## Chapter 6 Multicategory Logit Models

Response $Y$ has $J>2$ categories.
Extensions of logistic regression for nominal and ordinal $Y$ assume a multinomial distribution for $Y$.
6.1 Logit Models for Nominal Responses
6.2 Cumulative Logit Models for Ordinal Responses

## Chapter 6-1

## Odds for Multi-Category Response Variable

For a binary response variable, there is only one kind of odds that we may consider

$$
\frac{\pi}{1-\pi}
$$

For a multi-category response variable with $J>2$ categories and category probabilities ( $\pi_{1}, \pi_{2}, \ldots, \pi_{J}$ ), we may consider various kinds of odds, though some of them are more interpretable than others.

- odds between two categories: $\pi_{i} / \pi_{j}$.
- odds between a group of categories vs another group of categories, e.g.,

$$
\frac{\pi_{1}+\pi_{3}}{\pi_{2}+\pi_{4}+\pi_{5}}
$$

Note the two groups of categories should be non-overlapping.

## Review of Multinomial Distribution

If $n$ trials are performed:

- in each trial there are $J>2$ possible outcomes (categories)
- $\pi_{j}=\mathrm{P}\left(\right.$ category $j$ ), for each trial, $\sum_{j=1}^{J} \pi_{j}=1$
- trials are independent
- $Y_{j}=$ number of trials fall in category $j$ out of $n$ trials
then the joint distribution of $\left(Y_{1}, Y_{2}, \ldots, Y_{J}\right)$ is said to have a multinomial distribution, with $n$ trials and category probabilities $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{\jmath}\right)$, denoted as

$$
\left(Y_{1}, Y_{2}, \ldots, Y_{J}\right) \sim \operatorname{Multinom}\left(n ; \pi_{1}, \pi_{2}, \ldots, \pi_{\jmath}\right)
$$

with probability function

$$
\mathrm{P}\left(Y_{1}=y_{1}, Y_{2}=y_{2}, \ldots, Y_{J}=y_{J}\right)=\frac{n!}{y_{1}!y_{2}!\cdots y_{J}!} \pi_{1}^{y_{1}} \pi_{2}^{y_{2}} \cdots \pi_{J}^{y_{J}}
$$

where $0 \leq y_{j} \leq n$ for all $j$ and $\sum_{j} y_{j}=n$.

> Chapter 6-2

## Odds for Multi-Category Response Variable (Cont'd)

E.g., if $Y=$ source of meat (in a broad sense) with 5 categories
beef, pork, chicken, turkey, fish
We may consider the odds of

- beef vs. chicken: $\pi_{\text {beef }} / \pi_{\text {chicken }}$
- red meat vs. white meat:

$$
\frac{\pi_{\text {beef }}+\pi_{\text {pork }}}{\pi_{\text {chicken }}+\pi_{\text {turkey }}+\pi_{\text {fish }}}
$$

- red meat vs. poultry:

$$
\frac{\pi_{\text {beef }}+\pi_{\text {pork }}}{\pi_{\text {chicken }}+\pi_{\text {turkey }}}
$$

## Odds for Ordinal Variables

If $Y$ is ordinal with ordered categories:

$$
1<2<\ldots<J
$$

we may consider the odds of $Y \leq j$

$$
\frac{P(Y \leq j)}{P(Y>j)}=\frac{\pi_{1}+\pi_{2}+\cdots+\pi_{j}}{\pi_{j+1}+\cdots+\pi_{j}}
$$

e.g., $Y=$ political ideology, with 5 levels
very liberal < slightly liberal < moderate
< slightly conservative < very conservative
we may consider the odds

$$
\frac{P(\text { very or slightly liberal" })}{P(\text { moderate or conservative })}=\frac{\pi_{\text {vlib }}+\pi_{\text {slib }}}{\pi_{\text {mod }}+\pi_{\text {scon }}+\pi_{\text {vcon }}}
$$

Chapter 6-5

### 6.1 Baseline-Category Logit Models for Nominal Responses

## Odds Ratios for $X Y$ When $Y$ is Multi-Category

For any sensible odds between two (groups of) categories of $Y$ can be compared across two levels of $X$.
E.g., if $Y=$ source of meat, we may consider

OR between $Y$ (beef vs. chicken) and $X=1$ or 2
$=\frac{P(Y=\text { beef } \mid X=1) / P(Y=\text { chicken } \mid X=1)}{P(Y=\text { beef } \mid X=2) / P(Y=\text { chicken } \mid X=2)}$
OR between $Y$ (red meat vs. poultry) and $X=1$ or 2
$=\frac{\text { odds of red meat vs. poultry when } X=1}{\text { odds of red meat vs. poultry when } X=2}$
$=\frac{P(Y=\text { beef or pork } \mid X=1) / P(Y=\text { chicken or turkey } \mid X=1)}{P(Y=\text { beef or pork } \mid X=2) / P(Y=\text { chicken or turkey } \mid X=2)}$

- Again, ORs can be estimated from both prospective and retrospective studies.
- Usually we need more than 1 OR to describe $X Y$ associations completely.

Chapter 6-6
6.1 Baseline-Category Logit Models for Nominal Responses Let $\pi_{j}=\operatorname{Pr}(Y=j), j=1,2, \ldots, J$.
Baseline-category logits are

$$
\log \left(\frac{\pi_{j}}{\pi_{J}}\right), \quad j=1,2, \ldots, J-1
$$

Baseline-category logit model has form

$$
\log \left(\frac{\pi_{j}}{\pi_{J}}\right)=\alpha_{j}+\beta_{j} x, \quad j=1,2, \ldots, J-1
$$

or equivalently,

$$
\pi_{j}=\pi_{J} \exp \left(\alpha_{j}+\beta_{j} x\right) \quad j=1,2, \ldots, J-1
$$

- Separate set of parameters $\left(\alpha_{j}, \beta_{j}\right)$ for each logit.
- Equation for $\pi_{J}$ is not needed since $\log \left(\pi_{J} / \pi_{J}\right)=0$


## Choice of Baseline-Category Is Arbitrary

Equation for other pair of categories, say, categories $a$ and $b$ can then be determined as

$$
\begin{aligned}
\log \left(\frac{\pi_{a}}{\pi_{b}}\right) & =\log \left(\frac{\pi_{a} / \pi_{J}}{\pi_{b} / \pi_{J}}\right)=\log \left(\frac{\pi_{a}}{\pi_{J}}\right)-\log \left(\frac{\pi_{b}}{\pi_{J}}\right) \\
& =\left(\alpha_{a}+\beta_{a} x\right)-\left(\alpha_{b}+\beta_{b} x\right) \\
& =\left(\alpha_{a}-\alpha_{b}\right)+\left(\beta_{a}-\beta_{b}\right) x
\end{aligned}
$$

Any of the categories can be chosen to be the baseline

- The model will fit equally well, achieving the same likelihood and producing the same fitted values.
- The coefficients $\alpha_{j}, \beta_{j}$ 's will change, but their differences

$$
\alpha_{a}-\alpha_{b} \quad \text { and } \quad \beta_{a}-\beta_{b}
$$

between any two categories $a$ and $b$ will stay the same.
Chapter 6-9

## Example (Job Satisfaction and Income)

Data from General Social Survey (1991)

| Income | Job Satisfaction |  |  |  |
| :---: | ---: | ---: | ---: | ---: |
|  | Dissat | Little | Moderate | Very |
| $0-5 \mathrm{~K}$ | 2 | 4 | 13 | 3 |
| $5 \mathrm{~K}-15 \mathrm{~K}$ | 2 | 6 | 22 | 4 |
| $15 \mathrm{~K}-25 \mathrm{~K}$ | 0 | 1 | 15 | 8 |
| $>25 \mathrm{~K}$ | 0 | 3 | 13 | 8 |

- Response: $Y=$ Job Satisfaction
- Explanatory Variable: $X=$ Income.

Using $x=$ income scores ( $3 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 35 \mathrm{~K}$ ), we fit the model

$$
\log \left(\frac{\pi_{j}}{\pi_{J}}\right)=\alpha_{j}+\beta_{j} x, \quad j=1,2,3
$$

for $J=4$ job satisfaction categories.
Chapter 6-11

- The probabilities for the categories can be determined from that $\sum_{j=1}^{J} \pi_{j}=1$ to be

$$
\begin{aligned}
& \pi_{j}=\frac{e^{\alpha_{j}+\beta_{j} x}}{1+\sum_{k=1}^{J-1} e^{\alpha_{k}+\beta_{k} x}}, \quad \text { for } j=1,2, \ldots, J-1 \\
& \pi_{J}=\frac{1}{1+\sum_{k=1}^{J-1} e^{\alpha_{k}+\beta_{k} x}}
\end{aligned} \quad \text { (baseline) }
$$

- Interpretation of coefficients: $e^{\beta_{j}}$ is the multiplicative effect of a 1-unit increase in $x$ on the odds of response $j$ instead of response $J$.
- Could also use this model with ordinal response variables, but this would ignore information about ordering.

Chapter 6-10

## Parameter Estimates

ML estimates for coefficients ( $\alpha_{j}, \beta_{j}$ ) in logit model can be found via $R$ function vglm in package VGAM w/ multinomial family.
You will have to install the VGAM library first, by the following command. You only need to install ONCE!
> install.packages("VGAM") \# JUST RUN THIS ONCE!
Once installed, you need to load VGAM at every $R$ session before it can be used.
> library (VGAM)
Now we can type in the data and fit the baseline category logit model.
$>$ Income $=c(3,10,20,35)$
$>$ Diss $=c(2,2,0,0)$
> Little $=c(4,6,1,3)$
$>\operatorname{Mod}=c(13,22,15,13)$
$>$ Very $=c(3,4,8,8)$
> jobsat.fit1 = vglm(cbind(Diss,Little,Mod,Very) ~ Income, family=multinomial)

Chapter 6-12

| (Intercept):1 | (Intercept):2 | (Intercept):3 |
| ---: | ---: | ---: |
| 0.42980117 | 0.45627479 | 1.70392894 |
| Income:1 | Income:2 | Income:3 |
| -0.18536791 | -0.05441184 | -0.03738509 |

The fitted model is

$$
\begin{aligned}
& \log \left(\frac{\widehat{\pi}_{1}}{\widehat{\pi}_{4}}\right)=\widehat{\alpha}_{1}+\widehat{\beta}_{1} x=0.430-0.185 x \quad \text { (Dissat. v.s. Very Sat.) } \\
& \log \left(\frac{\widehat{\pi}_{2}}{\widehat{\pi}_{4}}\right)=\widehat{\alpha}_{2}+\widehat{\beta}_{2} x=0.456-0.054 x \quad \text { (Little v.s. Very Sat.) } \\
& \log \left(\frac{\widehat{\pi}_{3}}{\widehat{\pi}_{4}}\right)=\widehat{\alpha}_{3}+\widehat{\beta}_{3} x=1.704-0.037 x
\end{aligned} \quad \text { (Moderate v.s. Very Sat.) }
$$

- As $\widehat{\beta}_{j}<0$ for $j=1,2,3$, for each logit, estimated odds of being in less satisfied category (instead of very satisfied) decrease as $x=$ income increases.
- Estimated odd of being "dissatisfied" instead of "very satisfied" multiplied by $e^{-0.185}=0.83$ for each 1 K increase in income.

Chapter 6-13

Plot of sample proportions and estimated probabilities of Job Satisfaction as a function of Income


Observe that though $\pi_{j} / \pi_{J}$ is a monotone function of $x$, $\pi_{j}$ may NOT be monotone in $x$.

Chapter 6-15

$$
\begin{aligned}
& \widehat{\pi}_{1}=\frac{e^{0.430-0.185 x}}{1+e^{0.430-0.185 x}+e^{0.456-0.054 x}+e^{1.704-0.037 x}} \\
& \widehat{\pi}_{2}=\frac{e^{0.456-0.054 x}}{1+e^{0.430-0.185 x}+e^{0.456-0.054 x}+e^{1.704-0.037 x}} \\
& \widehat{\pi}_{3}=\frac{e^{1.704-0.037 x}}{1+e^{0.430-0.185 x}+e^{0.456-0.054 x}+e^{1.704-0.037 x}} \\
& \widehat{\pi}_{4}=\frac{1}{1+e^{0.430-0.185 x}+e^{0.456-0.054 x}+e^{1.704-0.037 x}}
\end{aligned}
$$

E.g., at $x=20(K)$, estimated prob. of being "very satisfied" is
$\widehat{\pi}_{4}=\frac{1}{1+e^{0.430-0.185(20)}+e^{0.456-0.054(20)}+e^{1.704-0.037(20)}} \approx 0.240$
Similarly, one can compute $\widehat{\pi}_{1} \approx 0.009, \widehat{\pi}_{2} \approx 0.127, \widehat{\pi}_{3} \approx 0.623$, and observe $\widehat{\pi}_{1}+\widehat{\pi}_{2}+\widehat{\pi}_{3}+\widehat{\pi}_{4}=1$.

Chapter 6-14

## Deviance and Goodness of Fit

For grouped multinomial response data,

|  | conditions of trial (explanatory variables) |  |  |  | number of trials | multinomial counts |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Condition 1 | $x_{11}$ | $x_{12}$ |  | $x_{1 p}$ | $n_{1}$ | $y_{11}$ | $y_{12}$ | ... | $y_{1 J}$ |
| Condition 2 | $x_{21}$ | $x_{22}$ |  | $x_{2 p}$ | $n_{2}$ | $y_{21}$ | $y_{22}$ |  | $y_{2 J}$ |
|  |  |  |  | $\vdots$ | : | : | : |  | : |
| Condition N | $x_{N 1}$ | $x_{N 2}$ |  | $x_{N p}$ | $n_{N}$ | $y_{N 1}$ | $y_{N 2}$ | $\ldots$ | $y_{N J}$ |

(Residual) Deviance for a Model $M$ is defined as

$$
\begin{aligned}
\text { Deviance }=-2\left(L_{M}-L_{S}\right) & =2 \sum_{i j} y_{i j} \log \left(\frac{y_{i j}}{n_{i} \widehat{\pi}_{j}\left(\mathbf{x}_{i}\right)}\right) \\
& =2 \sum_{i j}(\text { observed }) \log \left(\frac{\text { observed }}{\text { fitted }}\right)
\end{aligned}
$$

where $\widehat{\pi}_{j}\left(\mathbf{x}_{i}\right)=$ estimated prob. based on Model $M$ $L_{M}=$ max. log-likelihood for Model $M$ $L_{S}=$ max. log-likelihood for the saturated model

Chapter 6-16

## DF of Deviance

df for deviance of Model $M$ is

$$
N(J-1)-(\# \text { of parameters in the model }) .
$$

If the model has $p$ explanatory variables,

$$
\log \left(\frac{\pi_{j}}{\pi_{J}}\right)=\alpha_{j}+\beta_{1 j} x_{1}+\cdots+\beta_{p j} x_{p}, \quad j=1,2, \ldots, J-1
$$

there are $p+1$ coefficients per equation, so $(J-1)(p+1)$ coefficients in total.
df for deviance $=N(J-1)-(J-1)(p+1)=(J-1)(N-p-1)$.
> deviance(jobsat.fit1)
[1] 4.657999
> df.residual(jobsat.fit1)
[1] 6
Chapter 6-17

## Goodness of Fit

If the estimated expected counts $n_{i} \widehat{\pi}_{j}\left(\mathbf{x}_{i}\right)$ are large enough, the deviance has a large sample chi-squared distribution with $\mathrm{df}=\mathrm{df}$ of deviance.
We can use deviance to conduct Goodness of Fit test
$\mathrm{H}_{0}$ : Model $M$ is correct (fits the data as well as the saturated model)
$\mathrm{H}_{\mathrm{A}}$ : Saturated model is correct
When $H_{0}$ is rejected, it means that Model $M$ doesn't fit as well as the saturated model.
For the Job Satisfaction and Income example, the P-value for the Goodness of fit is $58.8 \%$, no evidence of lack of fit. However, this result is not reliable because most of the cell counts are small.
> deviance(jobsat.fit1)
[1] 4.657999
> df.residual(jobsat.fit1)
[1] 6
> pchisq(4.657999, df=6, lower.tail=F)
[1] 0.5883635
Chapter 6-18

## Likelihood Ratio Tests

Example (Job Satisfaction)
Overall test of income effect

$$
\mathrm{H}_{0}: \beta_{1}=\beta_{2}=\beta_{3}=0
$$

is equivalent of the comparison of the two models

$$
\begin{aligned}
& \mathrm{H}_{0}: \log \left(\pi_{j} / \pi_{4}\right)=\alpha_{j}, \quad j=1,2,3 \\
& \mathrm{H}_{1}: \log \left(\pi_{j} / \pi_{4}\right)=\alpha_{j}+\beta_{j} x, \quad j=1,2,3 . \\
\text { LRT }= & -2\left(L_{0}-L_{1}\right)=-2(-21.358-(-16.954))=8.808 \\
= & \text { diff in deviances }=13.467-4.658=8.809 \\
D f= & \text { diff. in number of parameters }=6-3=3 \\
= & \text { diff. in residual df }=9-6=3 \\
P \text {-value }= & \operatorname{Pr}\left(\chi_{3}^{2}>8.809\right) \approx 0.03194 . \\
& \text { Chapter } 6-20
\end{aligned}
$$

> lrtest(jobsat.fit1)
Likelihood ratio test

Model 1: cbind(Diss, Little, Mod, Very) ~ Income
Model 2: cbind(Diss, Little, Mod, Very) ~ 1
\#Df LogLik Df Chisq Pr(>Chisq)
$16-16.954$
2 9-21.358 $38.8093 \quad 0.03194$ *
> jobsat.fit2 = vglm(cbind(Diss,Little,Mod,Very) ~ 1,
family=multinomial)
> deviance(jobsat.fit2)
[1] 13.4673
> df.residual(jobsat.fit2)
[1] 9
> deviance(jobsat.fit1)
[1] 4.657999
> df.residual(jobsat.fit1)
[1] 6
Note that $\mathrm{H}_{0}$ implies job satisfaction is independent of income. We got some evidence ( $P$-value $=0.032$ ) of dependence between job satisfaction and income.

Cihapter 6-21

Note we get a different conclusion if we conduct Pearson's
Chi-square test of independence:

$$
X^{2}=11.5, \quad d f=(4-1)(4-1)=9 \quad, P \text {-value }=0.2415
$$

$$
\text { > jobsat = matrix(c( } 2,2,0,0,4,6,1,3,13,22,15,13,3,4,8,8) \text {, nrow=4) }
$$

> chisq.test(jobsat)

Pearson's Chi-squared test
data: jobsat
$X$-squared $=11.524, \mathrm{df}=9, \mathrm{p}$-value $=0.2415$
Warning message:
In chisq.test(jobsat) : Chi-squared approximation may be incorrect
LR test of independence gives similar conclusion $\left(G^{2}=13.47\right.$, $d f=9, P$-value $=0.1426)$
Why Logit models give different conclusion from Pearson's test of independence?

Chapter 6-22
6.2 Cumulative Logit Models for Ordinal Responses Suppose the response $Y$ is multinomial with ordered categories

$$
\{1,2, \ldots, J\}
$$

Let $\pi_{i}=\mathrm{P}(Y=i)$.
The cumulative probabilities are

$$
\mathrm{P}(Y \leq j)=\pi_{1}+\cdots+\pi_{j}, \quad j=1,2, \ldots, J
$$

- Note $\mathrm{P}(Y \leq 1) \leq \mathrm{P}(Y \leq 2) \leq \ldots \leq \mathrm{P}(Y \leq J)=1$
- If $Y$ is not ordinal, it's nonsense to say " $Y \leq j$."

The cumulative logits are

$$
\begin{aligned}
\operatorname{logit}[\mathrm{P}(Y \leq j)] & =\log \left(\frac{\mathrm{P}(Y \leq j)}{1-\mathrm{P}(Y \leq j)}\right)=\log \left(\frac{\mathrm{P}(Y \leq j)}{\mathrm{P}(Y>j)}\right) \\
& =\log \left(\frac{\pi_{1}+\cdots+\pi_{j}}{\pi_{j+1}+\cdots+\pi_{J}}\right), \quad j=1, \ldots, J-1
\end{aligned}
$$

## Cumulative Logit Models

$$
\operatorname{logit}[\mathrm{P}(Y \leq j \mid x)]=\alpha_{j}+\beta x, \quad j=1, \ldots, J-1
$$

- separate intercept $\alpha_{j}$ for each cumulative logit
- same slope $\beta$ for all cumulative logits
$\Rightarrow$ Curves of $\mathrm{P}(Y \leq j \mid x)$ are "parallel", never cross each other.
As long as $\alpha_{1} \leq \alpha_{2} \leq \ldots \leq \alpha_{J-1}$, we can ensure that

$$
\mathrm{P}(Y \leq j \mid x)=\frac{e^{\alpha_{j}+\beta x}}{1+e^{\alpha_{j}+\beta x}} \leq \frac{e^{\alpha_{j+1}+\beta x}}{1+e^{\alpha_{j+1}+\beta x}}=\mathrm{P}(Y \leq j+1 \mid x)
$$



## "Non-Parallel" Cumulative Logit Models

$$
\operatorname{logit}[\mathrm{P}(Y \leq j \mid x)]=\alpha_{j}+\beta_{j} x, \quad j=1, \ldots, J-1
$$

- separate intercept $\alpha_{j}$ for each cumulative logit
- separate slope $\beta_{j}$ for each cumulative logit

However, $\mathrm{P}(Y \leq j)$ curves in "non-parallel" cumulative logit models may cross each other and hence may not maintain that


Cumulative Logit Models

$$
\mathrm{P}(Y \leq j \mid x)=\frac{e^{\alpha_{j}+\beta x}}{1+e^{\alpha_{j}+\beta x}}, \quad j=1, \ldots, J-1
$$



$$
\begin{aligned}
\pi_{j}(x)=\mathrm{P}(Y=j \mid x) & =\mathrm{P}(Y \leq j \mid x)-\mathrm{P}(Y \leq j-1 \mid x) \\
& =\frac{e^{\alpha_{j}+\beta x}}{1+e^{\alpha_{j}+\beta x}}-\frac{e^{\alpha_{j-1}+\beta x}}{1+e^{\alpha_{j-1}+\beta x}}
\end{aligned}
$$

If $\beta>0$, as $x \uparrow, Y$ is more likely at the lower categories $(Y \leq j)$.
If $\beta<0$, as $x \uparrow, Y$ is more likely at the higher categories $(Y>j)$.
Chapter 6-26

## Latent Variable Interpretation for Cumulative Logit Models

- Suppose there is a unobserved continuous response $Y^{*}$ under the observed ordinal response $Y$, such that we only observe

$$
Y=j \text { if } \alpha_{j-1}<Y^{*} \leq \alpha_{j}, \quad \text { for } j=1,2, \ldots, T
$$

where $-\infty=\alpha_{0}<\alpha_{1}<\alpha_{2}<\ldots<\alpha_{J}=\infty$.

- $Y^{*}$ has a linear relationship w/ explanatory $x$

$$
Y^{*}=-\beta x+\varepsilon
$$

and the error term $\varepsilon$ has a logistic distribution with cumulative distribution function

$$
\mathrm{P}(\varepsilon \leq u)=\frac{e^{u}}{1+e^{u}}
$$

- Then

$$
\begin{aligned}
\mathrm{P}(Y \leq j) & =\mathrm{P}\left(Y^{*} \leq \alpha_{j}\right)=\mathrm{P}\left(-\beta x+\varepsilon \leq \alpha_{j}\right) \\
& =\mathrm{P}\left(\varepsilon \leq \alpha_{j}+\beta x\right)=\frac{e^{\alpha_{j}+\beta x}}{1+e^{\alpha_{j}+\beta x}}
\end{aligned}
$$

Chapter 6-28

Latent Variable Interpretation for Cumulative Logit Models


Chapter 6-29

Example (Income and Job Satisfaction from 1991 GSS)

| Income | Job Satisfaction |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Very <br> Dissatisfied | Little <br> Dissatisfied | Moderately <br> Satisfied | Very <br> Satisfied |
| $0-5 \mathrm{~K}$ | 2 | 4 | 13 | 3 |
| $5 \mathrm{~K}-15 \mathrm{~K}$ | 2 | 6 | 22 | 4 |
| $15 \mathrm{~K}-25 \mathrm{~K}$ | 0 | 1 | 15 | 8 |
| $>25 \mathrm{~K}$ | 0 | 3 | 13 | 8 |

Using $x=$ income scores ( $3 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 35 \mathrm{~K}$ ), we fit the model

$$
\operatorname{logit}[\mathrm{P}(Y \leq j \mid x)]=\alpha_{j}+\beta x, \quad j=1,2,3
$$

> jobsat.cl1 = vglm(cbind(Diss,Little,Mod,Very) ~ Income,
family=cumulative(parallel=TRUE))
> coef(jobsat.cl1)
(Intercept):1 (Intercept):2 (Intercept):3 Income
$-2.58287349 \quad-0.89697897 \quad 2.07506012 \quad-0.04485911$

Fitted model:
$\operatorname{logit}[\widehat{\mathrm{P}}(Y \leq j \mid x)]= \begin{cases}-2.583-0.045 x, & \text { for } j=1 \text { (Dissat) } \\ -0.897-0.045 x, & \text { for } j=2 \text { (Dissat or little) } \\ 2.075-0.045 x, & \text { for } j=3 \text { (Dissat or little or mod) } \\ \text { Chapter } 6-31\end{cases}$

Properties of Cumulative Logit Models

$$
\operatorname{odds}(Y \leq j \mid x)=\frac{\mathrm{P}(Y \leq j \mid x)}{\mathrm{P}(Y>j \mid x)}=e^{\alpha_{j}+\beta x}, \quad j=1, \ldots, J-1
$$

- $e^{\beta}=$ multiplicative effect of 1-unit increase in $x$ on odds that $(Y \leq j)$ (instead of $(Y>j)$ ).

$$
\frac{\operatorname{odds}\left(Y \leq j \mid x_{2}\right)}{\operatorname{odds}\left(Y \leq j \mid x_{1}\right)}=e^{\beta\left(x_{2}-x_{1}\right)}
$$

So cumulative logit models are also called proportional odds models.

- ML estimates for coefficients $\left(\alpha_{j}, \beta\right)$ can be found via R function vglm in package VGAM $\mathrm{w} /$ cumulative family.

Chapter 6-30

Estimated odds of satisfaction below any given level is multiplied by

$$
e^{10 \widehat{\beta}}=e^{(10)(-0.045)}=0.64
$$

for each 10 K increase in income.
Remark
If reverse ordering of response, $\beta$ changes sign but has same SE .
With "very sat." < "moderately sat" < "little dissatisfied" < "dissatisfied":
> jobsat.cllr = vglm(cbind(Very,Mod,Little,Diss) ~ Income,
family=cumulative(parallel=TRUE))
> coef(jobsat.cl1r)
(Intercept):1 (Intercept):2 (Intercept):3 Income
-2.07506012
0.89697897
2.58287349
0.04485911
$\widehat{\beta}=0.045$, estimated odds of satisfaction above any given level is multiplied by

$$
e^{10 \widehat{\beta}}=1.566=1 / 0.64
$$

for each 10 K increase in income
Chapter 6-32

## Wald Tests and Wald Cls for Parameters

Wald test of $\mathrm{H}_{0}: \beta=0$ (job satisfaction indep. of income):

$$
\begin{aligned}
z & =\frac{\widehat{\beta}-0}{\mathrm{SE}(\widehat{\beta})}=\frac{-0.0449}{0.0175}=-2.56, \quad\left(z^{2}=6.57, d f=1\right) \\
P \text {-value } & =0.0105
\end{aligned}
$$

```
        \(\underline{95 \% \mathrm{Cl} \text { for } \beta: \widehat{\beta} \pm 1.96 \operatorname{SE}(\widehat{\beta})=-0.0449 \pm 1.96 \times 0.0175}\)
\[
=(-0.079,-0.011)
\]
\[
\underline{95 \% \mathrm{Cl} \text { for } e^{\beta}}:\left(e^{-0.079}, e^{-0.011}\right)=(0.924,0.990)
\]
> summary(jobsat.cl1)
Coefficients:
Estimate Std. Error \(z\) value \(\operatorname{Pr}(>|z|)\)
(Intercept):1 -2.58287 \(0.55842-4.6253 .74 \mathrm{e}-06\) ***
(Intercept): \(2-0.89698 \quad 0.35499-2.527 \quad 0.0115\) * (Intercept):3 \(2.07506 \quad 0.41582 \quad 4.990 \quad 6.03 \mathrm{e}-07\) ***
Income -0.04486 0.01750-2.563 0.0104*
Chapter 6-33
```


## Remark

For the Income and Job Satisfaction data, we obtained stronger evidence of association if we use a cumulative logits model treating $Y$ (Job Satisfaction) as ordinal than obtained if we treat:

- $Y$ as nominal (baseline category logit model) and $X$ as ordinal:

$$
\log \left(\pi_{j} / \pi_{4}\right)=\alpha_{j}+\beta_{j} x
$$

Recall $P$-value $=0.032$ for LR test.

- $X, Y$ both as nominal: Pearson test of independence had $X^{2}=11.5, d f=9, P$-value $=0.24$

$$
G^{2}=13.47, d f=9, P \text {-value }=0.14
$$

## LR Test for Parameters

LR test of $\mathrm{H}_{0}: \beta=0$ (job satisfaction indep. of income):

LR statistic $=-2\left(L_{0}-L_{1}\right)=-2((-21.358)-(-18.000))=6.718$
$P$-value $=0.0095$
> lrtest(jobsat.cl1)
Likelihood ratio test

Model 1: cbind(Diss, Little, Mod, Very) ~ Income
Model 2: cbind(Diss, Little, Mod, Very) ~ 1
\#Df LogLik Df Chisq Pr(>Chisq)
$18-18.000$
$29-21.358 \quad 16.7179 \quad 0.009545$ **

Chapter 6-34

## Deviance and Goodness of Fit

Deviance can be used to test Goodness of Fit in the same way.
For cumulative logit model for Job Satisfaction data

$$
\text { Deviance }=6.7494, \quad d f=8, \quad P \text {-value }=0.56
$$

The Model fits data well.
> summary(jobsat.cl1)
Call:
vglm(formula $=$ cbind (Diss, Little, Mod, Very) ~ Income, family = cumulative(parallel = TRUE))

Residual deviance: 6.7494 on 8 degrees of freedom
> pchisq(deviance(jobsat.cl1),df=8,lower.tail=F)
[1] 0.5638951
Remark. Generally, Goodness of fit test is appropriate if most of the fitted counts are $\geq 5$. which is not the case for for the Job Satisfaction data. The $P$-value might not be reliable.

## Example (Political Ideology and Party Affiliation)

| Gender | Political Party | Political Ideology |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | very | slightly |  | slightly | very |
|  |  | liberal | liberal | moderate | conservative | conservative |
| Female | Democratic | 44 | 47 | 118 | 23 | 32 |
|  | Republican | 18 | 28 | 86 | 39 | 48 |
| Male | Democratic | 36 | 34 | 53 | 18 | 23 |
|  | Republican | 12 | 18 | 62 | 45 | 51 |

$Y=$ political ideology $(1=$ very liberal, $\ldots, 5=$ very conservative $)$
$G=\operatorname{gender}(1=M, 0=F)$
$P=$ political party ( $1=$ Republican, $0=$ Democratic $)$
Cumulative Logit Model:

$$
\operatorname{logit}[P(Y \leq j)]=\alpha_{j}+\beta_{G} G+\beta_{P} P, \quad j=1,2,3,4
$$

Chapter 6-37
> summary(ideo.cl1)
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept):1 -1.4518
(Intercept):2 -0.4583
(Intercept):3 1.2550 (Intercept):4 2.0890 GenderM -0.1169 PartyRep 0.1169 $0.1228-11.818<2 \mathrm{e}-16 * * *$ $0.1058-4.3331 .47 \mathrm{e}-05 * * *$ $0.114510 .956<2 \mathrm{e}-16 * * *$ $0.129216 .174<2 \mathrm{e}-16$ *** $0.1268-0.921 \quad 0.357$
$0.1294-7.449$ 9.39e-14 ***

- Controlling for gender, estimated odds that a Republican is in liberal direction $(Y \leq j)$ rather than conservative $(Y>j)$ are

$$
e^{\widehat{\beta}_{P}}=e^{-0.964}=0.38
$$

times estimated odds for a Democrat.
Same for all $j=1,2,3,4$.

- $95 \% \mathrm{Cl}$ for $e^{\beta_{P}}$ is

$$
e^{\widehat{\beta}_{P} \pm 1.96 \mathrm{SE}\left(\widehat{\beta}_{P}\right)}=e^{-0.964 \pm(1.96)(0.129)}=(0.30,0.49)
$$

- Based on Wald test, Party effect is significant (controlling for Gender) but Gender is not significant (controlling for Party).

Chapter 6-39
> Gender = c("F","F","M","M")
> Party = c("Dem","Rep","Dem","Rep")
$>\operatorname{VLib}=c(44,18,36,12)$
> SLib $=c(47,28,34,18)$
$>$ Mod $=c(118,86,53,62)$
> SCon = c(23,39,18,45)
$>$ VCon $=c(32,48,23,51)$
> ideo.cl1 =
vglm(cbind(VLib,SLib, Mod,SCon, VCon) ~ Gender + Party, family=cumulative(parallel=TRUE))
> coef(ideo.cl1)
(Intercept):1 (Intercept):2 (Intercept):3 (Intercept):4 $\begin{array}{llll}-1.4517674 & -0.4583355 & 1.2549929 & 2.0890430\end{array}$

GenderM PartyRep
-0.1168560 -0.9636181

## Fitted Model:

$$
\operatorname{logit}[\widehat{\mathrm{P}}(Y \leq j)]=\widehat{\alpha}_{j}-0.117 G-0.964 P, \quad j=1,2,3,4
$$

Chapter 6-38

## LR Tests

LR test of $\mathrm{H}_{0}: \beta_{G}=0$ (no Gender effect, given Party):
> lrtest(ideo.cl1,1) \# LR test for Gender effect
Likelihood ratio test
Model 1: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender + Party
Model 2: cbind(VLib, SLib, Mod, SCon, VCon) ~ Party
\#Df LogLik Df Chisq Pr(>Chisq)
$1 \quad 10-47.415$
$\begin{array}{llllll}2 & 11 & -47.836 & 1 & 0.8427 & 0.3586\end{array}$
LR test of $\mathrm{H}_{0}: \beta_{P}=0$ (no Party effect, given Gender):
> lrtest (ideo.cl1,2) \# LR test for Party effect
Likelihood ratio test
Model 1: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender + Party
Model 2: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender
\#Df LogLik Df Chisq Pr(>Chisq)
$1 \quad 10-47.415$
$211-75.838 \quad 156.847$ 4.711e-14 ***
LR tests give the same conclusion as Wald tests.
Chapter 6-40

## Interaction?

Model w/ Gender $\times$ Party interaction:

$$
\operatorname{logit}[P(Y \leq j)]=\alpha_{j}+\beta_{G} G+\beta_{P} P+\beta_{G P} G * P, \quad j=1,2,3,4
$$

For $\mathrm{H}_{0}: \beta_{G P}=0, \mathrm{LR}$ statistic $=3.99, \mathrm{df}=1, P$-value $=0.046$
$\Rightarrow$ Evidence of effect of Party depends on Gender (and vice versa)

```
> ideo.cl2 =
    vglm(cbind(VLib,SLib,Mod,SCon,VCon) ~ Gender * Party ,
    family=cumulative(parallel=TRUE))
> lrtest(ideo.cl2,ideo.cl1)
Likelihood ratio test
Model 1: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender * Party
Model 2: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender + Party
    #Df LogLik Df Chisq Pr(>Chisq)
1 9-45.419
2 10-47.415 1 3.9922 0.04571*
```

Chapter 6-41

Observed percentages based on data:

| Gender |  | Political Ideology |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Very | Slightly |  | Slightly | Very |  |
|  | Party | Liberal | Liberal | Moderate | Conserve. | Conserve. |
| Female | Dem. | $17 \%$ | $18 \%$ | $45 \%$ | $9 \%$ | $12 \%$ |
|  | Rep. | $8 \%$ | $13 \%$ | $39 \%$ | $18 \%$ | $22 \%$ |
| Male | Dem. | $22 \%$ | $21 \%$ | $32 \%$ | $11 \%$ | $14 \%$ |
|  | Rep. | $6 \%$ | $10 \%$ | $33 \%$ | $24 \%$ | $27 \%$ |

Fitted model w/ Gender $\times$ Party interaction:
$\operatorname{logit}[\widehat{\mathrm{P}}(Y \leq j)]=\widehat{\alpha}_{j}+0.143 G-0.756 P-0.509 G * P, \quad j=1,2,3,4$.
Estimated odds ratio for Gender effect is

$$
\begin{cases}e^{0.143}=1.15 & \text { for } \operatorname{Dems}(P=0) \\ e^{0.143-0.51}=e^{-0.336}=0.69 & \text { for } \operatorname{Reps}(P=1)\end{cases}
$$

Among Dems, males tend to be more liberal than females.
Among Reps, males tend to be more conservative than females.

## Reversing Order of Responses

Reversing order of response categories changes signs of estimates (odds ratio $\longrightarrow 1$ /odds ratio).

```
> ideo.cl2r =
    vglm(cbind(VCon,SCon,Mod,SLib,VLib) ~ Gender * Party ,
    family=cumulative(parallel=TRUE))
> coef(ideo.cl2r)
    (Intercept):1
        -2.0012144
            GenderM
        -0.1430828
> coef(ideo.cl2)
    (Intercept):1
        -1.5520853
            GenderM
            0.1430828
        (Intercept):3
            0.5549908
            PartyRep GenderM:PartyRep
            0.7562072 0.5091332
            (Intercept):2 (Intercept):3
        -0.5549908 1.1646526
            PartyRep GenderM:PartyRep
            -0.7562072 -0.5091332
```

```
    (Intercept):2
```

```
    (Intercept):2
```

(Intercept): 4 1.5520853
(Intercept): 4 2.0012144

Chapter 6-45

## Collapsing Ordinal Responses to Binary

A loss of efficiency occurs collapsing ordinal responses to binary (and using ordinary logistic regression) in the sense of getting larger SEs.
> ideo.bin1 =
glm(cbind(VLib+SLib, Mod+SCon+VCon) ~ Gender*Party, family=binomial)
> summary(ideo.bin1)
Coefficients:


Chapter 6-46

