#### Chapter 6 Multicategory Logit Models

Response Y has J > 2 categories.

Extensions of logistic regression for nominal and ordinal Y assume a multinomial distribution for Y.

- 6.1 Logit Models for Nominal Responses
- 6.2 Cumulative Logit Models for Ordinal Responses

#### Chapter 6 - 1

#### Odds for Multi-Category Response Variable

For a binary response variable, there is only one kind of odds that we may consider

$$\frac{\pi}{1-\pi}$$

For a multi-category response variable with J > 2 categories and category probabilities  $(\pi_1, \pi_2, \ldots, \pi_J)$ , we may consider various kinds of odds, though some of them are more interpretable than others.

- odds between two categories:  $\pi_i/\pi_j$ .
- odds between a group of categories vs another group of categories, e.g.,

$$\frac{\pi_1 + \pi_3}{\pi_2 + \pi_4 + \pi_5}$$

Note the two groups of categories should be non-overlapping.

#### Review of Multinomial Distribution

If *n* trials are performed:

- in each trial there are J > 2 possible outcomes (categories)
- $\pi_j = P(\text{category } j)$ , for each trial,  $\sum_{i=1}^J \pi_i = 1$
- trials are independent
- $Y_j$  = number of trials fall in category j out of n trials then the joint distribution of  $(Y_1, Y_2, ..., Y_J)$  is said to have a **multinomial distribution**, with n trials and category probabilities  $(\pi_1, \pi_2, ..., \pi_J)$ , denoted as

$$(Y_1, Y_2, ..., Y_J) \sim Multinom(n; \pi_1, \pi_2, ..., \pi_J),$$

with probability function

$$P(Y_1 = y_1, Y_2 = y_2, \dots, Y_J = y_J) = \frac{n!}{y_1! y_2! \cdots y_J!} \pi_1^{y_1} \pi_2^{y_2} \cdots \pi_J^{y_J}$$

where  $0 \le y_j \le n$  for all j and  $\sum_j y_j = n$ . Chapter 6 - 2

## Odds for Multi-Category Response Variable (Cont'd)

E.g., if Y = source of meat (in a broad sense) with 5 categories

beef, pork, chicken, turkey, fish

We may consider the odds of

- ▶ beef vs. chicken:  $\pi_{\text{beef}}/\pi_{\text{chicken}}$
- red meat vs. white meat:

 $\frac{\pi_{\mathsf{beef}} + \pi_{\mathsf{pork}}}{\pi_{\mathsf{chicken}} + \pi_{\mathsf{turkev}} + \pi_{\mathsf{fish}}}$ 

red meat vs. poultry:

 $\frac{\pi_{\mathsf{beef}} + \pi_{\mathsf{pork}}}{\pi_{\mathsf{chicken}} + \pi_{\mathsf{turkey}}}$ 

## Odds for Ordinal Variables

If Y is ordinal with ordered categories:

$$1 < 2 < \ldots < J$$

we may consider the odds of  $Y \leq j$ 

$$\frac{P(Y \leq j)}{P(Y > j)} = \frac{\pi_1 + \pi_2 + \dots + \pi_j}{\pi_{j+1} + \dots + \pi_J}$$

e.g., Y = political ideology, with 5 levels

very liberal < slightly liberal < moderate

< slightly conservative < very conservative

we may consider the odds

 $\frac{P(\text{very or slightly liberal''})}{P(\text{moderate or conservative})} = \frac{\pi_{\text{vlib}} + \pi_{\text{slib}}}{\pi_{\text{mod}} + \pi_{\text{scon}} + \pi_{\text{vcon}}}$ 

Chapter 6 - 5

6.1 Baseline-Category Logit Models for Nominal Responses

# Odds Ratios for XY When Y is Multi-Category

For any sensible odds between two (groups of) categories of Y can be compared across two levels of X.

E.g., if Y = source of meat, we may consider

OR between Y (beef vs. chicken) and 
$$X = 1$$
 or 2  

$$= \frac{P(Y = \text{beef}|X = 1)/P(Y = \text{chicken}|X = 1)}{P(Y = \text{beef}|X = 2)/P(Y = \text{chicken}|X = 2)}$$
OR between Y (red meat vs. poultry) and  $X = 1$  or 2  

$$= \frac{\text{odds of red meat vs. poultry when } X = 1$$

$$= \frac{P(Y = \text{beef or pork}|X = 1)/P(Y = \text{chicken or turkey}|X = 1)}{P(Y = \text{beef or pork}|X = 2)/P(Y = \text{chicken or turkey}|X = 2)}$$

- Again, ORs can be estimated from both prospective and retrospective studies.
- Usually we need more than 1 OR to describe XY associations completely.

Chapter 6 - 6

6.1 Baseline-Category Logit Models for Nominal Responses Let  $\pi_j = Pr(Y = j), j = 1, 2, ..., J.$ 

Baseline-category logits are

$$\log\left(\frac{\pi_j}{\pi_J}\right), \quad j=1,2,\ldots,J-1.$$

Baseline-category logit model has form

$$\log\left(\frac{\pi_j}{\pi_J}\right) = \alpha_j + \beta_j x, \quad j = 1, 2, \dots, J - 1.$$

or equivalently,

$$\pi_j = \pi_J \exp(\alpha_j + \beta_j \mathbf{x}) \quad j = 1, 2, \dots, J-1.$$

- Separate set of parameters  $(\alpha_j, \beta_j)$  for each logit.
- Equation for  $\pi_J$  is not needed since  $\log(\pi_J/\pi_J) = 0$

## Choice of Baseline-Category Is Arbitrary

Equation for other pair of categories, say, categories a and b can then be determined as

$$\log\left(\frac{\pi_a}{\pi_b}\right) = \log\left(\frac{\pi_a/\pi_J}{\pi_b/\pi_J}\right) = \log\left(\frac{\pi_a}{\pi_J}\right) - \log\left(\frac{\pi_b}{\pi_J}\right)$$
$$= (\alpha_a + \beta_a x) - (\alpha_b + \beta_b x)$$
$$= (\alpha_a - \alpha_b) + (\beta_a - \beta_b)x$$

Any of the categories can be chosen to be the baseline

- The model will fit equally well, achieving the same likelihood and producing the same fitted values.
- The coefficients  $\alpha_i$ ,  $\beta_i$ 's will change, but their differences

$$\alpha_a - \alpha_b$$
 and  $\beta_a - \beta_b$ 

between any two categories a and b will stay the same.

Chapter 6 - 9

#### Example (Job Satisfaction and Income)

Data from General Social Survey (1991)

| Income  | Job Satisfaction |        |          |      |
|---------|------------------|--------|----------|------|
|         | Dissat           | Little | Moderate | Very |
| 0-5K    | 2                | 4      | 13       | 3    |
| 5K-15K  | 2                | 6      | 22       | 4    |
| 15K-25K | 0                | 1      | 15       | 8    |
| >25K    | 0                | 3      | 13       | 8    |

- Response: Y =Job Satisfaction
- Explanatory Variable: X = Income.

Using x = income scores (3K, 10K, 20K, 35K), we fit the model

$$\log\left(\frac{\pi_j}{\pi_J}\right) = \alpha_j + \beta_j x, \quad j = 1, 2, 3.$$

for J = 4 job satisfaction categories.

Chapter 6 - 11

► The probabilities for the categories can be determined from that  $\sum_{j=1}^{J} \pi_j = 1$  to be

$$\pi_{j} = \frac{e^{\alpha_{j} + \beta_{j}x}}{1 + \sum_{k=1}^{J-1} e^{\alpha_{k} + \beta_{k}x}}, \quad \text{for } j = 1, 2, \dots, J-1$$
$$\pi_{J} = \frac{1}{1 + \sum_{k=1}^{J-1} e^{\alpha_{k} + \beta_{k}x}} \quad \text{(baseline)}$$

- Interpretation of coefficients: e<sup>β<sub>j</sub></sup> is the multiplicative effect of a 1-unit increase in x on the odds of response j instead of response J.
- Could also use this model with ordinal response variables, but this would ignore information about ordering.

Chapter 6 - 10

## Parameter Estimates

ML estimates for coefficients  $(\alpha_j, \beta_j)$  in logit model can be found via R function vglm in package VGAM w/ multinomial family.

You will have to install the VGAM library first, by the following command. You only need to install ONCE!

> install.packages("VGAM") # JUST RUN THIS ONCE!

Once installed, you need to load  $\ensuremath{\texttt{VGAM}}$  at every R session before it can be used.

> library(VGAM)

Now we can type in the data and fit the baseline category logit model.

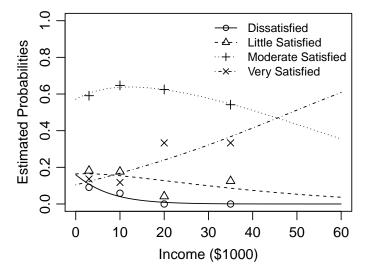
> coef(jobsat.fit1)
(Intercept):1 (Intercept):2 (Intercept):3
 0.42980117 0.45627479 1.70392894
 Income:1 Income:2 Income:3
 -0.18536791 -0.05441184 -0.03738509

#### The fitted model is

$$\log\left(\frac{\widehat{\pi}_{1}}{\widehat{\pi}_{4}}\right) = \widehat{\alpha}_{1} + \widehat{\beta}_{1}x = 0.430 - 0.185x \qquad \text{(Dissat. v.s. Very Sat.)}$$
$$\log\left(\frac{\widehat{\pi}_{2}}{\widehat{\pi}_{4}}\right) = \widehat{\alpha}_{2} + \widehat{\beta}_{2}x = 0.456 - 0.054x \qquad \text{(Little v.s. Very Sat.)}$$
$$\log\left(\frac{\widehat{\pi}_{3}}{\widehat{\pi}_{4}}\right) = \widehat{\alpha}_{3} + \widehat{\beta}_{3}x = 1.704 - 0.037x \quad \text{(Moderate v.s. Very Sat.)}$$

- As β<sub>j</sub> < 0 for j = 1, 2, 3, for each logit, estimated odds of being in less satisfied category (instead of very satisfied) decrease as x = income increases.</p>
- Estimated odd of being "dissatisfied" instead of "very satisfied" multiplied by e<sup>-0.185</sup> = 0.83 for each 1K increase in income.

Plot of sample proportions and estimated probabilities of Job Satisfaction as a function of Income



Observe that though  $\pi_j/\pi_J$  is a monotone function of x,  $\pi_j$  may NOT be **monotone** in x.

$$\widehat{\pi}_{1} = \frac{e^{0.430 - 0.185\times}}{1 + e^{0.430 - 0.185\times} + e^{0.456 - 0.054\times} + e^{1.704 - 0.037\times}}$$

$$\widehat{\pi}_{2} = \frac{e^{0.456 - 0.054\times}}{1 + e^{0.430 - 0.185\times} + e^{0.456 - 0.054\times} + e^{1.704 - 0.037\times}}$$

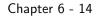
$$\widehat{\pi}_{3} = \frac{e^{1.704 - 0.037\times}}{1 + e^{0.430 - 0.185\times} + e^{0.456 - 0.054\times} + e^{1.704 - 0.037\times}}$$

$$\widehat{\pi}_{4} = \frac{1}{1 + e^{0.430 - 0.185\times} + e^{0.456 - 0.054\times} + e^{1.704 - 0.037\times}}$$

E.g., at x = 20 (K), estimated prob. of being "very satisfied" is

$$\widehat{\pi}_4 = \frac{1}{1 + e^{0.430 - 0.185(20)} + e^{0.456 - 0.054(20)} + e^{1.704 - 0.037(20)}} \approx 0.240$$

Similarly, one can compute  $\hat{\pi}_1 \approx 0.009$ ,  $\hat{\pi}_2 \approx 0.127$ ,  $\hat{\pi}_3 \approx 0.623$ , and observe  $\hat{\pi}_1 + \hat{\pi}_2 + \hat{\pi}_3 + \hat{\pi}_4 = 1$ .



## Deviance and Goodness of Fit

For grouped multinomial response data,

|             |                        |                        |   |                               | number<br>of trials   | mu                     | ltinom                 | nial co | unts                |
|-------------|------------------------|------------------------|---|-------------------------------|-----------------------|------------------------|------------------------|---------|---------------------|
| Condition 1 | <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> |   | <i>x</i> <sub>1<i>p</i></sub> | <i>n</i> <sub>1</sub> | <i>y</i> <sub>11</sub> | <i>y</i> <sub>12</sub> |         | <i>Y</i> 1 <i>J</i> |
| Condition 2 | <i>x</i> <sub>21</sub> | <i>x</i> <sub>22</sub> |   | x <sub>2p</sub>               | <i>n</i> <sub>2</sub> | <i>Y</i> 21            | <i>y</i> <sub>22</sub> |         | <b>У</b> 2Ј         |
| ÷           | ÷                      | ÷                      | · | ÷                             | :                     | ÷                      | ÷                      | ·       | ÷                   |
| Condition N | $x_{N1}$               | $x_{N2}$               |   | x <sub>Np</sub>               | n <sub>N</sub>        | УN1                    | УN2                    |         | УNJ                 |

(Residual) Deviance for a Model M is defined as

Deviance = 
$$-2(L_M - L_S) = 2\sum_{ij} y_{ij} \log\left(\frac{y_{ij}}{n_i \hat{\pi}_j(\mathbf{x}_i)}\right)$$
  
=  $2\sum_{ij} (\text{observed}) \log\left(\frac{\text{observed}}{\text{fitted}}\right)$ 

where  $\hat{\pi}_i(\mathbf{x}_i) = \text{estimated prob. based on Model } M$ 

 $L_M = \max$ . log-likelihood for Model M

 $L_S = max$ . log-likelihood for the saturated model

## DF of Deviance

df for deviance of Model M is

$$N(J-1) - (\# \text{ of parameters in the model}).$$

If the model has *p* explanatory variables,

$$\log\left(\frac{\pi_j}{\pi_J}\right) = \alpha_j + \beta_{1j}x_1 + \dots + \beta_{pj}x_p, \quad j = 1, 2, \dots, J-1$$

there are p + 1 coefficients per equation, so (J - 1)(p + 1)coefficients in total. df for deviance = N(J - 1) - (J - 1)(p + 1) = (J - 1)(N - p - 1).

```
> deviance(jobsat.fit1)
[1] 4.657999
```

```
> df.residual(jobsat.fit1)
[1] 6
```



## Wald CIs and Wald Tests for Coefficients

• Wald CI for 
$$\beta_j$$
 is  $\hat{\beta}_j \pm z_{\alpha/2} SE(\hat{\beta}_j)$ .

• Wald test of H<sub>0</sub>: 
$$\beta_j = 0$$
 uses  $z = \frac{\beta_j}{\mathsf{SE}(\widehat{\beta}_j)}$  or  $z^2 \sim \chi_1^2$ 

Example (Job Satisfaction)

```
> summary(jobsat.fit1)
Coefficients:
              Estimate Std. Error z value Pr(|z|)
(Intercept):1 0.42980
                         0.94481
                                   0.455 0.649176
(Intercept):2 0.45627
                         0.62090
                                   0.735 0.462423
(Intercept):3 1.70393
                         0.48108
                                   3.542 0.000397 ***
Income:1
              -0.18537
                         0.10251 -1.808 0.070568
Income:2
              -0.05441
                         0.03112 -1.748 0.080380
Income:3
              -0.03739
                         0.02088 -1.790 0.073401 .
```

- 95% for  $\beta_1$ : -0.185  $\pm$  1.96  $\times$  0.1025  $\approx$  (-0.386, 0.016)
- 95% for  $e^{\beta_1}$ :  $(e^{-0.386}, e^{0.016}) \approx (0.680, 1.016)$

 $\frac{Interpretation:}{of "very satisfied" multiplied by 0.680 to 1.016 for each 1K increase in income w/ 95% confidence.}$ 

# Goodness of Fit

If the estimated expected counts  $n_i \hat{\pi}_j(\mathbf{x}_i)$  are large enough, the deviance has a large sample chi-squared distribution with df = df of deviance.

We can use deviance to conduct Goodness of Fit test

- H<sub>0</sub>: Model *M* is correct (fits the data as well as the saturated model)
- H<sub>A</sub>: Saturated model is correct

When  $H_0$  is rejected, it means that Model *M* doesn't fit as well as the saturated model.

For the Job Satisfaction and Income example, the P-value for the Goodness of fit is 58.8%, no evidence of lack of fit. However, this result is not reliable because most of the cell counts are small.

Likelihood Ratio Tests Example (Job Satisfaction) Overall test of income effect

$$\mathsf{H}_0:\beta_1=\beta_2=\beta_3=0$$

is equivalent of the comparison of the two models

$$\begin{array}{l} \mathsf{H}_{0}: \ \log{(\pi_{j}/\pi_{4})} = \alpha_{j}, \quad j = 1, 2, 3 \\ \mathsf{H}_{1}: \ \log{(\pi_{j}/\pi_{4})} = \alpha_{j} + \beta_{j} x, \quad j = 1, 2, 3. \end{array}$$

$$LRT = -2(L_0 - L_1) = -2(-21.358 - (-16.954)) = 8.808$$
  
= diff in deviances = 13.467 - 4.658 = 8.809  
$$Df = diff. \text{ in number of parameters} = 6 - 3 = 3$$
  
= diff. in residual df = 9 - 6 = 3

P-value =  $Pr(\chi_3^2 > 8.809) \approx 0.03194.$ Chapter 6 - 20

```
> lrtest(jobsat.fit1)
Likelihood ratio test
Model 1: cbind(Diss, Little, Mod, Very) ~ Income
Model 2: cbind(Diss, Little, Mod, Very) ~ 1
  #Df LogLik Df Chisq Pr(>Chisq)
  6 -16.954
1
2
   9 -21.358 3 8.8093
                           0.03194 *
> jobsat.fit2 = vglm(cbind(Diss,Little,Mod,Very) ~ 1,
                     family=multinomial)
> deviance(jobsat.fit2)
[1] 13.4673
> df.residual(jobsat.fit2)
[1] 9
> deviance(jobsat.fit1)
[1] 4.657999
> df.residual(jobsat.fit1)
[1] 6
```

Note that  $H_0$  implies job satisfaction is independent of income. We got some evidence (*P*-value = 0.032) of dependence between job satisfaction and income. Chapter 6 - 21

> 6.2 Cumulative Logit Models for Ordinal Responses

Note we get a different conclusion if we conduct Pearson's Chi-square test of independence:

 $X^2 = 11.5$ , df = (4 - 1)(4 - 1) = 9, *P*-value = 0.2415

> jobsat = matrix(c(2,2,0,0,4,6,1,3,13,22,15,13,3,4,8,8), nrow=4)
> chisq.test(jobsat)

Pearson's Chi-squared test

data: jobsat
X-squared = 11.524, df = 9, p-value = 0.2415

Warning message: In chisq.test(jobsat) : Chi-squared approximation may be incorrect

LR test of independence gives similar conclusion ( $G^2 = 13.47$ , df = 9, *P*-value = 0.1426)

Why Logit models give different conclusion from Pearson's test of independence?

Chapter 6 - 22

6.2 Cumulative Logit Models for Ordinal Responses

Suppose the response Y is multinomial with ordered categories

$$\{1, 2, \ldots, J\}.$$

Let  $\pi_i = P(Y = i)$ .

The cumulative probabilities are

 $P(Y \le j) = \pi_1 + \cdots + \pi_j, \quad j = 1, 2, ..., J.$ 

- Note  $P(Y \le 1) \le P(Y \le 2) \le \ldots \le P(Y \le J) = 1$
- ▶ If Y is not ordinal, it's nonsense to say " $Y \leq j$ ."

The cumulative logits are

$$\begin{aligned} \mathsf{logit}[\mathrm{P}(Y \leq j)] &= \mathsf{log}\left(\frac{\mathrm{P}(Y \leq j)}{1 - \mathrm{P}(Y \leq j)}\right) = \mathsf{log}\left(\frac{\mathrm{P}(Y \leq j)}{\mathrm{P}(Y > j)}\right) \\ &= \mathsf{log}\left(\frac{\pi_1 + \dots + \pi_j}{\pi_{j+1} + \dots + \pi_J}\right), \quad j = 1, \dots, J - 1. \end{aligned}$$

Chapter 6 - 23

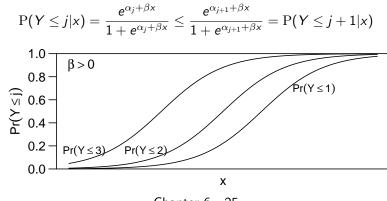
#### Cumulative Logit Models

 $logit[P(Y \le j|x)] = \alpha_j + \beta x, \quad j = 1, \dots, J - 1.$ 

- separate intercept  $\alpha_i$  for each cumulative logit
- $\blacktriangleright$  same slope  $\beta$  for all cumulative logits

 $\Rightarrow$  Curves of  $P(Y \leq j|x)$  are "parallel", never cross each other.

As long as  $\alpha_1 \leq \alpha_2 \leq \ldots \leq \alpha_{J-1}$ , we can ensure that



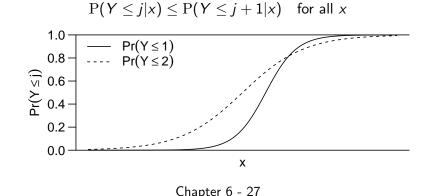
Chapter 6 - 25

## "Non-Parallel" Cumulative Logit Models

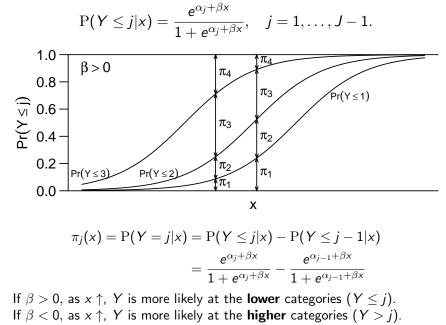
$$logit[P(Y \le j|x)] = \alpha_j + \beta_j x, \quad j = 1, \dots, J - 1$$

- separate intercept  $\alpha_i$  for each cumulative logit
- separate slope  $\beta_i$  for each cumulative logit

However,  $P(Y \le j)$  curves in "non-parallel" cumulative logit models may cross each other and hence may not maintain that



### Cumulative Logit Models



Chapter 6 - 26

## Latent Variable Interpretation for Cumulative Logit Models

Suppose there is a unobserved continuous response Y\* under the observed ordinal response Y, such that we only observe

$$Y = j ext{ if } \alpha_{j-1} < Y^* \le \alpha_j, \quad ext{for } j = 1, 2, \dots, T$$

where  $-\infty = \alpha_0 < \alpha_1 < \alpha_2 < \ldots < \alpha_J = \infty$ .

•  $Y^*$  has a linear relationship w/ explanatory x

$$Y^* = -\beta x + \varepsilon$$

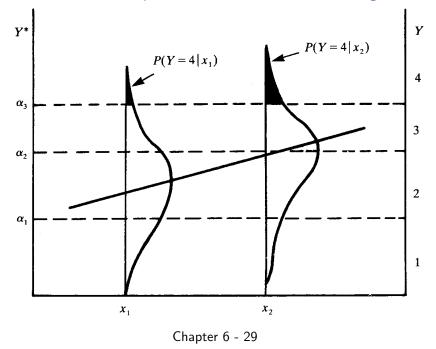
and the error term  $\varepsilon$  has a logistic distribution with cumulative distribution function

$$\mathrm{P}(\varepsilon \leq u) = \frac{e^u}{1+e^u}$$

Then

$$P(Y \le j) = P(Y^* \le \alpha_j) = P(-\beta x + \varepsilon \le \alpha_j)$$
$$= P(\varepsilon \le \alpha_j + \beta x) = \frac{e^{\alpha_j + \beta x}}{1 + e^{\alpha_j + \beta x}}$$

Latent Variable Interpretation for Cumulative Logit Models



#### Example (Income and Job Satisfaction from 1991 GSS)

| Income  | Job Satisfaction     |              |                         |                   |  |
|---------|----------------------|--------------|-------------------------|-------------------|--|
|         | Very<br>Dissatisfied | Little       | Moderately<br>Satisfied | Very<br>Satisfied |  |
|         | Dissatisfied         | Dissatisfied | Satisfied               | Satisfied         |  |
| 0-5K    | 2                    | 4            | 13                      | 3                 |  |
| 5K-15K  | 2                    | 6            | 22                      | 4                 |  |
| 15K-25K | 0                    | 1            | 15                      | 8                 |  |
| >25K    | 0                    | 3            | 13                      | 8                 |  |

Using x = income scores (3K, 10K, 20K, 35K), we fit the model

$$\operatorname{logit}[\operatorname{P}(Y \leq j|x)] = \alpha_j + \beta x, \quad j = 1, 2, 3.$$

- > coef(jobsat.cl1)

(Intercept):1 (Intercept):2 (Intercept):3 Income -2.58287349 -0.89697897 2.07506012 -0.04485911

Fitted model:

$$\operatorname{logit}[\widehat{P}(Y \le j|x)] = \begin{cases} -2.583 - 0.045x, & \text{for } j = 1 \text{ (Dissat)} \\ -0.897 - 0.045x, & \text{for } j = 2 \text{ (Dissat or little)} \\ 2.075 - 0.045x, & \text{for } j = 3 \text{ (Dissat or little or mod)} \\ \operatorname{Chapter } 6 - 31 \end{cases}$$

Properties of Cumulative Logit Models

$$\operatorname{odds}(Y \leq j|x) = rac{\operatorname{P}(Y \leq j|x)}{\operatorname{P}(Y > j|x)} = e^{\alpha_j + \beta x}, \quad j = 1, \dots, J-1.$$

 e<sup>β</sup> = multiplicative effect of 1-unit increase in x on odds that (Y ≤ j) (instead of (Y > j)).

$$\frac{\operatorname{odds}(Y \leq j | x_2)}{\operatorname{odds}(Y \leq j | x_1)} = e^{\beta(x_2 - x_1)}$$

So cumulative logit models are also called **proportional odds models**.

 ML estimates for coefficients (α<sub>j</sub>, β) can be found via R function vglm in package VGAM w/ cumulative family.

Chapter 6 - 30

Estimated odds of satisfaction below any given level is multiplied by

$$e^{10\widehat{eta}} = e^{(10)(-0.045)} = 0.64$$

for each 10K increase in income.

#### Remark

If **reverse ordering** of response,  $\beta$  **changes sign** but has same SE. With "very sat." < "moderately sat" < "little dissatisfied" < "dissatisfied":

 $\widehat{\beta}=$  0.045, estimated odds of satisfaction above any given level is multiplied by

$$e^{10\widehat{\beta}} = 1.566 = 1/0.64.$$

for each 10K increase in income Chapter 6 - 32

## Wald Tests and Wald CIs for Parameters

Wald test of H<sub>0</sub>:  $\beta = 0$  (job satisfaction indep. of income):

$$z = \frac{\widehat{\beta} - 0}{\mathsf{SE}(\widehat{\beta})} = \frac{-0.0449}{0.0175} = -2.56, \quad (z^2 = 6.57, df = 1)$$
  
*P*-value = 0.0105

$$\underbrace{95\% \text{ CI for } \beta}_{95\% \text{ CI for } \beta}: \widehat{\beta} \pm 1.96 \text{SE}(\widehat{\beta}) = -0.0449 \pm 1.96 \times 0.0175 \\ = (-0.079, -0.011)$$

$$\underbrace{95\% \text{ CI for } e^{\beta}}_{95\% \text{ CI for } e^{\beta}}: (e^{-0.079}, e^{-0.011}) = (0.924, 0.990)$$

```
> summary(jobsat.cl1)
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept):1 -2.58287
                          0.55842 -4.625 3.74e-06 ***
(Intercept):2 -0.89698
                          0.35499 -2.527
                                            0.0115 *
(Intercept):3 2.07506
                                    4.990 6.03e-07 ***
                          0.41582
                          0.01750 -2.563
Income
             -0.04486
                                           0.0104 *
                          Chapter 6 - 33
```

## Remark

For the Income and Job Satisfaction data, we obtained stronger evidence of association if we use a cumulative logits model treating Y (Job Satisfaction) as ordinal than obtained if we treat:

Y as nominal (baseline category logit model) and X as ordinal:

$$\log(\pi_j/\pi_4) = \alpha_j + \beta_j x.$$

Recall P-value = 0.032 for LR test.

• X, Y both as nominal: Pearson test of independence had  $X^2 = 11.5$ , df = 9, P-value = 0.24  $G^2 = 13.47$ , df = 9, P-value = 0.14

## LR Test for Parameters

LR test of H<sub>0</sub>:  $\beta = 0$  (job satisfaction indep. of income):

LR statistic =  $-2(L_0 - L_1) = -2((-21.358) - (-18.000)) = 6.718$ 

P-value = 0.0095

> lrtest(jobsat.cl1)
Likelihood ratio test

```
Model 1: cbind(Diss, Little, Mod, Very) ~ Income
Model 2: cbind(Diss, Little, Mod, Very) ~ 1
    #Df LogLik Df Chisq Pr(>Chisq)
    8 -18.000
2 9 -21.358 1 6.7179 0.009545 **
```

Chapter 6 - 34

## Deviance and Goodness of Fit

Deviance can be used to test Goodness of Fit in the same way. For cumulative logit model for Job Satisfaction data

Deviance = 6.7494, df = 8, *P*-value = 0.56

The Model fits data well.

```
> summary(jobsat.cl1)
```

```
Call:
vglm(formula = cbind(Diss, Little, Mod, Very) ~ Income,
family = cumulative(parallel = TRUE))
```

Residual deviance: 6.7494 on 8 degrees of freedom

```
> pchisq(deviance(jobsat.cl1),df=8,lower.tail=F)
[1] 0.5638951
```

<u>Remark</u>. Generally, Goodness of fit test is appropriate if most of the fitted counts are  $\geq$  5. which is not the case for for the Job Satisfaction data. The *P*-value might not be reliable.

# Example (Political Ideology and Party Affiliation)

| Gender |            |         |          | Political | Ideology     |              |
|--------|------------|---------|----------|-----------|--------------|--------------|
|        | Political  |         | slightly |           | slightly     | very         |
|        | Party      | liberal | liberal  | moderate  | conservative | conservative |
| Female | Democratic | 44      | 47       | 118       | 23           | 32           |
|        | Republican | 18      | 28       | 86        | 39           | 48           |
| Male   | Democratic | 36      | 34       | 53        | 18           | 23           |
|        | Republican | 12      | 18       | 62        | 45           | 51           |

- Y = political ideology (1 = very liberal, ..., 5 = very conservative) G = gender (1 = M, 0 = F)
- P =political party (1 = Republican, 0 = Democratic)

Cumulative Logit Model:

$$\operatorname{logit}[P(Y \le j)] = \alpha_j + \beta_G G + \beta_P P, \quad j = 1, 2, 3, 4$$



| > summary(ideo.cl1) |          |            |         |          |     |  |
|---------------------|----------|------------|---------|----------|-----|--|
|                     | Estimate | Std. Error | z value | Pr( z )  |     |  |
| (Intercept):1       | -1.4518  | 0.1228     | -11.818 | < 2e-16  | *** |  |
| (Intercept):2       | -0.4583  | 0.1058     | -4.333  | 1.47e-05 | *** |  |
| (Intercept):3       | 1.2550   | 0.1145     | 10.956  | < 2e-16  | *** |  |
| (Intercept):4       | 2.0890   | 0.1292     | 16.174  | < 2e-16  | *** |  |
| GenderM             | -0.1169  | 0.1268     | -0.921  | 0.357    |     |  |
| PartyRep            | -0.9636  | 0.1294     | -7.449  | 9.39e-14 | *** |  |

► Controlling for gender, estimated odds that a Republican is in liberal direction (Y ≤ j) rather than conservative (Y > j) are

$$e^{\widehat{\beta}_P} = e^{-0.964} = 0.38$$

times estimated odds for a Democrat.

Same for all j = 1, 2, 3, 4.

▶ 95% CI for  $e^{\beta_P}$  is

$$e^{\widehat{\beta}_P \pm 1.96 \operatorname{SE}(\widehat{\beta}_P)} = e^{-0.964 \pm (1.96)(0.129)} = (0.30, 0.49)$$

 Based on Wald test, Party effect is significant (controlling for Gender) but Gender is not significant (controlling for Party). > Gender = c("F", "F", "M", "M") > Party = c("Dem","Rep","Dem","Rep") > VLib = c(44,18,36,12) > SLib = c(47, 28, 34, 18)> Mod = c(118, 86, 53, 62)> SCon = c(23,39,18,45) > VCon = c(32,48,23,51) > ideo.cl1 = vglm(cbind(VLib,SLib,Mod,SCon,VCon) ~ Gender + Party, family=cumulative(parallel=TRUE)) > coef(ideo.cl1) (Intercept):1 (Intercept):2 (Intercept):3 (Intercept):4 -1.4517674-0.45833551.2549929 2.0890430

PartyRep

-0.9636181

Fitted Model:

GenderM

-0.1168560

$$\mathsf{logit}[\widehat{\mathrm{P}}(Y \le j)] = \widehat{lpha}_j - 0.117G - 0.964P, \qquad j = 1, 2, 3, 4.$$

Chapter 6 - 38

#### LR Tests

LR test of H<sub>0</sub>:  $\beta_G = 0$  (no Gender effect, given Party): > lrtest(ideo.cl1,1) # LR test for Gender effect Likelihood ratio test

Model 1: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender + Party Model 2: cbind(VLib, SLib, Mod, SCon, VCon) ~ Party #Df LogLik Df Chisq Pr(>Chisq) 1 10 -47.415 2 11 -47.836 1 0.8427 0.3586 LR test of H<sub>0</sub>:  $\beta_P = 0$  (no Party effect, given Gender):

```
> lrtest(ideo.cl1,2)  # LR test for Party effect
Likelihood ratio test
```

```
Model 1: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender + Party
Model 2: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender
#Df LogLik Df Chisq Pr(>Chisq)
1 10 -47.415
2 11 -75.838 1 56.847 4.711e-14 ***
```

LR tests give the same conclusion as Wald tests.

## Interaction?

Model w/ Gender  $\times Party$  interaction:

 $\operatorname{logit}[P(Y \le j)] = \alpha_j + \beta_G G + \beta_P P + \beta_{GP} G * P, \quad j = 1, 2, 3, 4.$ 

For H<sub>0</sub>:  $\beta_{GP} = 0$ , LR statistic = 3.99, df = 1, *P*-value = 0.046  $\Rightarrow$  Evidence of effect of Party depends on Gender (and vice versa)

```
> ideo.cl2 =
    vglm(cbind(VLib,SLib,Mod,SCon,VCon) ~ Gender * Party ,
    family=cumulative(parallel=TRUE))
> lrtest(ideo.cl2,ideo.cl1)
Likelihood ratio test
Model 1: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender * Party
```

```
Model 2: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender + Party
#Df LogLik Df Chisq Pr(>Chisq)
1 9 -45.419
2 10 -47.415 1 3.9922 0.04571 *
```



Observed percentages based on data:

| Gender |       |         | Political Ideology |          |           |           |  |
|--------|-------|---------|--------------------|----------|-----------|-----------|--|
|        |       | Very    | Slightly           |          | Slightly  | Very      |  |
|        | Party | Liberal | Liberal            | Moderate | Conserve. | Conserve. |  |
| Female | Dem.  | 17%     | 18%                | 45%      | 9%        | 12%       |  |
|        | Rep.  | 8%      | 13%                | 39%      | 18%       | 22%       |  |
| Male   | Dem.  | 22%     | 21%                | 32%      | 11%       | 14%       |  |
|        | Rep.  | 6%      | 10%                | 33%      | 24%       | 27%       |  |

Fitted model w/ Gender×Party interaction:

 $\text{logit}[\widehat{P}(Y \le j)] = \widehat{\alpha}_j + 0.143G - 0.756P - 0.509G * P, \quad j = 1, 2, 3, 4.$ 

Estimated odds ratio for Gender effect is

```
\begin{cases} e^{0.143} = 1.15 & \text{for Dems } (P = 0) \\ e^{0.143 - 0.51} = e^{-0.336} = 0.69 & \text{for Reps } (P = 1) \end{cases}
```

Among Dems, males tend to be more liberal than females.

Among Reps, males tend to be more conservative than females.

| > | <pre>coef(ideo.cl2)</pre> |               |                  |
|---|---------------------------|---------------|------------------|
|   | (Intercept):1             | (Intercept):2 | (Intercept):3    |
|   | -1.5520853                | -0.5549908    | 1.1646526        |
|   | GenderM                   | PartyRep      | GenderM:PartyRep |

-0.7562072

(Intercept):4 2.0012144

Fitted model w/ Gender×Party interaction:

 $\mathsf{logit}[\widehat{\mathrm{P}}(Y \le j)] = \widehat{\alpha}_j + 0.143G - 0.756P - 0.509G * P, \quad j = 1, 2, 3, 4.$ 

-0.5091332

Estimated odds ratio for Party effect is

0.1430828

$$\begin{cases} e^{-0.756} = 0.47 & \text{for females } (G = 0) \\ e^{-0.756 - 0.51} = e^{-1.266} = 0.28 & \text{for males } (G = 1) \end{cases}$$

Diff between Dem. and Rep. are bigger among males than among females.

Chapter 6 - 42

# Goodness of Fit

Deviance = 11.063, df = 9 (why?), P-value = 0.44

The cumulative logits model w/ interaction fits data well.

```
> summary(ideo.cl2)
```

```
Call:
vglm(formula = cbind(VLib, SLib, Mod, SCon, VCon) ~
Gender * Party, family = cumulative(parallel = TRUE))
Residual deviance: 11.0634 on 9 degrees of freedom
> # or
> deviance(ideo.cl2)
[1] 11.06338
> df.residual(ideo.cl2)
```

```
[1] 9
> 1-pchisq(11.0634 , df= 11)
[1] 0.4379672
```

### Reversing Order of Responses

Reversing order of response categories changes signs of estimates (odds ratio  $\longrightarrow 1/\text{odds}$  ratio).

```
> ideo.cl2r =
     vglm(cbind(VCon,SCon,Mod,SLib,VLib) ~ Gender * Party ,
     family=cumulative(parallel=TRUE))
> coef(ideo.cl2r)
   (Intercept):1
                    (Intercept):2
                                      (Intercept):3
                                                       (Intercept):4
                                          0.5549908
                                                           1.5520853
      -2.0012144
                       -1.1646526
         GenderM
                         PartyRep GenderM:PartyRep
      -0.1430828
                        0.7562072
                                          0.5091332
> coef(ideo.cl2)
   (Intercept):1
                    (Intercept):2
                                      (Intercept):3
                                                       (Intercept):4
      -1.5520853
                       -0.5549908
                                          1.1646526
                                                           2.0012144
         GenderM
                         PartyRep GenderM:PartyRep
                       -0.7562072
       0.1430828
                                         -0.5091332
```

# Collapsing Ordinal Responses to Binary

A loss of efficiency occurs collapsing ordinal responses to binary (and using ordinary logistic regression) in the sense of getting larger SEs.

> ideo.bin1 = glm(cbind(VLib+SLib, Mod+SCon+VCon) ~ Gender\*Party, family=binomial) > summary(ideo.bin1) Coefficients: Estimate Std. Error z value Pr(|z|)(Intercept) -0.6424 0.1295 -4.961 7.01e-07 \*\*\* GenderM 0.3476 0.2042 1.702 0.08866 PartyRep -0.6822 0.2104 -3.242 0.00119 \*\* GenderM:PartyRep -0.6844 0.3300 -2.074 0.03807 \* > ideo.bin2 = glm(cbind(VLib+SLib+Mod, SCon+VCon) ~ Gender\*Party, family=binomial) > summary(ideo.cl.bin) Coefficients: Estimate Std. Error z value Pr(>|z|)(Intercept) 1.3350 0.1515 8.809 < 2e-16 \*\*\* GenderM -0.2364 0.2356 -1.004 0.316 -0.9181 0.2050 -4.478 7.54e-06 \*\*\* PartyRep GenderM:PartyRep -0.2231 0.3096 -0.721 0.471

Chapter 6 - 45