
Chapter 6 Multicategory Logit Models

Response Y has J > 2 categories.

Extensions of logistic regression for nominal and ordinal Y assume
a multinomial distribution for Y .

6.1 Logit Models for Nominal Responses
6.2 Cumulative Logit Models for Ordinal Responses
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Review of Multinomial Distribution
If n trials are performed:

I in each trial there are J > 2 possible outcomes (categories)

I πj = P(category j), for each trial,
∑J

j=1 πj = 1

I trials are independent

I Yj = number of trials fall in category j out of n trials

then the joint distribution of (Y1,Y2, . . . ,YJ) is said to have a
multinomial distribution, with n trials and category probabilities
(π1, π2, . . . , πJ), denoted as

(Y1,Y2, . . . ,YJ) ∼ Multinom(n;π1, π2, . . . , πJ),

with probability function

P(Y1 = y1,Y2 = y2, . . . ,YJ = yJ) =
n!

y1! y2! · · · yJ !
πy1

1 π
y2
2 · · ·π

yJ
J

where 0 ≤ yj ≤ n for all j and
∑

j yj = n.
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Odds for Multi-Category Response Variable

For a binary response variable, there is only one kind of odds that
we may consider

π

1− π
.

For a multi-category response variable with J > 2 categories and
category probabilities (π1, π2, . . . , πJ), we may consider various
kinds of odds, though some of them are more interpretable than
others.

I odds between two categories: πi/πj .

I odds between a group of categories vs another group of
categories, e.g.,

π1 + π3

π2 + π4 + π5
.

Note the two groups of categories should be non-overlapping.
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Odds for Multi-Category Response Variable (Cont’d)

E.g., if Y = source of meat (in a broad sense) with 5 categories

beef, pork, chicken, turkey, fish

We may consider the odds of

I beef vs. chicken: πbeef/πchicken

I red meat vs. white meat:

πbeef + πpork

πchicken + πturkey + πfish

I red meat vs. poultry:

πbeef + πpork

πchicken + πturkey

Chapter 6 - 4



Odds for Ordinal Variables
If Y is ordinal with ordered categories:

1 < 2 < . . . < J

we may consider the odds of Y ≤ j

P(Y ≤ j)

P(Y > j)
=
π1 + π2 + · · ·+ πj
πj+1 + · · ·+ πJ

e.g., Y = political ideology, with 5 levels

very liberal < slightly liberal < moderate

< slightly conservative < very conservative

we may consider the odds

P(very or slightly liberal”)

P(moderate or conservative)
=

πvlib + πslib

πmod + πscon + πvcon
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Odds Ratios for XY When Y is Multi-Category
For any sensible odds between two (groups of) categories of Y can
be compared across two levels of X .
E.g., if Y = source of meat, we may consider

OR between Y (beef vs. chicken) and X = 1 or 2

=
P(Y = beef|X = 1)/P(Y = chicken|X = 1)

P(Y = beef|X = 2)/P(Y = chicken|X = 2)

OR between Y (red meat vs. poultry) and X = 1 or 2

=
odds of red meat vs. poultry when X = 1

odds of red meat vs. poultry when X = 2

=
P(Y = beef or pork|X = 1)/P(Y = chicken or turkey|X = 1)

P(Y = beef or pork|X = 2)/P(Y = chicken or turkey|X = 2)

I Again, ORs can be estimated from both prospective and
retrospective studies.

I Usually we need more than 1 OR to describe XY associations
completely.
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6.1 Baseline-Category Logit Models
for Nominal Responses
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6.1 Baseline-Category Logit Models for Nominal Responses
Let πj = Pr(Y = j), j = 1, 2, . . . , J.

Baseline-category logits are

log

(
πj
πJ

)
, j = 1, 2, . . . , J − 1.

Baseline-category logit model has form

log

(
πj
πJ

)
= αj + βjx , j = 1, 2, . . . , J − 1.

or equivalently,

πj = πJ exp(αj + βjx) j = 1, 2, . . . , J − 1.

I Separate set of parameters (αj , βj) for each logit.

I Equation for πJ is not needed since log(πJ/πJ) = 0
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Choice of Baseline-Category Is Arbitrary
Equation for other pair of categories, say, categories a and b can
then be determined as

log

(
πa
πb

)
= log

(
πa/πJ
πb/πJ

)
= log

(
πa
πJ

)
− log

(
πb
πJ

)
= (αa + βax)− (αb + βbx)

= (αa − αb) + (βa − βb)x

Any of the categories can be chosen to be the baseline

I The model will fit equally well, achieving the same likelihood
and producing the same fitted values.

I The coefficients αj , βj ’s will change, but their differences

αa − αb and βa − βb

between any two categories a and b will stay the same.
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I The probabilities for the categories can be determined from
that

∑J
j=1 πj = 1 to be

πj =
eαj+βjx

1 +
∑J−1

k=1 e
αk+βkx

, for j = 1, 2, . . . , J − 1

πJ =
1

1 +
∑J−1

k=1 e
αk+βkx

(baseline)

I Interpretation of coefficients: eβj is the multiplicative effect of
a 1-unit increase in x on the odds of response j instead of
response J.

I Could also use this model with ordinal response variables, but
this would ignore information about ordering.
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Example (Job Satisfaction and Income)

Data from General Social Survey (1991)

Income Job Satisfaction
Dissat Little Moderate Very

0-5K 2 4 13 3
5K-15K 2 6 22 4

15K-25K 0 1 15 8
>25K 0 3 13 8

I Response: Y = Job Satisfaction

I Explanatory Variable: X = Income.

Using x = income scores (3K, 10K, 20K, 35K), we fit the model

log

(
πj
πJ

)
= αj + βjx , j = 1, 2, 3.

for J = 4 job satisfaction categories.
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Parameter Estimates
ML estimates for coefficients (αj , βj) in logit model can be found
via R function vglm in package VGAM w/ multinomial family.

You will have to install the VGAM library first, by the following
command. You only need to install ONCE!

> install.packages("VGAM") # JUST RUN THIS ONCE!

Once installed, you need to load VGAM at every R session before it
can be used.

> library(VGAM)

Now we can type in the data and fit the baseline category logit
model.

> Income = c(3,10,20,35)

> Diss = c(2,2,0,0)

> Little = c(4,6,1,3)

> Mod = c(13,22,15,13)

> Very = c(3,4,8,8)

> jobsat.fit1 = vglm(cbind(Diss,Little,Mod,Very) ~ Income,

family=multinomial)
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> coef(jobsat.fit1)

(Intercept):1 (Intercept):2 (Intercept):3

0.42980117 0.45627479 1.70392894

Income:1 Income:2 Income:3

-0.18536791 -0.05441184 -0.03738509

The fitted model is

log

(
π̂1

π̂4

)
= α̂1 + β̂1x = 0.430− 0.185x (Dissat. v.s. Very Sat.)

log

(
π̂2

π̂4

)
= α̂2 + β̂2x = 0.456− 0.054x (Little v.s. Very Sat.)

log

(
π̂3

π̂4

)
= α̂3 + β̂3x = 1.704− 0.037x (Moderate v.s. Very Sat.)

I As β̂j < 0 for j = 1, 2, 3, for each logit, estimated odds of being in
less satisfied category (instead of very satisfied) decrease as x =
income increases.

I Estimated odd of being “dissatisfied” instead of “very satisfied”
multiplied by e−0.185 = 0.83 for each 1K increase in income.
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π̂1 =
e0.430−0.185x

1 + e0.430−0.185x + e0.456−0.054x + e1.704−0.037x

π̂2 =
e0.456−0.054x

1 + e0.430−0.185x + e0.456−0.054x + e1.704−0.037x

π̂3 =
e1.704−0.037x

1 + e0.430−0.185x + e0.456−0.054x + e1.704−0.037x

π̂4 =
1

1 + e0.430−0.185x + e0.456−0.054x + e1.704−0.037x

E.g., at x = 20 (K), estimated prob. of being “very satisfied” is

π̂4 =
1

1 + e0.430−0.185(20) + e0.456−0.054(20) + e1.704−0.037(20)
≈ 0.240

Similarly, one can compute π̂1 ≈ 0.009, π̂2 ≈ 0.127, π̂3 ≈ 0.623,
and observe π̂1 + π̂2 + π̂3 + π̂4 = 1.

Chapter 6 - 14

Plot of sample proportions and estimated probabilities of Job
Satisfaction as a function of Income
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Observe that though πj/πJ is a monotone function of x ,
πj may NOT be monotone in x .
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Deviance and Goodness of Fit
For grouped multinomial response data,

conditions of trial number
(explanatory variables) of trials multinomial counts

Condition 1 x11 x12 . . . x1p n1 y11 y12 . . . y1J

Condition 2 x21 x22 . . . x2p n2 y21 y22 . . . y2J

...
...

...
. . .

...
...

...
...

. . .
...

Condition N xN1 xN2 . . . xNp nN yN1 yN2 . . . yNJ

(Residual) Deviance for a Model M is defined as

Deviance = −2(LM − LS) = 2
∑

ij
yij log

(
yij

ni π̂j(xi )

)
= 2

∑
ij

(observed) log

(
observed

fitted

)
where π̂j(xi ) = estimated prob. based on Model M

LM = max. log-likelihood for Model M

LS = max. log-likelihood for the saturated model
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DF of Deviance
df for deviance of Model M is

N(J − 1)− (# of parameters in the model).

If the model has p explanatory variables,

log

(
πj
πJ

)
= αj + β1jx1 + · · ·+ βpjxp, j = 1, 2, . . . , J − 1.

there are p + 1 coefficients per equation, so (J − 1)(p + 1)
coefficients in total.
df for deviance = N(J − 1)− (J − 1)(p + 1) = (J − 1)(N − p − 1).

> deviance(jobsat.fit1)

[1] 4.657999

> df.residual(jobsat.fit1)

[1] 6
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Goodness of Fit
If the estimated expected counts ni π̂j(xi ) are large enough, the
deviance has a large sample chi-squared distribution with df = df
of deviance.
We can use deviance to conduct Goodness of Fit test

H0: Model M is correct (fits the data as well as the saturated
model)

HA: Saturated model is correct

When H0 is rejected, it means that Model M doesn’t fit as well as
the saturated model.
For the Job Satisfaction and Income example, the P-value for the
Goodness of fit is 58.8%, no evidence of lack of fit. However, this
result is not reliable because most of the cell counts are small.

> deviance(jobsat.fit1)

[1] 4.657999

> df.residual(jobsat.fit1)

[1] 6

> pchisq(4.657999, df=6, lower.tail=F)

[1] 0.5883635
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Wald CIs and Wald Tests for Coefficients
I Wald CI for βj is β̂j ± zα/2SE(β̂j).

I Wald test of H0: βj = 0 uses z =
β̂j

SE(β̂j )
or z2 ∼ χ2

1

Example (Job Satisfaction)

> summary(jobsat.fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 0.42980 0.94481 0.455 0.649176

(Intercept):2 0.45627 0.62090 0.735 0.462423

(Intercept):3 1.70393 0.48108 3.542 0.000397 ***

Income:1 -0.18537 0.10251 -1.808 0.070568 .

Income:2 -0.05441 0.03112 -1.748 0.080380 .

Income:3 -0.03739 0.02088 -1.790 0.073401 .

I 95% for β1: −0.185± 1.96× 0.1025 ≈ (−0.386, 0.016)

I 95% for eβ1 : (e−0.386, e0.016) ≈ (0.680, 1.016)

Interpretation: Estimated odd of being “dissatisfied” instead
of “very satisfied” multiplied by 0.680 to 1.016 for each 1K
increase in income w/ 95% confidence.
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Likelihood Ratio Tests

Example (Job Satisfaction)

Overall test of income effect

H0 : β1 = β2 = β3 = 0

is equivalent of the comparison of the two models

H0 : log (πj/π4) = αj , j = 1, 2, 3

H1 : log (πj/π4) = αj + βjx , j = 1, 2, 3.

LRT = −2(L0 − L1) = −2(−21.358− (−16.954)) = 8.808

= diff in deviances = 13.467− 4.658 = 8.809

Df = diff. in number of parameters = 6− 3 = 3

= diff. in residual df = 9− 6 = 3

P-value = Pr(χ2
3 > 8.809) ≈ 0.03194.
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> lrtest(jobsat.fit1)

Likelihood ratio test

Model 1: cbind(Diss, Little, Mod, Very) ~ Income

Model 2: cbind(Diss, Little, Mod, Very) ~ 1

#Df LogLik Df Chisq Pr(>Chisq)

1 6 -16.954

2 9 -21.358 3 8.8093 0.03194 *

> jobsat.fit2 = vglm(cbind(Diss,Little,Mod,Very) ~ 1,

family=multinomial)

> deviance(jobsat.fit2)

[1] 13.4673

> df.residual(jobsat.fit2)

[1] 9

> deviance(jobsat.fit1)

[1] 4.657999

> df.residual(jobsat.fit1)

[1] 6

Note that H0 implies job satisfaction is independent of income.
We got some evidence (P-value = 0.032) of dependence between
job satisfaction and income.
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Note we get a different conclusion if we conduct Pearson’s
Chi-square test of independence:

X 2 = 11.5, df = (4− 1)(4− 1) = 9 ,P-value = 0.2415

> jobsat = matrix(c(2,2,0,0,4,6,1,3,13,22,15,13,3,4,8,8), nrow=4)

> chisq.test(jobsat)

Pearson’s Chi-squared test

data: jobsat

X-squared = 11.524, df = 9, p-value = 0.2415

Warning message:

In chisq.test(jobsat) : Chi-squared approximation may be incorrect

LR test of independence gives similar conclusion (G 2 = 13.47,
df = 9, P-value = 0.1426)

Why Logit models give different conclusion from Pearson’s test of
independence?
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6.2 Cumulative Logit Models
for Ordinal Responses
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6.2 Cumulative Logit Models for Ordinal Responses
Suppose the response Y is multinomial with ordered categories

{1, 2, . . . , J}.

Let πi = P(Y = i).

The cumulative probabilities are

P(Y ≤ j) = π1 + · · ·+ πj , j = 1, 2, ..., J.

I Note P(Y ≤ 1) ≤ P(Y ≤ 2) ≤ . . . ≤ P(Y ≤ J) = 1

I If Y is not ordinal, it’s nonsense to say “Y ≤ j .”

The cumulative logits are

logit[P(Y ≤ j)] = log

(
P(Y ≤ j)

1− P(Y ≤ j)

)
= log

(
P(Y ≤ j)

P(Y > j)

)
= log

(
π1 + · · ·+ πj
πj+1 + · · ·+ πJ

)
, j = 1, ..., J − 1.
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Cumulative Logit Models

logit[P(Y ≤ j |x)] = αj + βx , j = 1, . . . , J − 1.

I separate intercept αj for each cumulative logit
I same slope β for all cumulative logits

⇒ Curves of P(Y ≤ j |x) are “parallel”, never cross each other.

As long as α1 ≤ α2 ≤ . . . ≤ αJ−1, we can ensure that

P(Y ≤ j |x) =
eαj+βx

1 + eαj+βx
≤ eαj+1+βx

1 + eαj+1+βx
= P(Y ≤ j + 1|x)

P
r(Y

≤
j) Pr(Y ≤ 1)

Pr(Y ≤ 2)Pr(Y ≤ 3)
0.0

0.2

0.4

0.6

0.8

1.0
β > 0

x
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Cumulative Logit Models

P(Y ≤ j |x) =
eαj+βx

1 + eαj+βx
, j = 1, . . . , J − 1.

P
r(Y

≤
j)

π1
π1

π2

π2

π3

π3

π4

π4

Pr(Y ≤ 1)

Pr(Y ≤ 2)Pr(Y ≤ 3)
0.0

0.2

0.4

0.6

0.8

1.0
β > 0

x

πj(x) = P(Y = j |x) = P(Y ≤ j |x)− P(Y ≤ j − 1|x)

=
eαj+βx

1 + eαj+βx
− eαj−1+βx

1 + eαj−1+βx

If β > 0, as x ↑, Y is more likely at the lower categories (Y ≤ j).
If β < 0, as x ↑, Y is more likely at the higher categories (Y > j).
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“Non-Parallel” Cumulative Logit Models

logit[P(Y ≤ j |x)] = αj + βjx , j = 1, . . . , J − 1.

I separate intercept αj for each cumulative logit
I separate slope βj for each cumulative logit

However, P(Y ≤ j) curves in“non-parallel” cumulative logit
models may cross each other and hence may not maintain that

P(Y ≤ j |x) ≤ P(Y ≤ j + 1|x) for all x

P
r(Y

≤
j)

Pr(Y ≤ 1)
Pr(Y ≤ 2)

0.0

0.2

0.4

0.6

0.8

1.0

x

Chapter 6 - 27

Latent Variable Interpretation for Cumulative Logit Models
I Suppose there is a unobserved continuous response Y ∗ under

the observed ordinal response Y , such that we only observe

Y = j if αj−1 < Y ∗ ≤ αj , for j = 1, 2, . . . ,T

where −∞ = α0 < α1 < α2 < . . . < αJ =∞.
I Y ∗ has a linear relationship w/ explanatory x

Y ∗ = −βx + ε

and the error term ε has a logistic distribution with
cumulative distribution function

P(ε ≤ u) =
eu

1 + eu

I Then

P(Y ≤ j) = P(Y ∗ ≤ αj) = P(−βx + ε ≤ αj)

= P(ε ≤ αj + βx) =
eαj+βx

1 + eαj+βx
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Latent Variable Interpretation for Cumulative Logit Models
LOGIT MODELS FOR MULTINOMIAL RESPONSES278

FIGURE 7.5 Ordinal measurement and underlying regression model for a latent variable.

that the observed response Y satisfies

Y s j if � � Y * F � .jy1 j

That is, Y falls in category j when the latent variable falls in the jth interval
Ž .of values Figure 7.5 . Then

� � �P Y F j x s P Y * F � x s G � y � x .Ž . Ž .Ž .j j

The appropriate model for Y implies that the link Gy1, the inverse of the cdf
Ž � . �for Y *, applies to P Y F j x . If Y * s � x q 
 , where the cdf G of 
 is the

Ž . y1logistic Section 4.2.5 , then G is the logit link and a proportional odds
model results. Normality for 
 implies a probit link for cumulative probabili-

Ž .ties Section 7.3.1 .
In this derivation, the same parameters � occur for the effects on Y

� 4regardless of how the cutpoints � chop up the scale for the latent variable.j
The effect parameters are invariant to the choice of categories for Y. If a
continuous variable measuring political philosophy has a linear regression
with some predictor variables, then the same effect parameters apply to a

Ždiscrete version of political philosophy with the categories liberal, moderate,
. Žconservative or very liberal, slightly liberal, moderate, slightly conservative,

.very conservative . This feature makes it possible to compare estimates from
studies using different response scales.
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Properties of Cumulative Logit Models

odds(Y ≤ j |x) =
P(Y ≤ j |x)

P(Y > j |x)
= eαj+βx , j = 1, . . . , J − 1.

I eβ = multiplicative effect of 1-unit increase in x on odds that
(Y ≤ j) (instead of (Y > j)).

odds(Y ≤ j |x2)

odds(Y ≤ j |x1)
= eβ(x2−x1)

So cumulative logit models are also called proportional odds
models.

I ML estimates for coefficients (αj , β) can be found via R
function vglm in package VGAM w/ cumulative family.
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Example (Income and Job Satisfaction from 1991 GSS)
Income Job Satisfaction

Very Little Moderately Very
Dissatisfied Dissatisfied Satisfied Satisfied

0-5K 2 4 13 3
5K-15K 2 6 22 4

15K-25K 0 1 15 8
>25K 0 3 13 8

Using x = income scores (3K, 10K, 20K, 35K), we fit the model

logit[P(Y ≤ j |x)] = αj + βx , j = 1, 2, 3.

> jobsat.cl1 = vglm(cbind(Diss,Little,Mod,Very) ~ Income,

family=cumulative(parallel=TRUE))

> coef(jobsat.cl1)

(Intercept):1 (Intercept):2 (Intercept):3 Income

-2.58287349 -0.89697897 2.07506012 -0.04485911

Fitted model:

logit[P̂(Y ≤ j |x)] =


−2.583− 0.045x , for j = 1 (Dissat)

−0.897− 0.045x , for j = 2 (Dissat or little)

2.075− 0.045x , for j = 3 (Dissat or little or mod)
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Estimated odds of satisfaction below any given level is multiplied
by

e10β̂ = e(10)(−0.045) = 0.64

for each 10K increase in income.

Remark
If reverse ordering of response, β changes sign but has same SE.
With “very sat.” < “moderately sat” < “little dissatisfied” <
“dissatisfied”:

> jobsat.cl1r = vglm(cbind(Very,Mod,Little,Diss) ~ Income,

family=cumulative(parallel=TRUE))

> coef(jobsat.cl1r)

(Intercept):1 (Intercept):2 (Intercept):3 Income

-2.07506012 0.89697897 2.58287349 0.04485911

β̂ = 0.045, estimated odds of satisfaction above any given level is
multiplied by

e10β̂ = 1.566 = 1/0.64.

for each 10K increase in income
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Wald Tests and Wald CIs for Parameters
Wald test of H0: β = 0 (job satisfaction indep. of income):

z =
β̂ − 0

SE(β̂)
=
−0.0449

0.0175
= −2.56, (z2 = 6.57, df = 1)

P-value = 0.0105

95% CI for β : β̂ ± 1.96SE(β̂) = −0.0449± 1.96× 0.0175

= (−0.079,−0.011)

95% CI for eβ : (e−0.079, e−0.011) = (0.924, 0.990)

> summary(jobsat.cl1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 -2.58287 0.55842 -4.625 3.74e-06 ***

(Intercept):2 -0.89698 0.35499 -2.527 0.0115 *

(Intercept):3 2.07506 0.41582 4.990 6.03e-07 ***

Income -0.04486 0.01750 -2.563 0.0104 *

Chapter 6 - 33

LR Test for Parameters

LR test of H0: β = 0 (job satisfaction indep. of income):

LR statistic = −2(L0− L1) = −2((−21.358)− (−18.000)) = 6.718

P-value = 0.0095

> lrtest(jobsat.cl1)

Likelihood ratio test

Model 1: cbind(Diss, Little, Mod, Very) ~ Income

Model 2: cbind(Diss, Little, Mod, Very) ~ 1

#Df LogLik Df Chisq Pr(>Chisq)

1 8 -18.000

2 9 -21.358 1 6.7179 0.009545 **
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Remark

For the Income and Job Satisfaction data, we obtained stronger
evidence of association if we use a cumulative logits model treating
Y (Job Satisfaction) as ordinal than obtained if we treat:

I Y as nominal (baseline category logit model) and X as
ordinal:

log(πj/π4) = αj + βjx .

Recall P-value = 0.032 for LR test.

I X , Y both as nominal: Pearson test of independence had
X 2 = 11.5, df = 9, P-value = 0.24
G 2 = 13.47, df = 9, P-value = 0.14
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Deviance and Goodness of Fit
Deviance can be used to test Goodness of Fit in the same way.

For cumulative logit model for Job Satisfaction data

Deviance = 6.7494, df = 8, P-value = 0.56

The Model fits data well.

> summary(jobsat.cl1)

Call:

vglm(formula = cbind(Diss, Little, Mod, Very) ~ Income,

family = cumulative(parallel = TRUE))

Residual deviance: 6.7494 on 8 degrees of freedom

> pchisq(deviance(jobsat.cl1),df=8,lower.tail=F)

[1] 0.5638951

Remark. Generally, Goodness of fit test is appropriate if most of
the fitted counts are ≥ 5. which is not the case for for the Job
Satisfaction data. The P-value might not be reliable.
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Example (Political Ideology and Party Affiliation)

Gender Political Ideology
Political very slightly slightly very

Party liberal liberal moderate conservative conservative
Female Democratic 44 47 118 23 32

Republican 18 28 86 39 48
Male Democratic 36 34 53 18 23

Republican 12 18 62 45 51

Y = political ideology (1 = very liberal, . . . , 5 = very conservative)

G = gender (1 = M, 0 = F )

P = political party (1 = Republican, 0 = Democratic)

Cumulative Logit Model:

logit[P(Y ≤ j)] = αj + βGG + βPP, j = 1, 2, 3, 4.
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> Gender = c("F","F","M","M")

> Party = c("Dem","Rep","Dem","Rep")

> VLib = c(44,18,36,12)

> SLib = c(47,28,34,18)

> Mod = c(118,86,53,62)

> SCon = c(23,39,18,45)

> VCon = c(32,48,23,51)

> ideo.cl1 =

vglm(cbind(VLib,SLib,Mod,SCon,VCon) ~ Gender + Party,

family=cumulative(parallel=TRUE))

> coef(ideo.cl1)

(Intercept):1 (Intercept):2 (Intercept):3 (Intercept):4

-1.4517674 -0.4583355 1.2549929 2.0890430

GenderM PartyRep

-0.1168560 -0.9636181

Fitted Model:

logit[P̂(Y ≤ j)] = α̂j − 0.117G − 0.964P, j = 1, 2, 3, 4.
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> summary(ideo.cl1)

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 -1.4518 0.1228 -11.818 < 2e-16 ***

(Intercept):2 -0.4583 0.1058 -4.333 1.47e-05 ***

(Intercept):3 1.2550 0.1145 10.956 < 2e-16 ***

(Intercept):4 2.0890 0.1292 16.174 < 2e-16 ***

GenderM -0.1169 0.1268 -0.921 0.357

PartyRep -0.9636 0.1294 -7.449 9.39e-14 ***

I Controlling for gender, estimated odds that a Republican is in
liberal direction (Y ≤ j) rather than conservative (Y > j) are

e β̂P = e−0.964 = 0.38

times estimated odds for a Democrat.
Same for all j = 1, 2, 3, 4.

I 95% CI for eβP is

e β̂P±1.96 SE(β̂P) = e−0.964±(1.96)(0.129) = (0.30, 0.49)

I Based on Wald test, Party effect is significant (controlling for
Gender) but Gender is not significant (controlling for Party).
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LR Tests
LR test of H0: βG = 0 (no Gender effect, given Party):

> lrtest(ideo.cl1,1) # LR test for Gender effect

Likelihood ratio test

Model 1: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender + Party

Model 2: cbind(VLib, SLib, Mod, SCon, VCon) ~ Party

#Df LogLik Df Chisq Pr(>Chisq)

1 10 -47.415

2 11 -47.836 1 0.8427 0.3586

LR test of H0: βP = 0 (no Party effect, given Gender):

> lrtest(ideo.cl1,2) # LR test for Party effect

Likelihood ratio test

Model 1: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender + Party

Model 2: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender

#Df LogLik Df Chisq Pr(>Chisq)

1 10 -47.415

2 11 -75.838 1 56.847 4.711e-14 ***

LR tests give the same conclusion as Wald tests.
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Interaction?

Model w/ Gender×Party interaction:

logit[P(Y ≤ j)] = αj + βGG + βPP + βGPG ∗ P, j = 1, 2, 3, 4.

For H0: βGP = 0, LR statistic = 3.99, df = 1, P-value = 0.046

⇒ Evidence of effect of Party depends on Gender (and vice versa)

> ideo.cl2 =

vglm(cbind(VLib,SLib,Mod,SCon,VCon) ~ Gender * Party ,

family=cumulative(parallel=TRUE))

> lrtest(ideo.cl2,ideo.cl1)

Likelihood ratio test

Model 1: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender * Party

Model 2: cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender + Party

#Df LogLik Df Chisq Pr(>Chisq)

1 9 -45.419

2 10 -47.415 1 3.9922 0.04571 *
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> coef(ideo.cl2)

(Intercept):1 (Intercept):2 (Intercept):3 (Intercept):4

-1.5520853 -0.5549908 1.1646526 2.0012144

GenderM PartyRep GenderM:PartyRep

0.1430828 -0.7562072 -0.5091332

Fitted model w/ Gender×Party interaction:

logit[P̂(Y ≤ j)] = α̂j+0.143G−0.756P−0.509G∗P, j = 1, 2, 3, 4.

Estimated odds ratio for Party effect is{
e−0.756 = 0.47 for females (G = 0)

e−0.756−0.51 = e−1.266 = 0.28 for males (G = 1)

Diff between Dem. and Rep. are bigger among males than among
females.

Chapter 6 - 42

Observed percentages based on data:

Gender Political Ideology
Very Slightly Slightly Very

Party Liberal Liberal Moderate Conserve. Conserve.
Female Dem. 17% 18% 45% 9% 12%

Rep. 8% 13% 39% 18% 22%
Male Dem. 22% 21% 32% 11% 14%

Rep. 6% 10% 33% 24% 27%

Fitted model w/ Gender×Party interaction:

logit[P̂(Y ≤ j)] = α̂j+0.143G−0.756P−0.509G∗P, j = 1, 2, 3, 4.

Estimated odds ratio for Gender effect is{
e0.143 = 1.15 for Dems (P = 0)

e0.143−0.51 = e−0.336 = 0.69 for Reps (P = 1)

Among Dems, males tend to be more liberal than females.
Among Reps, males tend to be more conservative than females.
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Goodness of Fit

Deviance = 11.063, df = 9 (why?), P-value = 0.44

The cumulative logits model w/ interaction fits data well.

> summary(ideo.cl2)

Call:

vglm(formula = cbind(VLib, SLib, Mod, SCon, VCon) ~

Gender * Party, family = cumulative(parallel = TRUE))

Residual deviance: 11.0634 on 9 degrees of freedom

> # or

> deviance(ideo.cl2)

[1] 11.06338

> df.residual(ideo.cl2)

[1] 9

> 1-pchisq(11.0634 , df= 11)

[1] 0.4379672
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Reversing Order of Responses

Reversing order of response categories changes signs of estimates
(odds ratio −→ 1/odds ratio).

> ideo.cl2r =

vglm(cbind(VCon,SCon,Mod,SLib,VLib) ~ Gender * Party ,

family=cumulative(parallel=TRUE))

> coef(ideo.cl2r)

(Intercept):1 (Intercept):2 (Intercept):3 (Intercept):4

-2.0012144 -1.1646526 0.5549908 1.5520853

GenderM PartyRep GenderM:PartyRep

-0.1430828 0.7562072 0.5091332

> coef(ideo.cl2)

(Intercept):1 (Intercept):2 (Intercept):3 (Intercept):4

-1.5520853 -0.5549908 1.1646526 2.0012144

GenderM PartyRep GenderM:PartyRep

0.1430828 -0.7562072 -0.5091332
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Collapsing Ordinal Responses to Binary
A loss of efficiency occurs collapsing ordinal responses to binary
(and using ordinary logistic regression) in the sense of getting
larger SEs.

> ideo.bin1 =

glm(cbind(VLib+SLib, Mod+SCon+VCon) ~ Gender*Party, family=binomial)

> summary(ideo.bin1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6424 0.1295 -4.961 7.01e-07 ***

GenderM 0.3476 0.2042 1.702 0.08866 .

PartyRep -0.6822 0.2104 -3.242 0.00119 **

GenderM:PartyRep -0.6844 0.3300 -2.074 0.03807 *

> ideo.bin2 =

glm(cbind(VLib+SLib+Mod, SCon+VCon) ~ Gender*Party, family=binomial)

> summary(ideo.cl.bin)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.3350 0.1515 8.809 < 2e-16 ***

GenderM -0.2364 0.2356 -1.004 0.316

PartyRep -0.9181 0.2050 -4.478 7.54e-06 ***

GenderM:PartyRep -0.2231 0.3096 -0.721 0.471

Chapter 6 - 46


