Chapter 5 Building Logistic Regression Models

1 Model selection
5.2 Model checking (Deviance, Residuals)
5.3 Watch out for "sparse" categorical data

Chapter 5-1
oefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

(Intercept)	-8.06501	3.92855	-2.053	$0.0401 *$
C2	-0.10290	0.78259	-0.131	0.8954
C3	-0.48886	0.85312	-0.573	0.5666
C4	-1.60867	0.93553	-1.720	0.0855
S2	-0.09598	0.70337	-0.136	0.8915
S3	0.40029	0.50270	0.796	0.4259
Weight	0.82578	0.70383	1.173	0.2407
Width	0.26313	0.19530	1.347	0.1779

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 185.20 on 165 degrees of freedom AIC: 201.2

None of the terms is significant in the Wald test, but...

Model Selection with Many Predictors

Example (Horseshoe Crabs)

$Y=$ whether female crab has satellites $(1=$ yes, $0=$ no $)$.

Explanatory variables:

- Weight
- Width
- Color (ML, M, MD, D) w/ dummy vars c_{1}, c_{2}, c_{3}
- Spine condition (3 categories) $\mathrm{w} /$ dummy vars s_{1}, s_{2}

Consider model for crabs:

$$
\begin{aligned}
\operatorname{logit}(\mathrm{P}(Y=1))= & \alpha+\beta_{1} c_{+} \beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} s_{1}+\beta_{5} s_{1} \\
& +\beta_{5} \text { weight }+\beta_{7} \text { width }
\end{aligned}
$$

Chapter 5-2

- Residual deviance: 185.20 is the deviance of the model fitted.

$$
\begin{aligned}
H_{a}: \operatorname{logit}(\mathrm{P}(Y=1))= & \alpha+\beta_{1} c_{+} \beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} s_{1}+\beta_{5} s_{1} \\
& +\beta_{5} \text { weight }+\beta_{7} \text { width }
\end{aligned}
$$

- Null deviance: 225.76 is the deviance under the model:

$$
H_{0}: \operatorname{logit}(\mathrm{P}(Y=1))=\alpha
$$

H_{0} means $\beta_{1}=\beta_{2}=\cdots=\beta_{7}=0$ in the model under H_{a}, which means none of the predictor has an effect.

$$
\begin{aligned}
\text { LR statistic }=-2\left(L_{0}-L_{1}\right) & =\text { diff. of deviances } \\
& =225.76-185.20=40.56
\end{aligned}
$$

$\mathrm{df}=7, P$-value <0.0001
Strong evidence saying at least one predictor has an effect.
But NONE of the terms is significant in the Wald test. Why?

Multicollinearity

Multicollinearity, which means "strong correlations among predictors", causes troubles in linear models and GLMs.
E.g., Corr(weight,width) $=0.89$

Recall β_{i} is partial effect of x_{i} on response controlling for other variables in model.
Sufficient to pick one of Weight and Width for a model.
Chapter 5-5

Akaike Information Criterion (AIC)

Akaike information criterion (AIC) is a model selection criterion that selects the model minimizes

$$
\text { AIC }=-2(\text { maximized log-likelihood })+2(\text { num. of parameters }) .
$$

- prefer simple models (few parameters) with good fit
- can be used to compare models that neither is a special case of the other, e.g., binomial models $w /$ diff. link functions

Backward Elimination

1. Start with a complex model (e.g., including all predictors and interactions)
2. Drop "least significant" (i.e., largest P-value) variable among highest-order terms.

- Cannot remove a main effect term w/o removing its higher-order interactions
- Cannot remove a single dummy var. of a categorical predictor $\mathrm{w} />2$ categories

3. Refit model.
4. Continue until all variables left are "significant"

- Other automatic model selection procedures: forward selection, stepwise

Chapter 5-6

Example (Mouse Muscle Tension, Revisit)

We demonstrate the Backward Elimination procedure for the Mouse Muscle Tension data.
> mouse.muscle = read.table("mousemuscle.dat", header=T)
> mouse.muscle
W M D tension.high tension.low
1 High 1 1
2 High 12

Backward elimination starts from the most complex model 3 -way interaction model, and then check significance of the highest order term - 3-way interactions.
> $g \operatorname{lm} 3=g \operatorname{lm}(T \quad \sim \mathrm{~W} * \mathrm{M} * \mathrm{D}$, family=binomial)
> $\operatorname{glm} 2=\operatorname{glm}(T \sim \mathrm{~W} * \mathrm{M}+\mathrm{M} * \mathrm{D}+\mathrm{W} * \mathrm{D}$, family=binomial)
> anova(glm2,glm3,test="Chisq")
Analysis of Deviance Table
Model 1: $\mathrm{T} \sim \mathrm{W} * \mathrm{M}+\mathrm{M} * \mathrm{D}+\mathrm{W} * \mathrm{D}$
Model 2: T ~ $\mathrm{W} * \mathrm{M} * \mathrm{D}$
Resid. Df Resid. Dev Df Deviance $\operatorname{Pr}(>C h i)$
1
$\begin{array}{llllll}2 & 0 & 0.000 & 1 & 0.111 & 0.739\end{array}$

3-way interaction is not significant.

Chapter 5-9

After eliminating the insignificant 3-way interaction, we consider the model with all 2-way interactions.

$\begin{aligned} & \text { > glm2 = glm(} \mathrm{T} \sim \mathrm{~W} * \mathrm{M}+\mathrm{M} * \mathrm{D}+\mathrm{W} * \mathrm{D} \text {, fan } \\ & \text { > drop1 (glm2,test="Chisq") } \\ & \text { Single term deletions } \end{aligned}$					
Model:					
$\mathrm{T} \sim \mathrm{W} * \mathrm{M}+\mathrm{M} * \mathrm{D}+\mathrm{W} * \mathrm{D}$					
	Df	Deviance	AIC		$\operatorname{Pr}(>\mathrm{Chi})$
<non		0.11100	44.228		
W: M	1	1.05827	43.175	0.94727	0.3304
M: D	1	2.80985	44.926	2.69886	0.1004
W:D	1	0.11952	42.236	0.00852	0.9264

Among the highest order terms (2-way interaction), W:D has the largest P-value and hance is least significant, so $\mathrm{W}: \mathrm{D}$ is eliminated.

An alternative way to check significance:

```
> drop1(glm3, test="Chisq")
Single term deletions
Model:
T ~ W * M * D
    Df Deviance AIC LRT Pr(>Chi)
<none> 0.000 46.117
W:M:D 1 0.111 44.228 0.111 0.739
```

Only 3-way interaction is shown in the output of drop1 because drop1 drops one term at a time, other lower-order terms ($\mathrm{W}, \mathrm{M}, \mathrm{D}, \mathrm{W} * \mathrm{M}, \mathrm{M} * \mathrm{D}, \mathrm{W} * \mathrm{D}$) cannot be dropped if 3-way interaction is in the model.

After eliminating ($\mathrm{W}: \mathrm{D}$), we fit the model

$$
W * M+M * D=W+M+D+W * M+M * D
$$

> glm2a $=\operatorname{glm}(T \sim W * M+M * D, f a m i l y=b i n o m i a l)$
> drop1(glm2a, test="Chisq")
Single term deletions
Model:
$T \sim W * M+M * D$

	Df	Deviance	AIC	LRT	$\operatorname{Pr}(>$ Chi)
<none>		0.1195	42.236		
W:M	1	1.0596	41.176	0.9401	0.33225
M:D	1	4.6644	44.781	4.5449	0.03302

This time, $\mathrm{W}: \mathrm{M}$ is eliminated for it has the largest P-value among two-way interaction terms.

After eliminating $\mathrm{W}: \mathrm{M}$, we fit the model $\mathrm{W}+\mathrm{M} * \mathrm{D}$
Note W is still in the model as we eliminate $\mathrm{W}: \mathrm{M}$ from the model $\mathrm{W} * \mathrm{M}+\mathrm{M} * \mathrm{D}$.
> \# glm2b = glm(T ~M*D, family=binomial)
\# not this one!
> glm2b $=\operatorname{glm}\left(T^{\sim} \mathrm{W}+\mathrm{M} * \mathrm{D}\right.$, family=binomial)
> drop1(glm2b, test="Chisq")
Single term deletions

Model:
$T \sim W+M * D$
Df Deviance AIC LRT $\operatorname{Pr}(>\mathrm{Chi})$
<none>
1.059641 .176
$\begin{array}{llllll}\mathrm{W} & 1 & 1.5289 & 39.646 & 0.4693 & 0.49332\end{array}$
M:D $\quad 1 \quad 5.310643 .4274 .2510 \quad 0.03923 *$
Though W is of lower order than $\mathrm{M}: \mathrm{D}$, but W is not a component of M: D. The model is still hierarchical if we drop W and keep M:D.

Chapter 5-13

Backward Elimination in R

R function step() can do the backward elimination procedure we've just done automatically.

```
> step(glm3, test="Chisq")
Start: AIC=46.12
T ~ W * M * D
    Df Deviance AIC LRT Pr(>Chi)
- W:M:D 1 0.111 44.228 0.111 0.739
<none> 0.000 46.117
```

Step: AIC=44.23
$T \sim W+M+D+W: M+W: D+M: D$
Df Deviance AIC LRT Pr(>Chi)

- W:D 10.1195242 .2360 .008520 .9264
$\begin{array}{lllllll}\text { - W:M } & 1 & 1.05827 & 43.175 & 0.94727 & 0.3304\end{array}$
<none> 0.1110044 .228
- M:D $\begin{array}{llllll} & 1 & 2.80985 & 44.926 & 2.69886 & 0.1004\end{array}$

Step: AIC=42.24
$T \sim W+M+D+W: M+M: D$
Df Deviance AIC LRT $\operatorname{Pr}(>C h i)$

- W:M 11.059641 .1760 .94010 .33225
<none> 0.119542 .236
- M:D 144.664444 .7814 .54490 .03302 *

Chapter 5-15
Chapter 5-16

Then we check model $M * D$, as $M: D$ is significant. We cannot eliminate further or the model is not hierarchical.

```
> glm2c = glm(T ~ M*D, family=binomial)
> drop1(glm2c, test="Chisq")
Single term deletions
Model:
T ~ M * D
            Df Deviance AIC LRT Pr(>Chi)
<none> 1.5289 39.646
M:D 1 7.6979 43.814 6.169 0.013 *
```

The model selected by the backward elimination procedure is $M * D$.

This model also has the smallest AIC value, 39.646, among all models considered.

Chapter 5-14

```
Step: AIC=41.18
T ~ W + M + D + M:D
Df Deviance AIC LRT Pr(>Chi)
-W 1 1.5289 39.646 0.4693 0.49332
<none> 1.0596 41.176
-M:D 1 5.3106 43.427 4.2510 0.03923 *
Step: AIC=39.65
T ~ M + D + M:D
Df Deviance AIC LRT Pr(>Chi)
-M:D 1 7.6979 43.814 6.169 0.013 *
Call: glm(formula = T ~ M + D + M:D, family = binomial)
```

Coefficients: (Intercept)	M2	D2	M2:D2
-0.65233	0.09801	1.12611	-1.19750

Degrees of Freedom: 7 Total (i.e. Null); 4 Residual
Null Deviance: 19.02
Residual Deviance: 1.529 AIC: 39.65

Forward Selection in R

The R function step() can also do forward selection, which starts with a model with only an intercept (~ 1), and one most significant variable is added at each step, until none of remaining variables are "significant" when added to the model.
To run forward selection, you'll need to specify the "scope" of the search.
> step(glm(T ~1, family=binomial), scope=~W*M*D, direction="forward", test="Chisq")
Start: AIC=51.14
$T \sim 1$
Df Deviance AIC LRT $\operatorname{Pr}(>$ Chi $)$

+ D $112.46046 .577 \quad 6.5586 \quad 0.01044$ *
+ M $113.57947 .695 \quad 5.4405 \quad 0.01967$ *
<none> $\quad 19.019 \quad 51.136$
$\begin{array}{lllllll}+W & 1 & 18.957 & 53.073 & 0.0626 & 0.80251\end{array}$

Step:	AIC=46.58									
T \sim D										
	Df	Deviance	AIC	LRT	$\operatorname{Pr}(>$ Chi)					
+ M	1	7.6979	43.814	4.7627	0.02908	$*$				
<none>		12.4605	46.577							
$+W$	1	12.2889	48.406	0.1716	0.67871					

Chapter 5-17

Both backward elimination and forward selection choose the model $M+D+M * D$.

$$
\operatorname{logit}\left(\pi_{i j k}\right)=\alpha+\beta_{i}^{M}+\beta_{j}^{D}+\beta_{i j}^{M D}
$$

	Estimate	Std. Error z value $\operatorname{Pr}(>\|z\|)$		
(Intercept)	-0.65233	0.24664	-2.645	0.008174

The fitted coefficients are

$$
\begin{array}{llll}
\widehat{\alpha}=-0.652, & \widehat{\beta}_{1}^{M}=0, & \widehat{\beta}_{2}^{M}=0.098, & \widehat{\beta}_{11}^{M D}=0, \\
& \widehat{\beta}_{1}^{D}=0, & \widehat{\beta}_{2}^{D}=1.126, & \widehat{\beta}_{21}^{M D}=0, \\
\widehat{\beta}_{22}^{M D}=-1.198 .
\end{array}
$$

For Type 1 muscle, the odds of lowering muscle tension for Drug 2 is estimated to be $e^{\widehat{\beta}_{2}^{D}}=e^{1.126} \approx 3.0$ times the odds for Drug 1 .
For Type 2 muscle, the odds ratio is only

$$
e^{\widehat{\beta}_{2}^{D}+\widehat{\beta}_{22}^{M D}}=e^{1.126-1.198} \approx 0.93 .
$$

Forward Selection in R (Cont'd)

```
Step: AIC=43.81
T ~ D + M
            Df Deviance AIC LRT Pr(>Chi)
+ M:D 1 1.5289 39.646 6.1690 0.0130 *
+W W 1 5.3106 43.427 2.3872 0.1223
<none> 7.6979 43.814
```

Step: AIC=39.65
$T \sim D+M+D: M$
Df Deviance AIC \quad LRT $\operatorname{Pr}(>\mathrm{Chi})$
<none> $\quad 1.5289 \quad 39.646$
$\begin{array}{lllllll}+W & 1 & 1.0596 & 41.176 & 0.46928 & 0.4933\end{array}$
Call: glm(formula $=T \sim D+M+D: M, f a m i l y=$ binomial)
Coefficients:

(Intercept)	D2	M2	D2:M2
-0.65233	1.12611	0.09801	-1.19750

Degrees of Freedom: 7 Total (i.e. Null); 4 Residual
Null Deviance: 19.02
Residual Deviance: 1.529 AIC: 39.65
Chapter 5-18

5.1.1 How Many Predictors Can You Use?

- One published simulation study suggests >10 outcomes of each type (S or F) per "predictor" (count dummy variables for factors).
Example: $n=1000,(Y=1) 30$ times, $(Y=0) 970$ times
Model should contain $\leq \frac{30}{10}=3$ predictors.
Example: $n=173$ crabs, $(Y=1) 111$ crabs, $(Y=0) 62$ crabs
Use $\leq \frac{62}{10} \approx 6$ predictors.
- Can further check fit with residuals for grouped data, influence measures, cross validation.

5.2 MODEL CHECKING

- 5.2.1 Likelihood-Ratio Model Comparison Tests
- introduced in the handouts for Chapter 4 already
- 5.2.2 Goodness of Fit and the Deviance
- 5.2.4 Residuals for Logit Models

Back to the Example of Fatal Falls
Which model fits the data the best?

Chapter 5-23

Goodness of Fit and the Deviance

Binomial response data are usually of the following form:

	condition of the trials (explanatory variables)				number of trials	number of success
Condition 1	x_{11}	x_{12}	\ldots	$x_{1 k}$	n_{1}	y_{1}
Condition 2	x_{21}	x_{22}	\ldots	$x_{2 k}$	n_{2}	y_{2}
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots
Condition N	$x_{N 1}$	$x_{N 2}$	\ldots	$x_{N k}$	n_{N}	y_{N}

where $y_{1}, y_{2}, \ldots, y_{N}$ are independent and

floor lovel level	total falls	fatal falls
x	n_{x}	y_{x}
1	37	2
2	54	6
3	46	8
4	38	13
5	32	10
6	11	10
7	2	1

Chapter 5-22

Likelihood Revisit

A way to choose models is to compare their max. (log-)likelihoods.

$$
\begin{aligned}
\text { likelihood : } \prod_{i}\left[\widehat{\pi}\left(\mathbf{x}_{i}\right)\right]^{y_{i}}\left[1-\widehat{\pi}\left(\mathbf{x}_{i}\right)\right]^{n_{i}-y_{i}} \\
\text { log-likelihood : } \sum_{i}\left\{y_{i} \log \widehat{\pi}\left(\mathbf{x}_{i}\right)+\left(n_{i}-y_{i}\right) \log \left[1-\widehat{\pi}\left(\mathbf{x}_{i}\right)\right]\right\}
\end{aligned}
$$

where $\widehat{\pi}(x)$ is the model fitted probabilities. E.g., for a probit model with a single predictor x

$$
\widehat{\pi}(x)=\Phi(\widehat{\alpha}+\widehat{\beta} x)
$$

Maximized log-likelihoods of four models of the fatal falls data:

Model	Maximized Log-Likelihood
linear	-102.4135
logit	-101.1594
probit	-101.2476
complementary log-log	-101.0744

The complementary log-log model has the largest log-likelihood. Is it the best?

Upper Bound of Maximized (Log-)Likelihood

Regardless of the functional form of $\pi\left(\mathbf{x}_{i}\right)$, the likelihood and log-likelihood must be of the form

$$
\begin{aligned}
\text { likelihood }: & \prod_{i}\left[\pi\left(\mathbf{x}_{i}\right)\right]^{y_{i}}\left[1-\pi\left(\mathbf{x}_{i}\right)\right]^{n_{i}-y_{i}} \\
\text { log-likelihood }: & \sum_{i}\left\{y_{i} \log \pi\left(\mathbf{x}_{i}\right)+\left(n_{i}-y_{i}\right) \log \left[1-\pi\left(\mathbf{x}_{i}\right)\right]\right\}
\end{aligned}
$$

Since $y_{i} \log \pi\left(\mathbf{x}_{i}\right)+\left(n_{i}-y_{i}\right) \log \left[1-\pi\left(\mathbf{x}_{i}\right)\right]$ is the log-likelihood for a single observation $y_{i} \sim \operatorname{binomial}\left(n_{i}, \pi\left(\mathbf{x}_{i}\right)\right)$, which reaches its max when $\pi\left(\mathbf{x}_{i}\right)$ equals its MLE y_{i} / n_{i}, we know
$y_{i} \log \widehat{\pi}\left(\mathbf{x}_{i}\right)+\left(n_{i}-y_{i}\right) \log \left[1-\widehat{\pi}\left(\mathbf{x}_{i}\right) \leq y_{i} \log \left(\frac{y_{i}}{n_{i}}\right)+\left(n_{i}-y_{i}\right) \log \left(\frac{n_{i}-y_{i}}{n_{i}}\right)\right.$.
So
the maximized log-likelihood of any model

$$
\begin{aligned}
& =\sum_{i}\left\{y_{i} \log \widehat{\pi}\left(\mathbf{x}_{i}\right)+\left(n_{i}-y_{i}\right) \log \left[1-\widehat{\pi}\left(\mathbf{x}_{i}\right)\right]\right. \\
& \leq \sum_{i}\left\{y_{i} \log \left(\frac{y_{i}}{n_{i}}\right)+\left(n_{i}-y_{i}\right) \log \left(\frac{n_{i}-y_{i}}{n_{i}}\right)\right\}
\end{aligned}
$$

Chapter 5-25

Deviance

The deviance of a model is 2 times the diff. of its maximized log-likelihood and the upper bound.

Deviance $=-2($ max. log-likelihood - upper bound $)$

$$
\begin{aligned}
= & -2\left(\sum_{i}\left\{y_{i} \log \widehat{\pi}\left(\mathbf{x}_{i}\right)+\left(n_{i}-y_{i}\right) \log \left[1-\widehat{\pi}\left(\mathbf{x}_{i}\right)\right]\right\}\right. \\
& \left.\quad-\sum_{i}\left\{y_{i} \log \left(\frac{y_{i}}{n_{i}}\right)+\left(n_{i}-y_{i}\right) \log \left(\frac{n_{i}-y_{i}}{n_{i}}\right)\right\}\right) \\
= & 2 \sum_{i}\left\{y_{i} \log \left(\frac{y_{i}}{n_{i} \widehat{\pi}\left(\mathbf{x}_{i}\right)}\right)+\left(n_{i}-y_{i}\right) \log \left(\frac{n_{i}-y_{i}}{n_{i}\left(1-\widehat{\pi}\left(\mathbf{x}_{i}\right)\right)}\right)\right\} \\
= & 2 \sum_{i}(\text { observed }) \log \left(\frac{\text { observed }}{\text { fitted }}\right) \\
= & G^{2}
\end{aligned}
$$

floor level	total falls	fatal falls
x	n_{x}	y_{x}
1	37	2
2	54	6
3	46	8
4	38	13
5	32	10
6	11	10
7	2	1

Model	Maximized Log-Likelihood
linear	-102.4135
logit	-101.1594
probit	-101.2476
complementary log-log	-101.0744
upper bound	-96.8952

Chapter 5-26

For the logistic model of the fatal falls data,

observed floor fatal level	fitted fatal count	observed live count	fitted live count	
1	2	2.06	35	34.94
2	6	5.52	48	48.48
3	8	8.31	38	37.69
4	13	11.36	25	26.64
5	10	14.47	22	17.53
6	10	6.76	1	4.24
7	1	1.51	1	0.49

$$
\begin{aligned}
\text { Deviance }=2 & {\left[2 \log \left(\frac{2}{2.06}\right)+35 \log \left(\frac{35}{34.94}\right)\right.} \\
& +6 \log \left(\frac{6}{5.52}\right)+48 \log \left(\frac{48}{48.48}\right) \\
& +\ldots \\
& \left.+1 \log \left(\frac{1}{1.51}\right)+1 \log \left(\frac{1}{0.49}\right)\right] \approx 8.5283
\end{aligned}
$$

```
ff = read.table("falls.dat",h=T)
> ff.logit = glm(cbind(fatal,live) ~ floor,
        family = binomial(link="logit"),data=ff)
> summary(ff.logit)
Call:
glm(formula = cbind(fatal, live) ~ floor, family = binomial(link = "logit")
    data = ff)
\begin{tabular}{rlrrrrr} 
Deviance Residuals: \\
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
-0.04171 & 0.21116 & -0.11936 & 0.57263 & -1.61351 & 2.22062 & -0.77799
\end{tabular}
Coefficients:
\begin{tabular}{lrrrll} 
& Estimate & Std. Error \\
& z value \(\operatorname{Pr}(>|z|)\) \\
(Intercept) & -3.4920 & 0.5009 & -6.971 & \(3.14 \mathrm{e}-12\) & \(* * *\) \\
floor & 0.6600 & 0.1253 & 5.267 & \(1.38 \mathrm{e}-07\) & \(* * *\)
\end{tabular}
(Dispersion parameter for binomial family taken to be 1)
```

```
Null deviance: 42.0319 on 6 degrees of freedom
Residual deviance: 8.5283 on 5 degrees of freedom
AIC: 33.451
Number of Fisher Scoring iterations: 4
```


Chapter 5-29

The Saturated Model

- number of parameters in the saturated model $=$ number of observations in data
- If the number of parameters in a model is the same as the number of observations, then this model is usually the saturated model.

Example (Mouse Muscle Tension). The saturate model is the 3-way interaction model, for it has 8 parameters, same as the number of observations.

- Deviance for the saturated model $=0$

The Saturated Model

The upper bound for maximized log-likelihoods itself is also the maximized likelihood for a model - the saturated model.

The saturated model is the most complex model possible for the data, which has a separate parameter $\pi_{i}=\pi\left(\mathbf{x}_{i}\right)$ for each $\left(n_{i}, y_{i}\right)$ and fits the data perfectly that

$$
\widehat{\pi}_{i}=\frac{y_{i}}{n_{i}} .
$$

Example (Fatal Falls). The saturate model has a separate parameter π_{i} for each floor level $i=1,2,3 \ldots, 7$.

Chapter 5-30
> mouse.muscle = read.table("mousemuscle.dat", header=T)
> mouse.muscle
W M D tension.high tension.low
1 High 1 1
2 High 12
> glm3 = glm(cbind(tension.high,tension.low) ~ $\mathrm{W} * \mathrm{M} * \mathrm{D}$,
> summary (glm3)

Call:
glm(formula $=$ cbind(tension.high, tension.low) $\sim W * M * D, f a m i l y=$ binomial, data = mouse.muscle)

Deviance Residuals:
[1] 00000000000
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

(Intercept)	-0.9743	3.4157	-0.285	0.775
WLow	-2.3438	3.8528	-0.608	0.543
M	0.2324	1.7956	0.129	0.897
D	1.5524	1.8611	0.834	0.404
WLow:M	1.3243	2.3163	0.572	0.568
WLow:D	0.7400	2.1398	0.346	0.729
M:D	-0.8105	1.0103	-0.802	0.422
WLow:M:D	-0.4360	1.3071	-0.334	0.739

(Dispersion parameter for binomial family taken to be 1)

$$
\begin{aligned}
& \text { Null deviance: } 1.9019 \mathrm{e}+01 \text { on } 7 \text { degrees of freedom } \\
& \text { Residual deviance: } 1.1324 \mathrm{e}-14 \text { on } 0 \text { degrees of freedom } \\
& \text { AIC: } 46.117 \\
& \text { Chapter } 5-33
\end{aligned}
$$

Number of Fisher Scoring iterations: 3

Goodness of Fit and the Deviance

- Large deviance indicates lack of fit
- Small deviance means the model fits nearly as good as the best possible model

Goodness of Fit test for the four models of fatal falls data:

Model	Deviance	d.f.	P-value
linear (identity)	11.04	5	0.0507
probit	8.70	5	0.1214
logit	8.53	5	0.1294
complementary log-log	8.36	5	0.1376

Goodness-of-fit tests shows the 3 binomial models w/ logit, probit, complementary log-log link fit the data nearly as good as each other, and their fits are a bit better than the model w/identity link.

Goodness of Fit and the Deviance

For a model M of interest, let L_{M} denote the its maximized log-likelihood. As the upper bound for maximized log-likelihoods itself is the maximized \log-likelihood for the saturated model L_{S}, the deviance of the model M equals

$$
\text { Deviance }=-2\left[L_{M}-(\text { upper bound })\right]=-2\left(L_{M}-L_{S}\right),
$$

which is the likelihood ratio test statistic comparing

$$
H_{0} \text { : Model } M \text { v.s. } H_{a} \text { : saturated model. }
$$

Deviance has an approx. chi-squared distribution w/

$$
\begin{aligned}
\mathrm{df} & =(\# \text { of parameters in saturated model }) \\
& \quad-(\# \text { of parameters in Model } M) \\
= & (\# \text { of observations })-(\# \text { of parameters in Model } M)
\end{aligned}
$$

However, this approx. is good only when all observations (n_{i}, y_{i}) have large n_{i}.

Chapter 5-34

Example (Mouse Muscle Tension)

For the mouse muscle tension data, the saturated model is the 3 -way interaction model, the Goodness of fit test of a model is simply comparing the model with the 3 -way interaction model.

```
> glm3 = glm(cbind(tension.high,tension.low) ~ W*M*D,
            family=binomial, data=mouse.muscle)
> glm2 = glm(cbind(tension.high,tension.low) ~ M*D,
            family=binomial, data=mouse.muscle)
> anova(glm2, glm3,test="Chisq")
Analysis of Deviance Table
Model 1: cbind(tension.high, tension.low) ~ M * D
Model 2: cbind(tension.high, tension.low) ~ W * M * D
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 4 1.5289
2 0 0.0000 4 1.5289 0.8215
```


Goodness-of Fit Based on Pearson's Chi-Squared

One can also use Pearson's Chi-Squared statistic

$$
\begin{aligned}
X^{2} & =\sum_{i}\left\{\frac{\left(y_{i}-n_{i} \pi\left(\mathbf{x}_{i}\right)\right)^{2}}{n_{i} \widehat{\pi}\left(\mathbf{x}_{i}\right)}+\frac{\left[n_{i}-y_{i}-n_{i}\left(1-\widehat{\pi}\left(\mathbf{x}_{i}\right)\right)\right]^{2}}{n_{i}\left(1-\widehat{\pi}\left(\mathbf{x}_{i}\right)\right)}\right\} \\
& =\sum \frac{(\text { observed }- \text { fitted })^{2}}{\text { fitted }}
\end{aligned}
$$

to do goodness-of-fit test comparing

$$
H_{0}: \text { Model } M \text { v.s. } H_{a} \text { : saturated model. }
$$

X^{2} is different from Deviance but it has an approx. chi-squared distribution w/ same d.f. as Deviance.
Like deviance, the approx. for X^{2} is good only when all observations $\left(n_{i}, y_{i}\right)$ have large n_{i}.

Chapter 5-37

Grouped Data v.s. Ungrouped Data

Grouped Data v.s. Ungrouped Data

Although the ML estimates of parameters are the same for grouped or ungrouped data, the deviances are different.
For ungrouped data, $n_{i}=1$ for all i and $y_{i}=0$ or 1 , so

$$
\begin{aligned}
L_{S} & =\sum_{i}\left\{y_{i} \log \left(\frac{y_{i}}{n_{i}}\right)+\left(n_{i}-y_{i}\right) \log \left(\frac{n_{i}-y_{i}}{n_{i}}\right)\right\} \\
& =\sum_{i}\left\{y_{i} \log \left(y_{i}\right)+\left(1-y_{i}\right) \log \left(1-y_{i}\right)\right\}=0
\end{aligned}
$$

and hence

$$
\text { Deviance }=-2\left(L_{M}-L_{S}\right)=-2 L_{M}
$$

Grouped Data, Ungrouped Data, Continuous Predictors

- Only deviance computed based on grouped data can be used to do goodness of fit test. Deviances computed based on ungrouped data do not have approx. chi-squared dist..
- Continuous predictors usually have too many levels (e.g., Width in horseshoe crabs data) that deviances of models w/ such predictors do not have approx. chi-squared dist if the number of observations at each levels are too small.
- Even though deviances may not have approx. chi-squared dist., the difference of deviances of two models is often approx. Chi-squared.
One can safely use the diff. of deviances to do likelihood ratio test for model comparison no matter what.

Summary for Deviance

For a Model M of interest

$$
\begin{aligned}
\text { Deviance } & =-2\left(L_{M}-L_{S}\right) \\
& =2 \sum_{i}\left\{y_{i} \log \left(\frac{y_{i}}{n_{i}\left(\mathbf{x}_{i}\right)}\right)+\left(n_{i}-y_{i}\right) \log \left(\frac{n_{i}-y_{i}}{n_{i}\left(1-\widehat{\pi}\left(\mathbf{x}_{i}\right)\right)}\right)\right\} \\
& =2 \sum_{i}(\text { observed }) \log \left(\frac{\text { observed }}{\text { fitted }}\right) \\
& =G^{2}
\end{aligned}
$$

where
$L_{M}=$ max. log-likelihood for Model M
$L_{S}=\max . \log$-likelihood for the saturated model
$=$ the upper bound for max. log-likelihood of ANY model
Deviance can be used to do goodness-of-fit test.

> Chapter 5-41

Deviance Residuals for Binomial Response Models

not limited to logistic models

The deviance residual is defined as

$$
d_{i}=\operatorname{sign}\left(y_{i}-\widehat{\mu}_{i}\right) \sqrt{2\left[y_{i} \log \left(\frac{y_{i}}{\widehat{\mu}_{i}}\right)+\left(n_{i}-y_{i}\right) \log \left(\frac{n_{i}-y_{i}}{n_{i}-\widehat{\mu}_{i}}\right)\right]}
$$

where $\widehat{\mu}_{i}=n_{i} \widehat{\pi}\left(\mathbf{x}_{i}\right)$.
Standardized deviance residual $=\frac{d_{i}}{\sqrt{1-h_{i}}}$ where h_{i} is leverage.

- Observe that Deviance $=\sum_{i} d_{i}^{2}$.
- When model holds and $n_{i} \hat{\pi}_{i}$ large,
d_{i} approx. $N(0, \nu)$ but $\nu<1$, should use standardized d_{i}
- Useful for grouped data only.

Residuals for Binomial Response Models

not limited to logistic models
When goodness-of-fit test suggests a GLM fits poorly, residuals can highlight where the fit is poor.

$$
\begin{aligned}
\text { Pearson Residual } e_{i} & =\frac{y_{i}-n_{i} \widehat{\pi}_{i}}{\sqrt{n_{i} \widehat{\lambda}_{i}\left(1-\widehat{\pi}_{i}\right)}} \\
\text { Standardized (Pearson) Residual } r_{i} & =\frac{e_{i}}{\sqrt{1-h_{i}}}
\end{aligned}
$$

- $h_{i}=$ leverage of the observation i (details are skipped).

The greater an observation's leverage, the greater its influence on the model fit.

- Note $\sum_{i} e_{i}^{2}=X^{2}$ (Pearson chi-square)
- When model holds and $n_{i} \widehat{\pi}_{i}$ are large,
e_{i} is approx. $N(0, \nu)$ but $\nu<1, r_{i}$ is approx. $N(0,1)$.
$\left|r_{i}\right|>2$ or 3 means lack of fit.
- Useful for grouped data only.

Chapter 5-42

Example (Berkeley Graduate Admissions)

	Men					Women		
	Number	Number	Percent		Number	Number	Percent	
Dept	Admitted	Rejected	Admitted	Admitted	Rejected	Admitted		
A	512	313	62%		89	19	82%	
B	353	207	63%		17	8	68%	
C	120	205	37%		202	391	34%	
D	138	279	33%		131	244	35%	
E	53	138	28%		94	299	24%	
F	22	351	6%		24	317	7%	

> UCB = read.table("UCBadmissions.dat",h=T)
> UCB

	Gender	Dept	Admitted Rejected	
1	Male	A	512	313
2	Male	B	353	207
3	Male	C	120	205
4	Male	D	138	279
5	Male	E	53	138
6	Male	F	22	351
7	Female	A	89	19
8	Female	B	17	8
9	Female	C	202	391
10	Female	D	131	244
11	Female	E	94	299
12	Female	F	24	317

Chapter 5-45

LRT indicates strong Dept effect, but little Gender effect (P-value ≈ 0.22). \Rightarrow little evidence of gender bias in UCB graduate admissions.

```
> drop1(UCB.fit1, test="Chisq")
Single term deletions
Model:
\begin{tabular}{lrrrrr} 
cbind (Admitted, Rejected) & \(\sim\) & Dept + Gender \\
& Df Deviance & AIC & LRT \(\operatorname{Pr}(>\) Chi \()\)
\end{tabular}
```

However, ...

Let's first fit a model with only the main effects of Department and Gender, but no interactions.


```
Null deviance: 877.056 on 11 degrees of freedom
Residual deviance: 20.204 on 5 degrees of freedom
AIC: 103.14
```

Chapter 5-46
Number of Fisher Scoring iterations: 4

However, goodness of fit test shows the main effect model fits poorly. The Deviance $=20.204$ can be obtained from the summary output, or from the commands below
> UCB.fit1\$deviance
[1] 20.20428
The P-value for goodness of fit test ≈ 0.00114 is computed as follows.
> pchisq(20.204, df=5, lower.tail=F)
[1] 0.001144215
Apparently there is gender \times dept interaction
(because the saturated model is the two-way interaction model).

R function residuals() gives deviance residuals by default, and Pearson residuals with option type="pearson".

> residuals(UCB.fit1)		\# deviance residuals			
1	2	3	4	5	6
-1.24867404	-0.05600850	1.25333751	0.08256736	1.22051370	-0.20756402
7	8	9	10	11	12
3.71892028	0.27060804	-0.92433979	-0.08577122	-0.85093316	0.20517793
residuals (UCB.fit1, type="pearson")	\# Pearson residuals				
1	2	3	4	5	6
-1.25380765	-0.05602052	1.26287232	0.08260773	1.24151319	-0.20620096
7	8	9	10	11	12
3.51866744	0.26895159	-0.92077831	-0.08573167	-0.84403319	0.20648081

Chapter 5-49
> pearson.res $=$ round(residuals(UCB.fit1, type="pearson"), 2)
> std.res = round(rstandard(UCB.fit1,type="pearson"), 2)
> cbind(UCB, pearson.res, std.res)

Gender Dept Admitted Rejected pearson.res std.res							
1	Male	A	512	313	-1.25	-4.03	<--
2	Male	B	353	207	-0.06	-0.28	
3	Male	C	120	205	1.26	1.88	
4	Male	D	138	279	0.08	0.14	
5	Male	E	53	138	1.24	1.63	
6	Male	F	22	351	-0.21	-0.30	
7	Female	A	89	19	3.52	4.03	<--
8	Female	B	17	8	0.27	0.28	
9	Female	C	202	391	-0.92	-1.88	
10	Female	D	131	244	-0.09	-0.14	
11	Female	E	94	299	-0.84	-1.63	
12	Female	F	24	317	0.21	0.30	

Standardized residuals suggest Dept. A as main source of lack of fit ($r_{i}=-4.03$ and 4.03), while Pearson residuals fail to catch the lack of fit of the first observation $($ Gender $=$ Male, Dept $=A)$.

By default, R function rstandard() gives standardized deviance residuals.

> rstandard(UCB.fit1)					
1	2	3	4	5	6
-4.0107986	-0.2796622	1.8666312	0.1411928	1.6058628	-0.3046444
7	8	9	10	11	12
4.2564872	0.2814450	-1.8881065	-0.1413270	-1.6468462	0.3007342

With option type="pearson", rstandard() gives standardized Pearson residuals.

> rstandard(UCB.fit1, type="pearson")					
1	2	3	4	5	6
-4.0272880	-0.2797222	1.8808316	0.1412619	1.6334924	-0.3026439
7	8	9	10	11	12
4.0272880	0.2797222	-1.8808316	-0.1412619	-1.6334924	0.3026439

Chapter 5-50

Leaving out Dept. A, the model with Dept main effects and gender main effects fits well (Deviance $=2.556, \mathrm{df}=4, P$-value ≈ 0.63.)
> UCB.fit2 = glm(cbind(Admitted,Rejected) ~ Dept + Gender, family=binomial, data=UCB, subset=(Dept != "A"))
> UCB.fit2\$deviance
[1] 2.556429
> UCB.fit2\$df.residual
[1] 4
> pchisq(2.556429, df=4, lower.tail=F)
[1] 0.6345606

Knowing the main effect model fits the data well when leaving out Dept. A, we can use it to do inference.
LRT shows gender effect is not significant (P-value $=0.72$),
meaning little evidence of gender bias in UCB graduate admissions in Dept. B, C, D, E, F.
> drop1(UCB.fit2, test="Chisq")
Single term deletions
Model:
cbind(Admitted, Rejected) ~ Dept + Gender
Df Deviance AIC LRT Pr (>Chi)
<none> $2.56 \quad 71.79$
Dept $4 \quad 500.85562 .08498 .29<2 e-16 * * *$
$\begin{array}{llllll}\text { Gender } & 1 & 2.68 & 69.92 & 0.13 & 0.7236\end{array}$
In Dept. A, odds of admission for men are $\frac{512 \times 19}{313 \times 89}=0.35$ times the odds for women.

Dept A	Admitted	Rejected
Male	512	313
Female	89	19

Chapter 5-53

Sparse Data

Caution: Parameter estimates in logistic regression can be infinite.
Example 1:

$$
\begin{array}{l|rr}
& \mathrm{S} & \mathrm{~F} \\
\hline X=1 & 8 & 2 \\
X=2 & 10 & 0
\end{array}
$$

Model:

$$
\begin{aligned}
\log \left(\frac{\operatorname{Pr}(S)}{\operatorname{Pr}(F)}\right)=\alpha+\beta x \quad e^{\widehat{\beta}} & =\text { odds-ratio }=\frac{8 \times 0}{2 \times 10}=0 \\
\widehat{\beta} & =\text { log-odds-ratio }=-\infty
\end{aligned}
$$

Empty cells in multi-way contingency table can cause infinite estimates.
Software may not realize this, and gives a finite estimate!

- Large Number of Fisher Scoring iterations is a warning sign
- Large values of SEs for coefficients are also warning signs

Chapter 5-55

Conclusion:

- In Dept. A, women are more likely to be admitted
- In Dept. B-F, no significant diff. in admission rates of men and women.
However, if we ignore Dept, Gender effect is significant but in the opposite direction - odds of admission for men are $e^{0.61}=1.84$ times the odds for women ($95 \% \mathrm{Cl}$ for odds ratio is 1.625 to 2.087.) Men are more likely to be admitted. Why?
> UCB.fit3 $=$ glm(cbind(Admitted,Rejected) \sim Gender,
family=binomial, data=UCB)
> UCB.fit3\$coef
(Intercept) GenderMale
-0.8304864 0.6103524
> exp(confint(UCB.fit3))
$2.5 \% \quad 97.5 \%$
(Intercept) 0.39428980 .4811371
GenderMale 1.62495572 .0874993
- This is an example of Simpson's paradox.

Chapter 5-54

```
> S = c(8,10)
> F = c(2,0)
> X = c(1,2)
> glm1 = glm(cbind(S,F) ~ X, family = binomial)
> summary(glm1)
Call:
glm(formula = cbind(S, F) ~ X, family = binomial)
```

Deviance Residuals:
[1] 0
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
$\begin{array}{lllll}\text { (Intercept) } & -22.35 & 54605.92 & 0 & 1\end{array}$
(Dispersion parameter for binomial family taken to be 1)
Null deviance: $2.9953 \mathrm{e}+00$ on 1 degrees of freedom
Residual deviance: $2.4675 \mathrm{e}-10$ on 0 degrees of freedom
AIC: 6.3947

Number of Fisher Scoring iterations: 22
Chapter 5-56

Infinite estimates exist when x-values where $y=1$ can be "separated" from x-values where $y=0$.
Example 2:

```
>X = c(0,1,2,3,4,5,6,7)
> Y = c(0,0,0,0,1,1,1,1)
```


Model:

$$
\operatorname{logit}(\operatorname{Pr}(Y=1))=\alpha+\beta x
$$

What does the $X Y$ scatter plot look like?
> $\mathrm{X}=\mathrm{c}(0,1,2,3,4,5,6,7)$
$>Y=c(0,0,0,0,1,1,1,1)$
$>\operatorname{glm} 2=\operatorname{glm}(Y \sim X, f a m i l y=$ binomial $)$
Warning message:
glm.fit: fitted probabilities numerically 0 or 1 occurred > summary (glm2)
Call:
glm(formula $=Y \sim X, f a m i l y=$ binomial)

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
$-1.504 \mathrm{e}-05$	$-2.110 \mathrm{e}-08$	$0.000 \mathrm{e}+00$	$2.110 \mathrm{e}-08$	$1.504 \mathrm{e}-05$

Coefficients:
$\begin{array}{rrrrr} & \text { Estimate } & \text { Std. Error } & \text { z value } & \operatorname{Pr}(>|z|) \\ \text { Intercept) } & -160.3 & 285119.4 & -0.001 & 1\end{array}$
$\begin{array}{lllll}\mathrm{X} & 45.8 & 80643.9 & 0.001 & 1\end{array}$
(Dispersion parameter for binomial family taken to be 1)
Null deviance: $1.1090 \mathrm{e}+01$ on 7 degrees of freedom
Residual deviance: $4.5253 \mathrm{e}-10$ on 6 degrees of freedom
AIC: 4 AIC: 4

Number of Fisher Scoring iterations: 25
Chapter 5-58

