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Example (Mouse Muscle Tension)
A study to examine relationship between two drugs and muscle tension

Response: Tension — change in muscle tension: High, Low

Explanatory variables

I Drug: drug 1, drug (primary)

I Weight: weight of muscle: High, Low

I Muscle: muscle type: 1, 2

A four-way “flat” contingency table (2× 2× 2× 2):

Drug 1 Drug 2
Muscle Type

Tension Weight 1 2 1 2

High High 3 23 21 11
Low 22 4 32 12

Low High 3 41 10 21
Low 45 6 23 22

This flat table is bad because ...
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A better table:

Muscle Type 1 Type 2
Tension

Weight Drug High Low High Low

High 1 3 3 23 41
2 21 10 11 21

Low 1 22 45 4 6
2 32 23 12 22

Conditional odds ratios
between Drug and Tension:

Muscle

Wt. Type 1 Type 2

High 3×10
3×21≈0.48 23×21

41×11≈1.07

Low 22×23
45×32≈0.35 4×22

6×12≈1.22

I The table splits in to four partial tables for the primary
predictor (Drug) and the response (Tension), controlling for
the other two variables.

I Conditional odds ratios between Drug and Tension can be
easily computed from this table but not from the table on the
previous slide.

I Tip: response and the primary predictor (if any) should be
placed in the inner most layer of the table
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Example (Mouse Muscle Tension)

Conditional distributions of Tension
given Drug, Weight, and Muscle type:

Muscle

Type 1 Type 2
Tension

Weight Drug High Low High Low

High 1 50% 50% 36% 64%
2 68% 32% 34% 66%

Low 1 33% 67% 40% 60%
2 58% 42% 35% 65%

Observation:

I For Type 1 muscle, Drug 1 looks more effective in lowering
muscle tension than Drug 2 does

I For Type 2 muscle, the effect of the two drugs looks similar
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Another Example of “Flat” Contingency Tables

Example (Titanic)

Four-way table: (2× 2× 4× 2)
Breakup of people on Titanic by Sex, Age, Class, and Survival

Sex Adult Child

Age Female Male Female Male

Survived No Yes No Yes No Yes No Yes
Class

1st 4 140 118 57 0 1 0 5
2nd 13 80 154 14 0 13 0 11
3rd 89 76 387 75 17 14 35 13

Crew 3 20 670 192 0 0 0 0
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Manipulating Flat Contingency Tables in R

> mouse.muscle = read.table("mousemuscle.dat",header=T)

> mouse.muscle

W M D tension.high tension.low

1 High 1 1 3 3

2 High 1 2 21 10

3 High 2 1 23 41

4 High 2 2 11 21

5 Low 1 1 22 45

6 Low 1 2 32 23

7 Low 2 1 4 6

8 Low 2 2 12 22

> attach(mouse.muscle)

> Freq = c(tension.high,tension.low)

> weight = rep(W,2)

> muscle = rep(M,2)

> drug = rep(D,2)

> tension = c(rep("High",8),rep("Low",8))
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> data.frame(weight, muscle, drug, tension, Freq)

weight muscle drug tension Freq

1 High 1 1 High 3

2 High 1 2 High 21

3 High 2 1 High 23

4 High 2 2 High 11

5 Low 1 1 High 22

6 Low 1 2 High 32

7 Low 2 1 High 4

8 Low 2 2 High 12

9 High 1 1 Low 3

10 High 1 2 Low 10

11 High 2 1 Low 41

12 High 2 2 Low 21

13 Low 1 1 Low 45

14 Low 1 2 Low 23

15 Low 2 1 Low 6

16 Low 2 2 Low 22
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xtabs creates multiway tables in R, but the output is awkward.

> muscle.tab = xtabs(Freq ~ weight + muscle + drug + tension)

> muscle.tab

, , drug = 1, tension = High

muscle

weight 1 2

High 3 23

Low 22 4

, , drug = 2, tension = High

muscle

weight 1 2

High 21 11

Low 32 12

, , drug = 1, tension = Low

muscle

weight 1 2

High 3 41

Low 45 6

, , drug = 2, tension = Low

muscle

weight 1 2

High 10 21

Low 23 22
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ftable() can print flat multi-way tables. Row and column
variables in a flat table can be specified using row.vars and
col.vars, and they are ordered from outer to inner layers.

> ftable(muscle.tab, row.vars=c("weight","drug"),

col.vars=c("muscle","tension"))

muscle 1 2

tension High Low High Low

weight drug

High 1 3 3 23 41

2 21 10 11 21

Low 1 22 45 4 6

2 32 23 12 22

> ftable(muscle.tab, row.vars=c("tension","weight"),

col.vars=c("drug","muscle"))

drug 1 2

muscle 1 2 1 2

tension weight

High High 3 23 21 11

Low 22 4 32 12

Low High 3 41 10 21

Low 45 6 23 22
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Flat Marginal Tables
If a variable in the contingency table is neither specified in
row.vars nor in col.vars, then it is ignored. The output is a
marginal table of the specified variables, e.g., the following is a
marginal table for drug, muscle, and tension, ignoring weight:

> ftable(muscle.tab,row.vars="drug", col.vars=c("muscle","tension"))

muscle 1 2

tension High Low High Low

drug

1 25 48 27 47

2 53 33 23 43

Marginal table for drug and tension, ignoring weight and
muscle:

> ftable(muscle.tab,row.vars="drug", col.vars="tension")

tension High Low

drug

1 52 95

2 76 76
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Flat Table for Conditional Distributions
First compute the conditional distributions of tension given the
rest using prop.table, and then print it using ftable.

> muscle.p.tab = prop.table(muscle.tab,1:3)

> ftable(muscle.p.tab,row.vars=c("weight","drug"),

col.vars=c("muscle","tension"))

muscle 1 2

tension High Low High Low

weight drug

High 1 0.5000000 0.5000000 0.3593750 0.6406250

2 0.6774194 0.3225806 0.3437500 0.6562500

Low 1 0.3283582 0.6716418 0.4000000 0.6000000

2 0.5818182 0.4181818 0.3529412 0.6470588

> round(100*ftable(muscle.p.tab,row.vars=c("weight","drug")))

muscle 1 2

tension High Low High Low

weight drug

High 1 50 50 36 64

2 68 32 34 66

Low 1 33 67 40 60

2 58 42 35 65Multiway - 11

Conditional Distributions in Marginal Tables
Say, we want the condition distribution of tension given drug

and muscle, ignoring weight.

1. Create the marginal table, with “response” as the only column
variable, and other var. in the marginal table as the row var..
> temp1 = ftable(muscle.tab, row.vars=c("muscle","drug"),

col.vars="tension")

> temp1

tension High Low

muscle drug

1 1 25 48

2 53 33

2 1 27 47

2 23 43

2. Find the conditional distribution using prop.table.
> temp2 = prop.table(temp1, 1)

> temp2

tension High Low

muscle drug

1 1 0.3424658 0.6575342

2 0.6162791 0.3837209

2 1 0.3648649 0.6351351

2 0.3484848 0.6515152
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Conditional Distributions in Marginal Tables

3 If necessary, reshape the condition distribution table using
ftable

> ftable(temp2,row.vars="drug",col.vars=c("muscle","tension"))

muscle 1 2

tension High Low High Low

drug

1 0.3424658 0.6575342 0.3648649 0.6351351

2 0.6162791 0.3837209 0.3484848 0.6515152

# converted into percentages

> round(100*ftable(temp2, row.vars="drug",

col.vars=c("muscle","tension")))

muscle 1 2

tension High Low High Low

drug

1 34 66 36 64

2 62 38 35 65
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Logistic Models for Multi-way Contingency Tables
Let’s start w/ models for 4-way tables (1 response + 3 predictors)

I categorical predictors: A, B, C , with a, b, c levels respectively

I response: Y = 0 or 1
Let

πijk = P(Y = 1|A = i ,B = j ,C = k)

The most complex model for a 4-way table is the three way
interaction model, denoted as A ∗ B ∗ C , including all main
effects and 2-way, 3-way interactions

A + B + C + A ∗ B + B ∗ C + A ∗ C + A ∗ B ∗ C

The model formula is

logit(πijk) = α + βAi + βBj + βCk︸ ︷︷ ︸
main effects

+βABij + βBCjk + βACik︸ ︷︷ ︸
two-way interactions

+βABCijk

for i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , c.
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Let

I Ai , i = 1, . . . , a be the dummy variables for levels of A

I Bj , j = 1, . . . , b be the dummy variables for levels of B

I Ck , k = 1, . . . , c be the dummy variables for levels of C

The model formula

logit(πijk) = α + βAi + βBj + βCk + βABij + βBCjk + βACik + βABCijk

can be written in terms of the dummy variables as

logit(πijk) = α +
a∑

`=1

βA
` A` +

b∑
m=1

βB
mBm +

c∑
n=1

βC
n Cn

+
a∑

`=1

b∑
m=1

βAB
`m A`Bm +

b∑
m=1

c∑
n=1

βBC
mnBmCn +

a∑
`=1

c∑
n=1

βAC
`n A`Cn

+
a∑

`=1

b∑
m=1

c∑
n=1

βABC
`mn A`BmCn

I How many parameters are there?
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In the 3-way on the previous page, many parameters are redundant
because

A1 + · · ·+ Aa = 1, B1 + · · ·+ Bb = 1, C1 + · · ·+ Cc = 1.

So, need constraints on the parameters.
Some commonly used constraints are

I Baseline constraints:

βA
1 = βB

1 = βC
1 = 0

βAB
1j = βAB

i1 = βBC
1k = βBC

j1 = βAC
1k = βAC

i1 = 0

βABC
1jk = βABC

i1k = βABC
ij1 = 0

I Sum-to-zero constraints:
a∑

i=1

βA
1 =

b∑
j=1

βB
1 =

c∑
k=1

βC
1 = 0

a∑
i=1

βAB
ij =

b∑
j=1

βAB
ij =

b∑
j=1

βBC
jk =

c∑
k=1

βBC
jk =

a∑
i=1

βAC
ik =

c∑
k=1

βAC
ik = 0

a∑
i=1

βABC
1jk =

b∑
j=1

βABC
ijk =

c∑
k=1

βABC
ijk = 0
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Regardless of the constraints used,

I the effective # of parameters for a main effect is

number of levels −1

I the effective # of parameters for an interaction is the product
of (number of levels −1) for each factor involved in the
interaction.

The total number of effective parameters is

1 + (a− 1)︸ ︷︷ ︸
A main effects

+ (b − 1)︸ ︷︷ ︸
B main effects

+ (c − 1)︸ ︷︷ ︸
C main effects

+ (a− 1)(b − 1)︸ ︷︷ ︸
AB interactions

+ (b − 1)(c − 1)︸ ︷︷ ︸
BC interactions

+ (a− 1)(c − 1)︸ ︷︷ ︸
AC interactions

+ (a− 1)(b − 1)(c − 1)︸ ︷︷ ︸
ABC interactions

= abc
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There are several simplifications of the 3-way interaction model,
such as

I Model A ∗ B + B ∗ C + A ∗ C :

logit(πijk) = α + βAi + βBj + βCk + βABij + βBCjk + βACik

I Model A ∗ B + A ∗ C

logit(πijk) = α + βAi + βBj + βCk + βABij + βACik

I Model A + B ∗ C :

logit(πijk) = α + βAi + βBj + βCk + βBCjk

I Model A + B + C :

logit(πijk) = α + βAi + βBj + βCk

I Model A ∗ B:

logit(πijk) = α + βAi + βBj + βABij
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I In all the models, constraints on the main effects and
interactions are the same as those on the corresponding
parameters in the 3-way interaction models.

I Generally, models must maintain hierarchy — cannot include
an interaction terms without including the relevant main
effects and lower order interactions
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Interpretation of Model A + B + C and its Coefficients

In Model A + B + C :

logit(πijk) = α + βAi + βBj + βCk

I There are 1 + (a− 1) + (b− 1) + (c − 1) effective parameters.

I Under the baseline constraint βA1 = βB1 = βC1 = 0,

I The odds of Y = 1 when A = i is the odds of Y = 1
when A = 1 multiplied by a factor of eβ

A
i , regardless of B

and C
I Interpretation for eβ

B
j and eβ

C
k : Ditto

I Homogeneous YA, YB, and YC association,
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Homogeneous Association Revisit
In a 3-way table, if XY has homogeneous association given Z ,
then so do YZ given X and XZ given Y .

Z = 1 Z = 2

X = 1 X = 2 X = 1 X = 2

Y = 1 a b A B
Y = 2 c d C D

Homogeneous XY association given Z means

θXY (1) =
ad

cb
=

AD

CB
= θXY (2)

⇐⇒ θYZ(1) =
aC

cA
=

bD

dB
= θYZ(2)

which means homogeneous YZ association given X .

X = 1 X = 2

Z = 1 Z = 2 Z = 1 Z = 2

Y = 1 a A b B
Y = 2 c C d D
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Interpretation of Model A ∗ B and its Coefficients

logit(πijk) = α + βAi + βBj + βABij

I Number of parameters: 1 + (a− 1) + (b − 1) + (a− 1)(b − 1)

I C is not in the model
⇒ Y and C are conditionally independent given A, B

I Under the baseline constraint βA1 = βB1 = βAB1j = βABi1 = 0,

the conditional odds ratio for
Y = 1 Y = 0

A = i
A = 1

equals{
eβ

A
i when B = 1;

eβ
A
i +βAB

ij when B = j

So eβ
AB
ij is a ratio of two odds ratios.

I Odds ratios of YA change with B (but not C ),
⇒ no homogeneous YA association

I Likewise, can show that odds ratios of YB changes with A
(but not C ). ⇒ No homogeneous YB association
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Interpretation of Model A ∗ B ∗ C and its Coefficients

logit(πijk) = α + βAi + βBj + βCk + βABij + βBCjk + βACik + βABCijk

Under the baseline constraint, the conditional odds ratio for

Y = 1 Y = 0
A = i
A = 1

equals


eβ

A
i when B = 1,C = 1;

eβ
A
i +βAB

ij when B = j ,C = 1;

eβ
A
i +βAC

ik when B = 1,C = k ;

eβ
A
i +βAB

ij +βAC
ik +βABC

ijk when B = j ,C = k .

So
YA odds ratio when B = j

YA odds ratio when B = 1
=

{
eβ

AB
ij when C = 1;

eβ
AB
ij +βABC

ijk when C = k.

The 3-way interaction eβ
ABC
ijk is the ratio of the ratios of odds ratios.
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Model A ∗ B + B ∗ C + A ∗ C :

I YA odds ratios change with both B and C

I YB odds ratios change with both A and C

I YC odds ratios change with both A and B

I no 3-way interactions means that

YA odds ratio when B = j1
YA odds ratio when B = j2

do not change with C

Model A ∗ B + B ∗ C :

I YA odds ratios change with B but not C

I YC odds ratios change with A but not B

I YB odds ratios change with both A and C
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