,row.vars=c("weight","drug"), } \\ \text { col.vars=c("muscle","tension")) } \end{gathered}$						
		muscle	1		2	
		tension	High	Low	High	Low
weight drug						
High	1		0.5000000	0.5000000	0.3593750	0.6406250
	2		0.6774194	0.3225806	0.3437500	0.6562500
Low	1		0.3283582	0.6716418	0.4000000	0.6000000
	2		0.5818182	0.4181818	0.3529412	0.6470588

> round(100*ftable(muscle.p.tab,row.vars=c("weight", "drug"))) muscle 12
tension High Low High Low
weight drug
High 1

Low 1
$\begin{array}{llll}50 & 50 & 36 & 64\end{array}$
$\begin{array}{llll}68 & 32 & 34 & 66\end{array}$
$\begin{array}{llll}33 & 67 & 40 & 60\end{array}$

Flat Marginal Tables

If a variable in the contingency table is neither specified in row.vars nor in col.vars, then it is ignored. The output is a marginal table of the specified variables, e.g., the following is a marginal table for drug, muscle, and tension, ignoring weight:

```
> ftable(muscle.tab,row.vars="drug", col.vars=c("muscle","tension"))
        muscle 1 2
        tension High Low High Low
drug
\begin{tabular}{lllll}
1 & 25 & 48 & 27 & 47 \\
2 & 53 & 33 & 23 & 43
\end{tabular}
```

Marginal table for drug and tension, ignoring weight and muscle:

```
> ftable(muscle.tab,row.vars="drug", col.vars="tension")
    tension High Low
```

drug
$\begin{array}{lll}1 & 52 & 95 \\ 2 & 76 & 76\end{array}$
$2 \quad 76 \quad 76$
Multiway - 10

Conditional Distributions in Marginal Tables

Say, we want the condition distribution of tension given drug and muscle, ignoring weight.

1. Create the marginal table, with "response" as the only column variable, and other var. in the marginal table as the row var..
> temp1 = ftable(muscle.tab, row.vars=c("muscle","drug"),

$>$ temp1

> col.vars="tension")
muscle drug

1	1	25	48
	2	53	33
2	1	27	47
	2	23	43

2. Find the conditional distribution using prop.table.
> temp2 = prop.table(temp1, 1)
> temp2

> tension High Low
muscle drug
$0.3424658 \quad 0.6575342$
0.61627910 .3837209
0.36486490 .6351351
0.3484848 .0 .6515152
Multiway - 12

Conditional Distributions in Marginal Tables

3 If necessary, reshape the condition distribution table using ftable
> ftable(temp2,row.vars="drug",col.vars=c("muscle","tension"))

| muscle | 1 | 2 | Low |
| :--- | ---: | ---: | ---: | ---: |
| tension | High | Low | High |

drug
$1 \quad 0.34246580 .65753420 .36486490 .6351351$
$2 \quad 0.61627910 .38372090 .3484848 \quad 0.6515152$
\# converted into percentages
> round(100*ftable(temp2, row.vars="drug",
col.vars=c("muscle","tension")))

$$
\begin{array}{lll}
\text { muscle } & 1 & 2
\end{array}
$$

tension High Low High Low
drug

1	34	66	36	64
2	62	38	35	65

$$
\text { Multiway - } 13
$$

Let

- $A_{i}, i=1, \ldots$, a be the dummy variables for levels of A
- $B_{j}, j=1, \ldots, b$ be the dummy variables for levels of B
- $C_{k}, k=1, \ldots, c$ be the dummy variables for levels of C

The model formula

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}+\beta_{j k}^{B C}+\beta_{i k}^{A C}+\beta_{i j k}^{A B C}
$$

can be written in terms of the dummy variables as

$$
\begin{aligned}
\operatorname{logit}\left(\pi_{i j k}\right)= & \alpha+\sum_{\ell=1}^{a} \beta_{\ell}^{A} A_{\ell}+\sum_{m=1}^{b} \beta_{m}^{B} B_{m}+\sum_{n=1}^{c} \beta_{n}^{C} C_{n} \\
& +\sum_{\ell=1}^{a} \sum_{m=1}^{b} \beta_{\ell m}^{A B} A_{\ell} B_{m}+\sum_{m=1}^{b} \sum_{n=1}^{c} \beta_{m n}^{B C} B_{m} C_{n}+\sum_{\ell=1}^{a} \sum_{n=1}^{c} \beta_{\ell n}^{A C} A_{\ell} C_{n} \\
& +\sum_{\ell=1}^{a} \sum_{m=1}^{b} \sum_{n=1}^{c} \beta_{\ell m n}^{A B C} A_{\ell} B_{m} C_{n}
\end{aligned}
$$

- How many parameters are there?

Logistic Models for Multi-way Contingency Tables

Let's start w/ models for 4-way tables (1 response +3 predictors)

- categorical predictors: A, B, C, with a, b, c levels respectively
- response: $Y=0$ or 1

Let

$$
\pi_{i j k}=\mathrm{P}(Y=1 \mid A=i, B=j, C=k)
$$

The most complex model for a 4-way table is the three way interaction model, denoted as $A * B * C$, including all main effects and 2-way, 3 -way interactions

$$
A+B+C+A * B+B * C+A * C+A * B * C
$$

The model formula is

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\underbrace{\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}}_{\text {main effects }}+\underbrace{\beta_{i j}^{A B}+\beta_{j k}^{B C}+\beta_{i k}^{A C}}_{\text {two-way interactions }}+\beta_{i j k}^{A B C}
$$

$$
\text { for } i=1, \ldots, a, j=1, \ldots, b, k=1, \ldots, c
$$

$$
\text { Multiway - } 14
$$

In the 3-way on the previous page, many parameters are redundant because

$$
A_{1}+\cdots+A_{a}=1, \quad B_{1}+\cdots+B_{b}=1, \quad C_{1}+\cdots+C_{c}=1
$$

So, need constraints on the parameters.
Some commonly used constraints are

- Baseline constraints:

$$
\begin{array}{r}
\beta_{1}^{A}=\beta_{1}^{B}=\beta_{1}^{C}=0 \\
\beta_{1 j}^{A B}=\beta_{i 1}^{A B}=\beta_{1 k}^{B C}=\beta_{j 1}^{B C}=\beta_{1 k}^{A C}=\beta_{i 1}^{A C}=0 \\
\beta_{1 j k}^{A B C}=\beta_{i 1 k}^{A B C}=\beta_{i j 1}^{A B C}=0
\end{array}
$$

- Sum-to-zero constraints:

$$
\begin{array}{r}
\sum_{i=1}^{a} \beta_{1}^{A}=\sum_{j=1}^{b} \beta_{1}^{B}=\sum_{k=1}^{c} \beta_{1}^{C}=0 \\
\sum_{i=1}^{a} \beta_{i j}^{A B}=\sum_{j=1}^{b} \beta_{i j}^{A B}=\sum_{j=1}^{b} \beta_{j k}^{B C}=\sum_{k=1}^{c} \beta_{j k}^{B C}=\sum_{i=1}^{a^{c}} \beta_{i k}^{A C}=\sum_{k=1}^{c} \beta_{i k}^{A C}=0 \\
\sum_{i=1}^{a} \beta_{1 j k}^{A B C}=\sum_{j=1}^{b} \beta_{i j k}^{A B C}=\sum_{k=1}^{c} \beta_{i j k}^{A B C}=0
\end{array}
$$

Multiway - 16

Regardless of the constraints used,

- the effective \# of parameters for a main effect is

$$
\text { number of levels }-1
$$

- the effective \# of parameters for an interaction is the product of (number of levels -1) for each factor involved in the interaction.
The total number of effective parameters is

$$
\begin{aligned}
& 1+\underbrace{(a-1)}_{A \text { main effects }}+\underbrace{(b-1)}_{B \text { main effects }}+\underbrace{(c-1)}_{C \text { main effects }} \\
&+\underbrace{(a-1)(b-1)}_{A B \text { interactions }}+\underbrace{(b-1)(c-1)}_{B C \text { interactions }}+\underbrace{(a-1)(c-1)}_{A C \text { interactions }} \\
&+\underbrace{(a-1)(b-1)(c-1)}_{A B C \text { interactions }} \\
&=a b c
\end{aligned}
$$

Multiway - 17

- In all the models, constraints on the main effects and interactions are the same as those on the corresponding parameters in the 3 -way interaction models.
- Generally, models must maintain hierarchy - cannot include an interaction terms without including the relevant main effects and lower order interactions

There are several simplifications of the 3-way interaction model, such as

- Model $A * B+B * C+A * C$:

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}+\beta_{j k}^{B C}+\beta_{i k}^{A C}
$$

- Model $A * B+A * C$

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}+\beta_{i k}^{A C}
$$

- Model $A+B * C$:

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{j k}^{B C}
$$

- Model $A+B+C$:

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}
$$

- Model $A * B$:

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{i j}^{A B}
$$

Multiway - 18

Interpretation of Model $A+B+C$ and its Coefficients

In Model $A+B+C$:

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}
$$

- There are $1+(a-1)+(b-1)+(c-1)$ effective parameters.
- Under the baseline constraint $\beta_{1}^{A}=\beta_{1}^{B}=\beta_{1}^{C}=0$,
- The odds of $Y=1$ when $A=i$ is the odds of $Y=1$ when $A=1$ multiplied by a factor of $e^{\beta_{i}^{A}}$, regardless of B and C
- Interpretation for $e^{\beta_{j}^{B}}$ and $e^{\beta_{k}^{C}}$: Ditto
- Homogeneous YA, YB, and YC association,

Homogeneous Association Revisit

In a 3-way table, if $X Y$ has homogeneous association given Z, then so do $Y Z$ given X and $X Z$ given Y.

\[

\]

Homogeneous $X Y$ association given Z means

$$
\begin{aligned}
\theta_{X Y(1)} & =\frac{a d}{c b}=\frac{A D}{C B}=\theta_{X Y(2)} \\
\Longleftrightarrow \theta_{Y Z(1)} & =\frac{a C}{c A}=\frac{b D}{d B}=\theta_{Y Z(2)}
\end{aligned}
$$

which means homogeneous $Y Z$ association given X.

\[

\]

Interpretation of Model $A * B * C$ and its Coefficients

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{k}^{C}+\beta_{i j}^{A B}+\beta_{j k}^{B C}+\beta_{i k}^{A C}+\beta_{i j k}^{A B C}
$$

Under the baseline constraint, the conditional odds ratio for

	$Y=1$	$Y=0$
$A=i$		
$A=1$		

equals $\left\{\begin{array}{l}e^{\beta_{i}^{A}} \\ e^{\beta_{i}^{A}+\beta_{i j}^{A B}} \\ e^{\beta_{i}^{A}+\beta_{i k}^{A C}} \\ e^{\beta_{i}^{A}+\beta_{i j}^{A B}+\beta_{i k}^{A C}}+\beta_{i j k}^{A B C}\end{array}\right.$
when $B=1, C=1$;
when $B=j, C=1$;
when $B=1, C=k$;
when $B=j, C=k$.
So $\frac{Y A \text { odds ratio when } B=j}{Y A \text { odds ratio when } B=1}= \begin{cases}e^{\beta_{i j}^{A B}} & \text { when } C=1 ; \\ e^{\beta_{i j}^{A B}+\beta_{i j k}^{A B C}} & \text { when } C=k .\end{cases}$
The 3-way interaction $e^{\beta_{i j k}^{A B C}}$ is the ratio of the ratios of odds ratios.

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{A}+\beta_{j}^{B}+\beta_{i j}^{A B}
$$

- Number of parameters: $1+(a-1)+(b-1)+(a-1)(b-1)$
- C is not in the model
$\Rightarrow Y$ and C are conditionally independent given A, B
- Under the baseline constraint $\beta_{1}^{A}=\beta_{1}^{B}=\beta_{1 j}^{A B}=\beta_{i 1}^{A B}=0$,

the conditional odds ratio for | $A=i$ | $Y=1$ | $Y=0$ |
| :--- | :--- | :--- |
| $A=1$ | | | equals $\begin{cases}e^{\beta_{i}^{A}} & \text { when } B=1 ; \\ e^{\beta_{i}^{A}+\beta_{i j}^{A B}} & \text { when } B=j\end{cases}$

So $e^{\beta_{i j}^{A B}}$ is a ratio of two odds ratios.

- Odds ratios of YA change with B (but not C), \Rightarrow no homogeneous $Y A$ association
- Likewise, can show that odds ratios of $Y B$ changes with A (but not C) \Rightarrow No homogeneous $Y B$ association

Multiway - 22

Model $A * B+B * C+A * C$:

- YA odds ratios change with both B and C
- $Y B$ odds ratios change with both A and C
- YC odds ratios change with both A and B
- no 3-way interactions means that

$$
\frac{Y A \text { odds ratio when } B=j_{1}}{Y A \text { odds ratio when } B=j_{2}}
$$

do not change with C
Model $A * B+B * C$:

- YA odds ratios change with B but not C
- YC odds ratios change with A but not B
- YB odds ratios change with both A and C

