Chapter 7 Loglinear Models for Contingency Tables

7.1 Loglinear Models For Two-Way And Three-Way Tables
7.2 Inference For Loglinear Models
7.3 The Loglinear-Logistic Connection

Chapter 7-1

Loglinear Models for Two-Way Tables

In a $I \times J$ table, X and Y are independent if

$$
\begin{aligned}
\mathrm{P}(X=i, Y=j) & =\mathrm{P}(X=i) \mathrm{P}(Y=j) \quad \text { for all } i, j \\
\text { i.e., } \quad \pi_{i j} & =\pi_{i+} \pi_{+j}
\end{aligned}
$$

For expected cell frequencies,

$$
\begin{array}{rlr}
\mu i j & =n \pi_{i j} & \text { (in general) } \\
& =n \pi_{i+} \pi_{+j} & (\text { if } X, Y \text { indep.) }
\end{array}
$$

Loglinear models treat cell counts $n_{i j}$ as Poisson and use log link

$$
\begin{array}{rrr}
\log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y} & \text { (if } X, Y \text { indep.) } \\
\log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{i j}^{X Y} & \text { (in general) }
\end{array}
$$

If X, Y indep., then

$$
\mu_{i j}=e^{\lambda} \exp \left(\lambda_{i}^{X}\right) \exp \left(\lambda_{j}^{Y}\right)
$$

where $\exp \left(\lambda_{i}^{X}\right) \propto \pi_{i+}, \exp \left(\lambda_{j}^{Y}\right) \propto \pi_{+j}$.

Loglinear Models For Contingency Tables

- Logistic regression and other models in Ch 3-6 distinguish between a response variable Y and explanatory vars x_{1}, x_{2}, etc.
- Loglinear models for contingency tables treat all variables as response variables, like multivariate analysis.

Ex. Survey of high school seniors (see text, p.209):

- Y_{1} : used alcohol? (yes, no)
- Y_{2} : cigarettes? (yes, no)
- Y_{3} : marijuana? (yes, no)

Interested in patterns of dependence and independence among the variables:

- Any variables (conditionally) independent?
- Strength of associations?
- Homogeneous associations?
- Interactions?

Chapter 7-2

Poisson-Multinomial Connection

If Y_{1}, \ldots, Y_{J} are independent Poisson random variables, and

$$
Y_{j} \sim \operatorname{Poisson}\left(\mu_{j}\right), \quad j=1, \ldots, J
$$

then given $Y_{1}+\cdots+Y_{J}=n$,

$$
\left(Y_{1}, Y_{2}, \ldots, Y_{J}\right) \sim \operatorname{Multinom}\left(n ; \pi_{1}, \pi_{2}, \ldots, \pi_{J}\right)
$$

where

$$
\pi_{j}=\frac{\mu_{j}}{\mu_{1}+\ldots+\mu_{J}}
$$

Consider an $I \times J$ contingency table that cross-classifies n subjects.

	Y categories				
X categories	$Y=1$	$Y=2$	\cdots	$Y=J$	X margin
$X=1$	n_{11}	n_{12}	\cdots	$n_{1 J}$	n_{1+}
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots
$X=I$	$n_{l 1}$	$n_{l 2}$	\cdots	$n_{I J}$	n_{I+}
Y margin	n_{+1}	n_{+2}	\cdots	n_{+J}	n

Let $\left\{\pi_{i j}\right\}$ be the joint cell prob. $\pi_{i j}=\mathrm{P}(X=i, Y=j)$.

- In Ch 4-6, cell counts $n_{i j}$ are modeled as binomial or multinomial.
- In Ch 7, $n_{i j}$'s are modeled as indep. Poisson

$$
n_{i j} \sim \operatorname{Poisson}\left(\mu_{i j}\right), \quad \text { where } \mu_{i j}=n \pi_{i j} .
$$

By the Poisson-Multinomial connection, given marginal total $n=n_{++}$or n_{i+} or n_{+j}, the cell counts $n_{i j}$ are still binomial or multinomial, consistent $w /$ the binomial or multinomial models in Ch 4-6.

> Chapter 7-5

For an $I \times J$ contingency table, number of cells $=I J$:

- General model: $\log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{i j}^{X Y}$

Parameter	Nonredundant
λ	1
λ_{i}^{X}	I-1
λ_{j}^{Y}	$J-1$
$\lambda_{i j}^{X Y}$	$(I-1)(J-1)$
Total	IJ

Residual $\mathrm{df}=\#$ of cells $-\#$ of parameters $=I J-I J=0$
So for 2-way table, the general model is the saturated model.

- Independence model: $\log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}$

$$
\begin{aligned}
\# \text { of parameters } & =1+(I-1)+(J-1) \\
& =I+J-1 \\
\text { Residual df } & =I J-(I+J-1) \\
& =(I-1)(J-1)
\end{aligned}
$$

Chapter 7-7

Residual Degrees of Freedom

For a Poisson loglinear model,
Residual $\mathrm{df}=\#$ of Poisson counts $-\#$ of parameters
Here $\#$ of Poisson counts $=\#$ cells in table.
Just like logistic models contingency tables, loglinear models like $\log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}$ have redundant parameters.
Think of dummy variables for each variable.
Number of dummies is one less than number of levels of variable. Products of dummy variables correspond to "interaction" terms.

- $(I-1)$ of $\left\{\lambda_{i}^{X}\right\}$ are non-redundant
- $(J-1)$ of $\left\{\lambda_{j}^{Y}\right\}$ are non-redundant
- $(I-1)(J-1)$ of $\left\{\lambda_{i j}^{X Y}\right\}$ are non-redundant

Chapter 7-6

Interpretation of Parameters

Under saturated model $\log \left(\mu_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{i j}^{X Y}$,
log-odds-ratio comparing levels i and i^{\prime} of X and j and j^{\prime} of Y is

$$
\begin{aligned}
\log \left(\frac{\mu_{i j} \mu_{i^{\prime} j^{\prime}}}{\mu_{i j^{\prime}} \mu_{i^{\prime} j}}\right)= & \log \mu_{i j}+\log \mu_{i^{\prime} j^{\prime}}-\log \mu_{i j^{\prime}}-\log \mu_{i^{\prime} j} \\
= & \left(\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{i j}^{X Y}\right) \\
& +\left(\lambda+\lambda_{i^{\prime}}^{X}+\lambda_{j^{\prime}}^{Y}+\lambda_{i^{\prime} j^{\prime}}^{X Y}\right) \\
& -\left(\lambda+\lambda_{i}^{X}+\lambda_{j^{\prime}}^{Y}+\lambda_{i j^{\prime}}^{X Y}\right) \\
& -\left(\lambda+\lambda_{i^{\prime}}^{X}+\lambda_{j}^{Y}+\lambda_{i^{\prime} j}^{X Y}\right) \\
= & \lambda_{i j}^{X Y}+\lambda_{i^{\prime} j^{\prime}}^{X Y}-\lambda_{i^{\prime}}^{X Y}-\lambda_{i^{\prime} j}^{X Y}
\end{aligned}
$$

For the independence model this is 0 , and the odds-ratio is $e^{0}=1$.

- As the saturated model fits the data perfectly, the MLEs for the parameters of the loglinear model will make the model fitted odds ratio equal to the empirical odds ratio

$$
\frac{\widehat{\mu}_{i j} \hat{\mu}_{i^{\prime} j^{\prime}}}{\widehat{\mu}_{i j^{\prime}}{\widehat{i^{\prime} j}}^{\prime}}=\exp \left(\widehat{\lambda}_{i j}^{X Y}+\widehat{\lambda}_{i^{\prime} j^{\prime}}^{X Y}-\widehat{\lambda}_{i j^{\prime}}^{X Y}-\widehat{\lambda}_{i^{\prime} j}^{X Y}\right)=\frac{n_{i j} n_{i^{\prime} j^{\prime}}}{n_{i j^{\prime}} n_{i^{\prime} j}}
$$

- Loglinear models (both independence and saturated one) treat X and Y symmetrically. Unlike, e.g., logistic models where $Y=$ response, $X=$ explanatory.
- To test the independence of X and Y, the LR test comparing the independence model and saturated model is equivalent to the G^{2} test of independence in Section 2.5.

Chapter 7-9

There are several simplifications of the saturated model for 3-way table. We denote them by their highest order interaction terms

- ($X Y, Y Z, X Z$) - Homogeneous Association Model

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{j k}^{Y Z}+\lambda_{i k}^{X Z}
$$

- $(Y Z, X Z)$ - Conditional Independence Model

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{j k}^{Y Z}+\lambda_{i k}^{X Z}
$$

- Independence Model (X, Y, Z)

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}
$$

- X, Y, Z are independent.
- $X Y, Y Z, X Z$ odds ratios are all zero
- $(X, Y Z)$

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{j k}^{Y Z}
$$

- X is independent of (Y, Z), though (Y, Z) might be dependent.

Loglinear Models for Three-Way Tables

In a $I \times J \times K$ table $w /$ cell counts $\left\{n_{i j k}\right\}$, the saturated model is the 3 -way interaction model, denoted as $(X Y Z)$ is
$\log \left(\mu_{i j k}\right)=\lambda+\underbrace{\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}}_{\text {main effects }}+\underbrace{\lambda_{i j}^{X Y}+\lambda_{j k}^{Y Z}+\lambda_{i k}^{X Z}}_{\text {2-way interactions }}+\underbrace{\lambda_{i j k}^{X Y Z}}_{\text {3-way interactions }}$

- How many non-redundant parameters for each term?

$$
\begin{aligned}
& 1+\underbrace{(I-1)}_{X \text { main effects }}+\underbrace{(J-1)}_{Y \text { main effects }}+\underbrace{(K-1)}_{Z \text { main effects }} \\
&+\underbrace{(I-1)(J-1)}_{X Y \text { interactions }}+\underbrace{(J-1)(K-1)}_{Y Z \text { interactions }}+\underbrace{(I-1)(K-1)}_{X Z \text { interactions }} \\
&+\underbrace{(1-1)(J-1)(K-1)}_{X Y Z \text { interactions }} \\
&=I \times J \times K=\# \text { of cell counts }
\end{aligned}
$$

Chapter 7-10
($X Y, Y Z, X Z$) — Homogeneous Association Model

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{j k}^{Y Z}+\lambda_{i k}^{X Z}
$$

$X-Y$ odds ratios are the same at all levels of Z : if Z is fixed at k log-odds-ratio comparing levels i and i^{\prime} of X and j and j^{\prime} of Y is

$$
\begin{aligned}
\log \left(\frac{\mu_{i j k} \mu_{i^{\prime} j^{\prime} k}}{\mu_{i j^{\prime} k} \mu_{i^{\prime} j k}}\right)= & \log \mu_{i j k}+\log \mu_{i^{\prime} j^{\prime} k}-\log \mu_{i j^{\prime} k}-\log \mu_{i^{\prime} j k} \\
= & \left(\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{j k}^{Y Z}+\lambda_{i k}^{X Z}\right) \\
& +\left(\lambda+\lambda_{i^{\prime}}^{X}+\lambda_{j^{\prime}}^{Y}+\lambda_{k}^{Z}+\lambda_{i^{\prime} j^{\prime}}^{X Y}+\lambda_{j k}^{Y Z}+\lambda_{i^{\prime} k}^{X Z}\right) \\
& -\left(\lambda+\lambda_{i}^{X}+\lambda_{j^{\prime}}^{Y}+\lambda_{k}^{Z}+\lambda_{i^{\prime}}^{X Y}+\lambda_{j^{\prime} k}^{Y Z}+\lambda_{i k}^{X Z}\right) \\
& -\left(\lambda+\lambda_{i^{\prime}}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{j^{\prime} j^{\prime} j^{\prime}}^{Y Z}+\lambda_{j^{\prime} k}^{Y Z}+\lambda_{i^{\prime} k}^{X Z}\right) \\
= & \underbrace{\lambda_{i j}^{X Y}+\lambda_{i^{\prime} j^{\prime}}^{X Y}-\lambda_{i j^{\prime}}^{X Y}-\lambda_{i^{\prime} j}^{X Y}}_{\text {does not depend on } k} .
\end{aligned}
$$

Similarly, $Y-Z$ odds ratio same at all levels of X, and $X-Z$ odds ratio same at all levels of Y, because model has no three-factor interaction.

Chapter 7-12

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{j k}^{Y Z}+\lambda_{i k}^{X Z}
$$

- X and Y are conditionally independent, given Z because

$$
\log \left(\frac{\mu_{i j k} \mu_{i^{\prime} j^{\prime} k}}{\mu_{i j^{\prime} k} \mu_{i^{\prime} j k}}\right)=\lambda_{i j}^{X Y}+\lambda_{i^{\prime} j^{\prime}}^{X Y}-\lambda_{i j^{\prime}}^{X Y}-\lambda_{i^{\prime} j}^{X Y}=0
$$

- $X-Z$ odds ratio is the same at all levels of Y
$Y-Z$ odds ratio same at all levels of X

Chapter 7-13
> teens.AC.AM.CM $=\operatorname{glm}$ (Freq $\sim A * C+C * M+A * M$,
family=poisson, data=teens.df)
> summary(teens.AC.AM.CM)
Coefficients:

(Intercept)	6.81387	0.03313	205.699	< $2 \mathrm{e}-16$	***
AN	-5.52827	0.45221	-12.225	< 2e-16	*
CN	-3.01575	0.15162	-19.891	< 2e-16	**
MN	-0.52486	0.05428	-9.669	< 2e-16	*
AN: CN	2.05453	0.17406	11.803	< $2 \mathrm{e}-16$	***
CN: MN	2.84789	0.16384	17.382	< 2e-16	*
AN: MN	2.98601	0.46468	6.426	$1.31 \mathrm{e}-1$	

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 2851.46098 on 7 degrees of freedom Residual deviance: 0.37399 on 1 degrees of freedom AIC: 63.417

The $(A C, A M, C M)$ model fits well: Deviance $=0.37$ on 1 df .

Example (Alcohol, Cigarette, \& Marijuana Use)

Alcohol	Cigarette	Marijuana Use	
		Yes	No
Use	Yes	911	538
Yes	No	44	456
	Yes	3	43
No	No	2	279

> $A=g l\left(2,4\right.$, length $\left.=8, l_{\text {abels }}=c(" Y ", " N ")\right)$
> $\mathrm{C}=\mathrm{gl}(2,2$, length $=8$, labels $=c(" Y ", " \mathrm{~N} "))$
$>\mathrm{M}=\mathrm{gl}(2,1$, length $=8$, labels $=c(" \mathrm{Y} ", " \mathrm{~N} "))$
$>$ Freq $=c(911,538,44,456,3,43,2,279)$
$>$ teens.df = data.frame(A,C,M, Freq)
$>$ teens.df
A C M Freq
1 Y Y Y 911
2 Y Y N 538
3 Y N Y 44
4 Y N N 456
5 N Y Y 3
6 N Y N 43
7 N N Y 2
8 N N N 279
Chapter 7-14

Note: As a LRT, goodness-of-fit on previous slide is comparing to saturated model.
$>$ teens.ACM $=$ update (teens.AC.AM.CM, . ~ A*C*M)
> anova(teens.AC.AM.CM, teens.ACM, test="Chisq")
Analysis of Deviance Table
Model 1: Freq ~ $A * C+C * M+A * M$
Model 2: Freq ~ $A+C+M+A: C+A: M+C: M+A: C: M$
Resid. Df Resid. Dev Df Deviance $\operatorname{Pr}(>C h i)$
$1 \quad 1 \quad 0.37399$
$\begin{array}{llllll}2 & 0 & 0.00000 & 1 & 0.37399 & 0.5408\end{array}$
And none of the interaction terms can be dropped:

Single term deletions				
Freq ~ $\mathrm{A} * \mathrm{C}+\mathrm{C} * \mathrm{M}+$				
	Df Deviance	AIC LRT	$\operatorname{Pr}(>\mathrm{Chi})$	
<none>	0.37	63.42		
A: C	$1 \quad 187.75$	248.80187 .38	< $2.2 \mathrm{e}-16$	***
C:M	1497.37	558.41497 .00	< $2.2 \mathrm{e}-16$	***
A: M	192.02	153.0691 .64	< 2.2e-16	***
		Chapte	7-16	

Example (Automobile Accidents)

Just like all GLMs, one can use likelihood ratio test to compare between models.
E.g., to test for conditional independence of A and C given M :
$>$ teens.AM. $\mathrm{CM}=$ update (teens.AC.AM.CM, . $\sim A * M+C * M$)
> anova(teens.AM.CM, teens.AC.AM.CM, test="Chisq")
Analysis of Deviance Table

Model 1: Freq ~ $A+M+C+A: M+M: C$
Model 2: Freq ~ $A * C+C * M+A * M$
Resid. Df Resid. Dev Df Deviance $\operatorname{Pr}(>C h i)$
$1 \quad 2187.754$
$210.3741187 .38<2.2 e-16 * * *$
Strong evidence that A, C are not conditionally indep. given M.

Chapter 7-17
> G.L.S.I $=$ glm(Freq $\left.{ }^{\sim} G+L+S+I, f a m i l y=" p o i s s o n "\right) ~$
$>$ GL.GS.GI.LS.LI.SI = glm(Freq ~ (G+L+S+I)^2, family="poisson")
> GIL.GIS.GLS.ILS = glm(Freq ~ (G+L+S+I)^3, family="poisson")
> deviance(G.L.S.I)
[1] 2792.771
> deviance(GL.GS.GI.LS.LI.SI)
[1] 23. 35099
> deviance(GIL.GIS.GLS.ILS)
[1] 1.325317
Goodness of Fit:

Model	Deviance	d.f.	P-value
(G, I, L, S)	2792.78	11	$<2.2 \times 10^{16}$
$(G I, G L, G S, I L, I S, L S)$	23.35	5	0.00029
$(G I L, G I S, G L S, I L S)$	1.325	1	0.25

- Why are the df. for the 3 models 11,5 , and 1 ?
- need a model more complex than ($G I, G L, G S, I L, I S, L S)$ but simpler than (GIL, GIS, GLS, ILS).

68,694 passengers of autos and light trucks accidents in Maine

		Seat	Injury	
Gender	Location		No	Yes
Female	Urban	No	7,287	996
		Yes	11,587	759
	Rural	No	3,246	973
		Yes	6,134	757
Male	Urban	No	10,381	812
		Yes	10,969	380
	Rural	No	6,123	1,084
		Yes	6,693	513

$$
\begin{aligned}
& \text { > G = gl(2, 8, 16, labels = c("F","M")) \# Gender } \\
& >L=g l(2,4,16, \text { labels = c("Urban", "Rural")) \# Location } \\
& >\mathrm{S}=\mathrm{gl}(2,2,16, \operatorname{labels}=\mathrm{c}(" \mathrm{~N} ", " \mathrm{Y} ")) \quad \text { \# Seat-belt } \\
& \text { > I = gl(2, 1, 16, labels = c("N","Y")) \# Injured } \\
& >G=r e l e v e l(G, r e f=" M ") \\
& \text { > S = relevel(S, ref="Y") } \\
& >\text { Freq }=c(7287,996,11587,759,3246,973,6134,757 \text {, } \\
& \text { 10381, 812, 10969, 380, 6123, 1084, 6693, 513) }
\end{aligned}
$$

Chapter 7-18

Goodness of Fit:

Model	Deviance	d.f.	P-value
$(G I L, G S, I S, L S)$	18.5693	4	0.00095
$(G I S, G L, ~ I L, ~ L S)$	22.8468	4	0.00014
$(G L S, G I, I L, I S)$	7.4645	4	0.1133
$(I L S, G I, G L, G S)$	20.6334	4	0.00037
$(G L S, I L S, G I)$	3.5914	3	0.3091
$(G L S, G I L, ~ I S)$	4.4909	3	0.21310
\vdots	\vdots	\vdots	\vdots
(GIL, GLS, ILS)	1.3670	2	0.5048
(GIL, GIS, ILS)	16.1391	2	0.00031
(GIS, GLS, ILS)	3.5624	2	0.16843
(GIL, GIS, GLS)	4.3720	2	0.11237

- ($G L S, G I, I L, I S$) is the simplest model that looks acceptable in Goodness of Fit
$>$ add1(GL.GS.GI.LS.LI.SI, scope $=\sim$. $+G * I * L+G * I * S+G * L * S+I * L * S)$
Single term additions

Model:
Freq $\sim(G+L+S+I)^{\wedge} 2$
Df Deviance AIC
<none> 23.3510198 .81
G:L:I 1818.5693196 .03
G:S:I $1 \quad 22.8468200 .31$
G:L:S $\quad 1 \quad 7.4645 \quad 184.92$
L:S:I $1 \quad 20.6334198 .09$
> drop1 (GIL.GIS.GLS.ILS)
Single term deletions

Model:
Freq $\sim(G+L+S+I)^{\wedge} 3$ Df Deviance AIC
<none> $\quad 1.3253184 .78$
G:L:S $\quad 1 \quad 16.1391197 .60$
G:L:I $1 \quad 3.5624185 .02$
G:S:I $11 \quad 1.3670 \quad 182.83$
L:S:I 14.3720185 .83
Chapter 7-21
Model (GI, GL, GS, IL, IS, LS)
> summary (GL.GS.GI.LS.LI.SI)
Coefficients:
(... estimates for main effects are omitted ...)

GF:LRural $-0.209922 \quad 0.016124 \quad-13.019<2 e-16 * * *$
GF:SN $\quad-0.459925 \quad 0.015682-29.328<2 \mathrm{e}-16$ ***
GF:IY $0.540528 \quad 0.027219 \quad 19.859<2 e-16$ ***
LRural:SN -0.084926 $0.016194 \quad-5.2441 .57 \mathrm{e}-07$ ***
LRural:IY $0.755025 \quad 0.026949 \quad 28.017<2 \mathrm{e}-16 * * *$
SN:IY $0.8139950 .027618 \quad 29.473<2 \mathrm{e}-16 * * *$

- SI conditional odds ratio: $e^{0.814} \approx 2.257$

Odds of injury when not wearing seal-belt are 2.257 times of the odds when wearing, constant across levels of G and L

- 95\% Wald CI for SI conditional odds ratio:

$$
e^{0.814 \pm 1.96 \times 0.0276}=\left(e^{0.760}, e^{0.868}\right)=(2.138,2.382)
$$

- GS conditional odds ratio: $e^{-0.460} \approx 0.63$ Odds of not wearing seat belt for women are 0.63 times the odds for men, constant across levels of I and L

Chapter 7-22

	$(G I, G L, G S$, $I L, I S, L S)$	$(G L S, G I$, $I L, I S)$
Odds Ratio	1.72	1.72
GI (f,m) v.s. (yes,no)	2.13	2.13
LI (rural, urban) v.s. (yes,no)	2.26	2.26
SI (no,yes) v.s. (yes, no)	0.81	0.86
GL (f,m) v.s. (rural, urban) (S=yes)	0.81	0.75
GL (f,m) v.s. (rural, urban) (S=no)	0.81	
GS (f,m) v.s. (no, yes) (L=urban)	0.63	0.66
GS (f,m) v.s. (no, yes) (L=rural)	0.63	0.58
LS (rural, urban) v.s. (no,yes) (G=m)	0.92	0.97
LS (rural, urban) v.s. (no,yes) (G=f)	0.92	0.85

Large Samples and Statistical Versus Practical Significance

For large sample sizes, statistically significant effects can be weak and unimportant.

- Though model (GLS, GI, IL, IS) seems to fit better than ($G I, G L, G S, I L, I S, L S$). However, the three-factor interaction is weak as shown in the Table on the previous slide.

Chapter 7-25

Loglinear-Logit Connection

Loglinear models

- all variables are response variables
- examine relationships between all variables
- model joint probabilities
e.g., for 3-way tables, model $\pi_{i j k}=\mathrm{P}(X=i, Y=j, Z=k)$

Logistic models

- One (binary) response variable Y and the rest are explanatory $X, Z, W \ldots$
- examine relationship between the response Y and explanatory variables ($X, Z, W \ldots$...)
but ignore relationships between explanatory variables ($X, Z, W \ldots$...)
- model conditional probabilities
e.g., for 3-way tables, model $\mathrm{P}(Y=j \mid X=i, Z=k)$

Loglinear Cell Residuals

```
> std.res1 = round(rstandard(GL.GS.GI.LS.LI.SI,type="pearson"),2)
> std.res1 = xtabs(std.res1 ~ G+L+S+I)
> ftable(std.res1, col.vars=c("S","I"))
\begin{tabular}{lllll} 
S & \(Y\) & & \(N\) & \\
\(I\) & \(N\) & \(Y\) & \(N\) & \(Y\)
\end{tabular}
G L
M Urban \(3.84-0.49-2.66-1.72\)
Rural \begin{tabular}{lllll}
-3.58 & -0.31 & 2.37 & 2.29
\end{tabular}
\(\begin{array}{lllll}F & \text { Urban } & -4.70 & 2.04 & 3.64 \\ 0.15\end{array}\)
Rural \(4.53-1.32-3.45-0.79\)
> std.res2 = round(rstandard(GLS.GI.IL.IS,type="pearson"),2)
> std.res2 = xtabs(std.res2 ~ G+L+S+I)
> ftable(std.res2, col.vars=c("S","I"))
    S Y N
        I N N Y N N
G L
M Urban 0.63 -0.63 1.16 -1.16
    Rural -0.28 0.28 -1.40 1.40
F Urban -2.48 2.48 0.71 -0.71
    Rural 2.20 -2.20 -0.46 0.46
                                    Chapter 7-26
```

E.g., loglinear model ($X Y Z$) for 3-way tables:

$$
\log \left(\mu_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{j k}^{Y Z}+\lambda_{i k}^{X Z}+\lambda_{i j k}^{X Y Z}
$$

If Y is binary and is treated as response,

$$
\begin{aligned}
\operatorname{logit}[\mathrm{P}(Y=1)]= & \log \left(\frac{\mathrm{P}(Y=1)}{1-\mathrm{P}(Y=1)}\right)=\log \left(\frac{\mathrm{P}(Y=1 \mid X, Z)}{\mathrm{P}(Y=2 \mid X, Z)}\right) \\
= & \log \left(\frac{\mu_{i 1 k}}{\mu_{i 2 k}}\right)=\log \left(\mu_{i 1 k}\right)-\log \left(\mu_{i 2 k}\right) \\
= & \left(\lambda+\lambda_{i}^{X}+\lambda_{1}^{Y}+\lambda_{k}^{Z}+\lambda_{i 1}^{X Y}+\lambda_{1 k}^{Y Z}+\lambda_{i k}^{X Z}+\lambda_{i 1 k}^{X Y Z}\right) \\
& -\left(\lambda+\lambda_{i}^{X}+\lambda_{2}^{Y}+\lambda_{k}^{Z}+\lambda_{i 2}^{X Y}+\lambda_{2 k}^{Y Z}+\lambda_{i k}^{X Z}+\lambda_{i 2 k}^{X Y Z}\right) \\
= & (\underbrace{\lambda_{1}^{Y}-\lambda_{2}^{Y}}_{\alpha})+(\underbrace{\left(\lambda_{i 1}^{X Y}-\lambda_{i 2}^{X Y}\right.}_{\beta_{i 1}^{X}})+(\underbrace{\lambda_{1 k}^{Y Z}-\lambda_{2 k}^{Y Z}}_{\beta_{k}^{Z}}) \\
& +(\underbrace{\lambda_{i 1 k}^{X Y Z}-\lambda_{i 2 k}^{X Y Z}}_{\beta_{i k}^{X Z}}) \\
= & \alpha+\beta_{i}^{X}+\beta_{k}^{Z}+\beta_{i k}^{X Z}
\end{aligned}
$$

Chapter 7-28

Example (Alcohol, Cigarette, \& Marijuana Use)

If treat M (Marijuana Use) as the binary response,
$>$ teens.df
A C M Freq
1 Y Y Y 911
2 Y Y N 538
3 Y N Y 44
4 Y N N 456
5 N Y Y 3
6 N Y N 43
7 N N Y 2
8 N N N 279
$>$ M.yes $=\operatorname{Freq}[c(1,3,5,7)]$
$>$ M.no $=\operatorname{Freq}[c(2,4,6,8)]$
$>$ teensM.df = data.frame(teens.df[c(1,3,5,7), 1:2],M.yes,M.no)
$>$ teensM.df
A C M.yes M.no
1 Y Y 911538
3 Y N 44456
5 N Y 343
7 N N 279
Chapter 7-29

Likewise, for 3-way table if Y is the (binary) response induced logistic model for loglinear model are as follows

Loglinear Model	Logistic	Logistic Model	(1)
(X, Y, Z)	α	(1)	Yed Symbol

Rules:

- Drop the " Y " in terms that involve Y,

$$
\text { e.g., } Y \rightarrow 1, X Y \rightarrow X, Y Z \rightarrow Z, X Y Z \rightarrow X Z
$$

- Drop all terms not involving Y

However, not all induced logistic models are equivalent to the loglinear model they are induced from. Why?

Observe the correspondence between coefficients of the loglinear models ($A C, A M, C M$) and the logistic model $(A+C)$.

Chapter 7-33

No correspondence between fitted coefficients between log-linear model ($A M, C M$) and logistic model $(A+C)$.
family=poisson, data=teens.df)
> summary(AM.CM)
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

(Intercept)	6.81261	0.03316	205.450	$<2 \mathrm{e}-16 * * *$
CN	-2.98919	0.15111	-19.782	$<2 \mathrm{e}-16 * * *$
MN	-0.72847	0.05538	-13.154	$<2 \mathrm{e}-16 * * *$
AN	-5.25227	0.44837	-11.714	$<2 \mathrm{e}-16 * * *$
CN : MN	3.22431	0.16098	20.029	$<2 \mathrm{e}-16 * * *$
MN : AN	4.12509	0.45294	9.107	$<2 \mathrm{e}-16 * * *$

Residual deviance: 187.75 on 2 degrees of freedom
> Mlogit.A.C = glm(cbind(M.yes,M.no) $\sim A+C, f a m i l y=" b i n o m i a l ", ~$ data=teensM.df)
> summary(Mlogit.A.C)
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

	Estimate	Std			
(Intercept)	0.52486	0.05428	9.669	$<2 \mathrm{e}-16$	$* * *$
AN	-2.98601	0.46468	-6.426	$1.31 \mathrm{e}-10$	$* * *$
CN	-2.84789	0.19384	-17.382	$<2 \mathrm{e}-16$	$* * *$

```
>AM.CM = glm(Freq ~ C*M + A*M,
```

```
>AM.CM = glm(Freq ~ C*M + A*M,
```


Summary of Equivalent Loglinear and Logistic Models

A loglinear model has an equivalent logistic model must contain the highest order interaction term between ALL explanatory variables.

- A logistic model ignores relationships among explanatory variables, so it assumes nothing about their association structure
Equivalent loglinear and logistic models
- have identical fitted counts for all cell
- have identical deviance and hence the same goodness of fit.
- coefficients of logistic models can be derived from the equivalent loglinear model

