
Chapter 5 Building Logistic Regression Models

5.1 Model selection
5.2 Model checking (Deviance, Residuals)
5.3 Watch out for “sparse” categorical data
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Model Selection with Many Predictors

Example (Horseshoe Crabs)

Y = whether female crab has satellites (1 = yes, 0 = no).

Explanatory variables:

I Weight

I Width

I Color (ML, M, MD, D) w/ dummy vars c1, c2, c3
I Spine condition (3 categories) w/ dummy vars s1, s2

Consider model for crabs:

logit(P(Y = 1)) = α + β1c+β2c2 + β3c3 + β4s1 + β5s1

+ β5weight + β7width
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.06501 3.92855 -2.053 0.0401 *

C2 -0.10290 0.78259 -0.131 0.8954

C3 -0.48886 0.85312 -0.573 0.5666

C4 -1.60867 0.93553 -1.720 0.0855 .

S2 -0.09598 0.70337 -0.136 0.8915

S3 0.40029 0.50270 0.796 0.4259

Weight 0.82578 0.70383 1.173 0.2407

Width 0.26313 0.19530 1.347 0.1779

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 185.20 on 165 degrees of freedom

AIC: 201.2

None of the terms is significant in the Wald test, but...
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I Residual deviance: 185.20 is the deviance of the model fitted.

Ha : logit(P(Y = 1)) = α + β1c+β2c2 + β3c3 + β4s1 + β5s1

+ β5weight + β7width

I Null deviance: 225.76 is the deviance under the model:

H0 : logit(P(Y = 1)) = α.

H0 means β1 = β2 = · · · = β7 = 0 in the model under Ha,
which means none of the predictor has an effect.

LR statistic = −2(L0 − L1) = diff. of deviances

= 225.76− 185.20 = 40.56

df = 7, P-value < 0.0001
Strong evidence saying at least one predictor has an effect.

But NONE of the terms is significant in the Wald test. Why?
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Multicollinearity
Multicollinearity, which means “strong correlations among
predictors”, causes troubles in linear models and GLMs.

E.g., Corr(weight,width) = 0.89
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Recall βi is partial effect of xi on response controlling for other
variables in model.
Sufficient to pick one of Weight and Width for a model.
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Backward Elimination

1. Start with a complex model (e.g., including all predictors and
interactions)

2. Drop “least significant” (i.e., largest P-value) variable among
highest-order terms.

I Cannot remove a main effect term w/o removing its
higher-order interactions

I Cannot remove a single dummy var. of a categorical predictor
w/ > 2 categories

3. Refit model.

4. Continue until all variables left are “significant”

I Other automatic model selection procedures: forward
selection, stepwise
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Akaike Information Criterion (AIC)

Akaike information criterion (AIC) is a model selection criterion
that selects the model minimizes

AIC = −2(maximized log-likelihood) + 2(num. of parameters).

I prefer simple models (few parameters) with good fit

I can be used to compare models that neither is a special case
of the other, e.g., binomial models w/ diff. link functions
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Example (Mouse Muscle Tension, Revisit)
We demonstrate the Backward Elimination procedure for the
Mouse Muscle Tension data.

> mouse.muscle = read.table("mousemuscle.dat",header=T)

> mouse.muscle

W M D tension.high tension.low

1 High 1 1 3 3

2 High 1 2 21 10

3 High 2 1 23 41

4 High 2 2 11 21

5 Low 1 1 22 45

6 Low 1 2 32 23

7 Low 2 1 4 6

8 Low 2 2 12 22

> attach(mouse.muscle)

> T = cbind(tension.high,tension.low) # response

> M = as.factor(M) # Muscle Type

> D = as.factor(D) # Drug
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Backward elimination starts from the most complex model —
3-way interaction model, and then check significance of the highest
order term — 3-way interactions.

> glm3 = glm(T ~ W*M*D, family=binomial)

> glm2 = glm(T ~ W*M + M*D + W*D, family=binomial)

> anova(glm2,glm3,test="Chisq")

Analysis of Deviance Table

Model 1: T ~ W * M + M * D + W * D

Model 2: T ~ W * M * D

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1 0.111

2 0 0.000 1 0.111 0.739

3-way interaction is not significant.
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An alternative way to check significance:

> drop1(glm3, test="Chisq")

Single term deletions

Model:

T ~ W * M * D

Df Deviance AIC LRT Pr(>Chi)

<none> 0.000 46.117

W:M:D 1 0.111 44.228 0.111 0.739

Only 3-way interaction is shown in the output of drop1 because
drop1 drops one term at a time, other lower-order terms
(W,M,D,W*M,M*D,W*D) cannot be dropped if 3-way interaction is
in the model.
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After eliminating the insignificant 3-way interaction, we consider
the model with all 2-way interactions.

> glm2 = glm(T ~ W*M + M*D + W*D, family=binomial)

> drop1(glm2,test="Chisq")

Single term deletions

Model:

T ~ W * M + M * D + W * D

Df Deviance AIC LRT Pr(>Chi)

<none> 0.11100 44.228

W:M 1 1.05827 43.175 0.94727 0.3304

M:D 1 2.80985 44.926 2.69886 0.1004

W:D 1 0.11952 42.236 0.00852 0.9264

Among the highest order terms (2-way interaction), W:D has the
largest P-value and hance is least significant, so W:D is eliminated.
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After eliminating (W:D), we fit the model

W ∗M + M ∗ D = W + M + D + W ∗M + M ∗ D

> glm2a = glm(T ~ W*M + M*D, family=binomial)

> drop1(glm2a, test="Chisq")

Single term deletions

Model:

T ~ W * M + M * D

Df Deviance AIC LRT Pr(>Chi)

<none> 0.1195 42.236

W:M 1 1.0596 41.176 0.9401 0.33225

M:D 1 4.6644 44.781 4.5449 0.03302 *

This time, W:M is eliminated for it has the largest P-value among
two-way interaction terms.
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After eliminating W:M, we fit the model W + M*D

Note W is still in the model as we eliminate W:M from the model
W*M + M*D.

> # glm2b = glm(T ~ M*D, family=binomial) # not this one!

> glm2b = glm(T ~ W + M*D, family=binomial)

> drop1(glm2b, test="Chisq")

Single term deletions

Model:

T ~ W + M * D

Df Deviance AIC LRT Pr(>Chi)

<none> 1.0596 41.176

W 1 1.5289 39.646 0.4693 0.49332

M:D 1 5.3106 43.427 4.2510 0.03923 *

Though W is of lower order than M:D, but W is not a component of
M:D. The model is still hierarchical if we drop W and keep M:D.
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Then we check model M ∗ D, as M:D is significant. We cannot
eliminate further or the model is not hierarchical.

> glm2c = glm(T ~ M*D, family=binomial)

> drop1(glm2c, test="Chisq")

Single term deletions

Model:

T ~ M * D

Df Deviance AIC LRT Pr(>Chi)

<none> 1.5289 39.646

M:D 1 7.6979 43.814 6.169 0.013 *

The model selected by the backward elimination procedure is
M ∗ D.

This model also has the smallest AIC value, 39.646, among all
models considered.
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Backward Elimination in R
R function step() can do the backward elimination procedure
we’ve just done automatically.

> step(glm3, test="Chisq")

Start: AIC=46.12

T ~ W * M * D

Df Deviance AIC LRT Pr(>Chi)

- W:M:D 1 0.111 44.228 0.111 0.739

<none> 0.000 46.117

Step: AIC=44.23

T ~ W + M + D + W:M + W:D + M:D

Df Deviance AIC LRT Pr(>Chi)

- W:D 1 0.11952 42.236 0.00852 0.9264

- W:M 1 1.05827 43.175 0.94727 0.3304

<none> 0.11100 44.228

- M:D 1 2.80985 44.926 2.69886 0.1004

Step: AIC=42.24

T ~ W + M + D + W:M + M:D

Df Deviance AIC LRT Pr(>Chi)

- W:M 1 1.0596 41.176 0.9401 0.33225

<none> 0.1195 42.236

- M:D 1 4.6644 44.781 4.5449 0.03302 *
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Step: AIC=41.18

T ~ W + M + D + M:D

Df Deviance AIC LRT Pr(>Chi)

- W 1 1.5289 39.646 0.4693 0.49332

<none> 1.0596 41.176

- M:D 1 5.3106 43.427 4.2510 0.03923 *

Step: AIC=39.65

T ~ M + D + M:D

Df Deviance AIC LRT Pr(>Chi)

<none> 1.5289 39.646

- M:D 1 7.6979 43.814 6.169 0.013 *

Call: glm(formula = T ~ M + D + M:D, family = binomial)

Coefficients:

(Intercept) M2 D2 M2:D2

-0.65233 0.09801 1.12611 -1.19750

Degrees of Freedom: 7 Total (i.e. Null); 4 Residual

Null Deviance: 19.02

Residual Deviance: 1.529 AIC: 39.65
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Forward Selection in R
The R function step() can also do forward selection, which starts
with a model with only an intercept (~1), and one most significant
variable is added at each step, until none of remaining variables are
“significant” when added to the model.
To run forward selection, you’ll need to specify the “scope” of the
search.

> step(glm(T ~1, family=binomial), scope=~W*M*D, direction="forward", test="Chisq")

Start: AIC=51.14

T ~ 1

Df Deviance AIC LRT Pr(>Chi)

+ D 1 12.460 46.577 6.5586 0.01044 *

+ M 1 13.579 47.695 5.4405 0.01967 *

<none> 19.019 51.136

+ W 1 18.957 53.073 0.0626 0.80251

Step: AIC=46.58

T ~ D

Df Deviance AIC LRT Pr(>Chi)

+ M 1 7.6979 43.814 4.7627 0.02908 *

<none> 12.4605 46.577

+ W 1 12.2889 48.406 0.1716 0.67871
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Forward Selection in R (Cont’d)

Step: AIC=43.81

T ~ D + M

Df Deviance AIC LRT Pr(>Chi)

+ M:D 1 1.5289 39.646 6.1690 0.0130 *

+ W 1 5.3106 43.427 2.3872 0.1223

<none> 7.6979 43.814

Step: AIC=39.65

T ~ D + M + D:M

Df Deviance AIC LRT Pr(>Chi)

<none> 1.5289 39.646

+ W 1 1.0596 41.176 0.46928 0.4933

Call: glm(formula = T ~ D + M + D:M, family = binomial)

Coefficients:

(Intercept) D2 M2 D2:M2

-0.65233 1.12611 0.09801 -1.19750

Degrees of Freedom: 7 Total (i.e. Null); 4 Residual

Null Deviance: 19.02

Residual Deviance: 1.529 AIC: 39.65
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Both backward elimination and forward selection choose the model
M + D + M ∗ D.

logit(πijk) = α + βMi + βDj + βMD
ij

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.65233 0.24664 -2.645 0.008174 **

M2 0.09801 0.34518 0.284 0.776445

D2 1.12611 0.33167 3.395 0.000686 ***

M2:D2 -1.19750 0.48482 -2.470 0.013512 *

The fitted coefficients are

α̂ = −0.652, β̂M
1 = 0, β̂M

2 = 0.098, β̂MD
11 = 0, β̂MD

12 = 0,

β̂D
1 = 0, β̂D

2 = 1.126, β̂MD
21 = 0, β̂MD

22 = −1.198.

For Type 1 muscle, the odds of lowering muscle tension for Drug 2

is estimated to be e β̂
D
2 = e1.126 ≈ 3.0 times the odds for Drug 1.

For Type 2 muscle, the odds ratio is only

e β̂
D
2 +β̂MD

22 = e1.126−1.198 ≈ 0.93.
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5.1.1 How Many Predictors Can You Use?

I One published simulation study suggests > 10 outcomes of
each type (S or F) per “predictor” (count dummy variables for
factors).
Example: n = 1000, (Y = 1)30 times, (Y = 0) 970 times

Model should contain ≤ 30
10 = 3 predictors.

Example: n = 173 crabs, (Y = 1) 111 crabs, (Y = 0) 62
crabs
Use ≤ 62

10 ≈ 6 predictors.

I Can further check fit with residuals for grouped data,
influence measures, cross validation.
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5.2 MODEL CHECKING

I 5.2.1 Likelihood-Ratio Model Comparison Tests

I introduced in the handouts for Chapter 4 already

I 5.2.2 Goodness of Fit and the Deviance

I 5.2.4 Residuals for Logit Models
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Goodness of Fit and the Deviance

Binomial response data are usually of the following form:

condition of the trials number number
(explanatory variables) of trials of success

Condition 1 x11 x12 . . . x1k n1 y1
Condition 2 x21 x22 . . . x2k n2 y2

...
...

...
. . .

...
...

...
Condition N xN1 xN2 . . . xNk nN yN

where y1, y2, . . . , yN are independent and

yi ∼ Binomial(ni , π(xi )).

where xi = (xi1, xi2, . . . , xik).

E.g., the data of fatal falls in handouts for
Chapter 3 are of this form.

floor total fatal
level falls falls
x nx yx
1 37 2
2 54 6
3 46 8
4 38 13
5 32 10
6 11 10
7 2 1
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Back to the Example of Fatal Falls
Which model fits the data the best?
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Likelihood Revisit
A way to choose models is to compare their max. (log-)likelihoods.

likelihood :
∏

i
[π̂(xi )]yi [1− π̂(xi )]ni−yi

log-likelihood :
∑

i
{yi log π̂(xi ) + (ni − yi ) log[1− π̂(xi )]}

where π̂(x) is the model fitted probabilities. E.g., for a probit
model with a single predictor x

π̂(x) = Φ(α̂ + β̂x).

Maximized log-likelihoods of four models of the fatal falls data:

Model Maximized Log-Likelihood
linear −102.4135
logit −101.1594
probit −101.2476
complementary log-log −101.0744

The complementary log-log model has the largest log-likelihood. Is
it the best?
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Upper Bound of Maximized (Log-)Likelihood
Regardless of the functional form of π(xi ), the likelihood and
log-likelihood must be of the form

likelihood :
∏

i
[π(xi )]yi [1− π(xi )]ni−yi

log-likelihood :
∑

i
{yi log π(xi ) + (ni − yi ) log[1− π(xi )]}

Since yi log π(xi ) + (ni − yi ) log[1− π(xi )] is the log-likelihood for
a single observation yi ∼ binomial(ni , π(xi )), which reaches its
max when π(xi ) equals its MLE yi/ni , we know

yi log π̂(xi )+(ni−yi ) log[1−π̂(xi ) ≤ yi log

(
yi
ni

)
+(ni−yi ) log

(
ni − yi
ni

)
.

So

the maximized log-likelihood of any model

=
∑

i
{yi log π̂(xi ) + (ni − yi ) log[1− π̂(xi )]

≤
∑

i

{
yi log

(
yi
ni

)
+ (ni − yi ) log

(
ni − yi
ni

)}
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floor total fatal
level falls falls
x nx yx
1 37 2
2 54 6
3 46 8
4 38 13
5 32 10
6 11 10
7 2 1

For the data of fatal falls, this upper bound
for the maximized log-likelihood is

2 log

(
2

37

)
+ (37− 2) log

(
37− 2

37

)
+ 6 log

(
6

54

)
+ (54− 6) log

(
54− 6

54

)
+ · · ·

+ 1 log

(
1

2

)
+ (2− 1) log

(
2− 1

2

)
= − 96.89521

Model Maximized Log-Likelihood

linear −102.4135
logit −101.1594
probit −101.2476
complementary log-log −101.0744

upper bound −96.8952
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Deviance

The deviance of a model is 2 times the diff. of its maximized
log-likelihood and the upper bound.

Deviance = −2(max. log-likelihood− upper bound)

= −2

(∑
i
{yi log π̂(xi ) + (ni − yi ) log[1− π̂(xi )]}

−
∑

i

{
yi log

(
yi
ni

)
+ (ni − yi ) log

(
ni − yi
ni

)})
= 2

∑
i

{
yi log

(
yi

ni π̂(xi )

)
+ (ni − yi ) log

(
ni − yi

ni (1− π̂(xi ))

)}
= 2

∑
i

(observed) log

(
observed

fitted

)
= G 2
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For the logistic model of the fatal falls data,

observed fitted observed fitted
floor fatal fatal live live
level count count count count

1 2 2.06 35 34.94
2 6 5.52 48 48.48
3 8 8.31 38 37.69
4 13 11.36 25 26.64
5 10 14.47 22 17.53
6 10 6.76 1 4.24
7 1 1.51 1 0.49

Deviance = 2

[
2 log

(
2

2.06

)
+ 35 log

(
35

34.94

)
+ 6 log

(
6

5.52

)
+ 48 log

(
48

48.48

)
+ . . .

+ 1 log

(
1

1.51

)
+ 1 log

(
1

0.49

)]
≈ 8.5283
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> ff = read.table("falls.dat",h=T)

> ff.logit = glm(cbind(fatal,live) ~ floor,

family = binomial(link="logit"),data=ff)

> summary(ff.logit)

Call:

glm(formula = cbind(fatal, live) ~ floor, family = binomial(link = "logit"),

data = ff)

Deviance Residuals:

1 2 3 4 5 6 7

-0.04171 0.21116 -0.11936 0.57263 -1.61351 2.22062 -0.77799

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.4920 0.5009 -6.971 3.14e-12 ***

floor 0.6600 0.1253 5.267 1.38e-07 ***

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 42.0319 on 6 degrees of freedom

Residual deviance: 8.5283 on 5 degrees of freedom

AIC: 33.451

Number of Fisher Scoring iterations: 4
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The Saturated Model

The upper bound for maximized log-likelihoods itself is also the
maximized likelihood for a model — the saturated model.

The saturated model is the most complex model possible for the
data, which has a separate parameter πi = π(xi ) for each (ni , yi )
and fits the data perfectly that

π̂i =
yi
ni
.

Example (Fatal Falls). The saturate model has a separate
parameter πi for each floor level i = 1, 2, 3 . . . , 7.
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The Saturated Model

I number of parameters in the saturated model = number of
observations in data

I If the number of parameters in a model is the same as the
number of observations, then this model is usually the
saturated model.

Example (Mouse Muscle Tension). The saturate model is the
3-way interaction model, for it has 8 parameters, same as the
number of observations.

I Deviance for the saturated model = 0

Chapter 5 - 31

> mouse.muscle = read.table("mousemuscle.dat",header=T)

> mouse.muscle

W M D tension.high tension.low

1 High 1 1 3 3

2 High 1 2 21 10

3 High 2 1 23 41

4 High 2 2 11 21

5 Low 1 1 22 45

6 Low 1 2 32 23

7 Low 2 1 4 6

8 Low 2 2 12 22
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> glm3 = glm(cbind(tension.high,tension.low) ~ W*M*D,

+ family=binomial, data=mouse.muscle)

> summary(glm3)

Call:

glm(formula = cbind(tension.high, tension.low) ~ W * M * D, family = binomial,

data = mouse.muscle)

Deviance Residuals:

[1] 0 0 0 0 0 0 0 0

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.9743 3.4157 -0.285 0.775

WLow -2.3438 3.8528 -0.608 0.543

M 0.2324 1.7956 0.129 0.897

D 1.5524 1.8611 0.834 0.404

WLow:M 1.3243 2.3163 0.572 0.568

WLow:D 0.7400 2.1398 0.346 0.729

M:D -0.8105 1.0103 -0.802 0.422

WLow:M:D -0.4360 1.3071 -0.334 0.739

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1.9019e+01 on 7 degrees of freedom

Residual deviance: 1.1324e-14 on 0 degrees of freedom

AIC: 46.117

Number of Fisher Scoring iterations: 3
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Goodness of Fit and the Deviance
For a model M of interest, let LM denote the its maximized
log-likelihood. As the upper bound for maximized log-likelihoods
itself is the maximized log-likelihood for the saturated model LS ,
the deviance of the model M equals

Deviance = −2[LM − (upper bound)] = −2(LM − LS),

which is the likelihood ratio test statistic comparing

H0 : Model M v.s. Ha : saturated model.

Deviance has an approx. chi-squared distribution w/

df = (# of parameters in saturated model)

− (# of parameters in Model M)

= (# of observations)− (# of parameters in Model M)

However, this approx. is good only when all observations (ni , yi )
have large ni .
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Goodness of Fit and the Deviance

I Large deviance indicates lack of fit

I Small deviance means the model fits nearly as good as the
best possible model

Goodness of Fit test for the four models of fatal falls data:

Model Deviance d.f. P-value
linear (identity) 11.04 5 0.0507
probit 8.70 5 0.1214
logit 8.53 5 0.1294
complementary log-log 8.36 5 0.1376

Goodness-of-fit tests shows the 3 binomial models w/ logit, probit,
complementary log-log link fit the data nearly as good as each
other, and their fits are a bit better than the model w/ identity
link.
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Example (Mouse Muscle Tension)

For the mouse muscle tension data, the saturated model is the
3-way interaction model, the Goodness of fit test of a model is
simply comparing the model with the 3-way interaction model.

> glm3 = glm(cbind(tension.high,tension.low) ~ W*M*D,

family=binomial, data=mouse.muscle)

> glm2 = glm(cbind(tension.high,tension.low) ~ M*D,

family=binomial, data=mouse.muscle)

> anova(glm2, glm3,test="Chisq")

Analysis of Deviance Table

Model 1: cbind(tension.high, tension.low) ~ M * D

Model 2: cbind(tension.high, tension.low) ~ W * M * D

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 4 1.5289

2 0 0.0000 4 1.5289 0.8215
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Goodness-of Fit Based on Pearson’s Chi-Squared

One can also use Pearson’s Chi-Squared statistic

X 2 =
∑

i

{
(yi − niπ(xi ))2

ni π̂(xi )
+

[ni − yi − ni (1− π̂(xi ))]2

ni (1− π̂(xi ))

}
=
∑ (observed− fitted)2

fitted

to do goodness-of-fit test comparing

H0 : Model M v.s. Ha : saturated model.

X 2 is different from Deviance but it has an approx. chi-squared
distribution w/ same d.f. as Deviance.

Like deviance, the approx. for X 2 is good only when all
observations (ni , yi ) have large ni .
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Grouped Data v.s. Ungrouped Data

Although the ML estimates of parameters are the same for
grouped or ungrouped data, the deviances are different.

For ungrouped data, ni = 1 for all i and yi = 0 or 1, so

LS =
∑

i

{
yi log

(
yi
ni

)
+ (ni − yi ) log

(
ni − yi
ni

)}
=
∑

i
{yi log(yi ) + (1− yi ) log(1− yi )} = 0

and hence
Deviance = −2(LM − LS) = −2LM .
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Grouped Data v.s. Ungrouped Data

> ff = read.table("falls.dat", header=T) # Grouped data

> ff.ug = read.table("fallsUG.dat", header=T) # Ungrouped DATA

> ff.logit = glm(cbind(fatal,live) ~ floor, family=binomial, data=ff)

> ffug.logit =glm((outcome == "fatal")~floor,family=binomial, data=ff.ug)

> ff.logit$coef

(Intercept) floor

-3.4920438 0.6600324

> ffug.logit$coef # same estimated coefficients

(Intercept) floor

-3.4920437 0.6600324

> ff.logit$deviance

[1] 8.52832

> ffug.logit$deviance # different deviances

[1] 202.3187

> ff.logit$df.residual # different df for deviances

[1] 5

> ffug.logit$df.residual

[1] 218
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Grouped Data, Ungrouped Data, Continuous Predictors

I Only deviance computed based on grouped data can be used
to do goodness of fit test. Deviances computed based on
ungrouped data do not have approx. chi-squared dist..

I Continuous predictors usually have too many levels (e.g.,
Width in horseshoe crabs data) that deviances of models w/
such predictors do not have approx. chi-squared dist if the
number of observations at each levels are too small.

I Even though deviances may not have approx. chi-squared
dist., the difference of deviances of two models is often
approx. Chi-squared.

One can safely use the diff. of deviances to do likelihood ratio
test for model comparison no matter what.
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Summary for Deviance
For a Model M of interest

Deviance = −2(LM − LS)

= 2
∑

i

{
yi log

(
yi

ni π̂(xi )

)
+ (ni − yi ) log

(
ni − yi

ni (1− π̂(xi ))

)}
= 2

∑
i

(observed) log

(
observed

fitted

)
= G 2

where

LM = max. log-likelihood for Model M

LS = max. log-likelihood for the saturated model

= the upper bound for max. log-likelihood of ANY model

Deviance can be used to do goodness-of-fit test.
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Residuals for Binomial Response Models
not limited to logistic models

When goodness-of-fit test suggests a GLM fits poorly, residuals can
highlight where the fit is poor.

Pearson Residual ei =
yi − ni π̂i√
ni π̂i (1− π̂i )

Standardized (Pearson) Residual ri =
ei√

1− hi

I hi = leverage of the observation i (details are skipped).
The greater an observation’s leverage, the greater its influence
on the model fit.

I Note
∑

i e
2
i = X 2 (Pearson chi-square)

I When model holds and ni π̂i are large,
ei is approx. N(0, ν) but ν < 1, ri is approx. N(0, 1).
|ri | > 2 or 3 means lack of fit.

I Useful for grouped data only.
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Deviance Residuals for Binomial Response Models
not limited to logistic models

The deviance residual is defined as

di = sign(yi − µ̂i )

√
2

[
yi log

(
yi
µ̂i

)
+ (ni − yi ) log

(
ni − yi
ni − µ̂i

)]
where µ̂i = ni π̂(xi ).

Standardized deviance residual =
di√

1− hi
where hi is leverage.

I Observe that Deviance =
∑

i d
2
i .

I When model holds and ni π̂i large,
di approx. N(0, ν) but ν < 1, should use standardized di

I Useful for grouped data only.
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Example (Berkeley Graduate Admissions)

Men Women

Number Number Percent Number Number Percent
Dept Admitted Rejected Admitted Admitted Rejected Admitted

A 512 313 62% 89 19 82%
B 353 207 63% 17 8 68%
C 120 205 37% 202 391 34%
D 138 279 33% 131 244 35%
E 53 138 28% 94 299 24%
F 22 351 6% 24 317 7%
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> UCB = read.table("UCBadmissions.dat",h=T)

> UCB

Gender Dept Admitted Rejected

1 Male A 512 313

2 Male B 353 207

3 Male C 120 205

4 Male D 138 279

5 Male E 53 138

6 Male F 22 351

7 Female A 89 19

8 Female B 17 8

9 Female C 202 391

10 Female D 131 244

11 Female E 94 299

12 Female F 24 317
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Let’s first fit a model with only the main effects of Department
and Gender, but no interactions.

> UCB.fit1 = glm(cbind(Admitted,Rejected) ~ Dept + Gender,

family=binomial, data=UCB)

> summary(UCB.fit1)

Deviance Residuals:

1 2 3 4 5 6 7 8

-1.2487 -0.0560 1.2533 0.0826 1.2205 -0.2076 3.7189 0.2706

9 10 11 12

-0.9243 -0.0858 -0.8509 0.2052

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.68192 0.09911 6.880 5.97e-12 ***

DeptB -0.04340 0.10984 -0.395 0.693

DeptC -1.26260 0.10663 -11.841 < 2e-16 ***

DeptD -1.29461 0.10582 -12.234 < 2e-16 ***

DeptE -1.73931 0.12611 -13.792 < 2e-16 ***

DeptF -3.30648 0.16998 -19.452 < 2e-16 ***

GenderMale -0.09987 0.08085 -1.235 0.217

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 877.056 on 11 degrees of freedom

Residual deviance: 20.204 on 5 degrees of freedom

AIC: 103.14

Number of Fisher Scoring iterations: 4
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LRT indicates strong Dept effect, but little Gender effect (P-value
≈ 0.22). ⇒ little evidence of gender bias in UCB graduate
admissions.

> drop1(UCB.fit1, test="Chisq")

Single term deletions

Model:

cbind(Admitted, Rejected) ~ Dept + Gender

Df Deviance AIC LRT Pr(>Chi)

<none> 20.20 103.14

Dept 5 783.61 856.55 763.40 <2e-16 ***

Gender 1 21.74 102.68 1.53 0.2159

However, ...
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However, goodness of fit test shows the main effect model fits
poorly. The Deviance = 20.204 can be obtained from the summary
output, or from the commands below

> UCB.fit1$deviance

[1] 20.20428

The P-value for goodness of fit test ≈ 0.00114 is computed as
follows.

> pchisq(20.204, df=5, lower.tail=F)

[1] 0.001144215

Apparently there is gender×dept interaction
(because the saturated model is the two-way interaction model).
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R function residuals() gives deviance residuals by default, and
Pearson residuals with option type="pearson".

> residuals(UCB.fit1) # deviance residuals

1 2 3 4 5 6

-1.24867404 -0.05600850 1.25333751 0.08256736 1.22051370 -0.20756402

7 8 9 10 11 12

3.71892028 0.27060804 -0.92433979 -0.08577122 -0.85093316 0.20517793

> residuals(UCB.fit1, type="pearson") # Pearson residuals

1 2 3 4 5 6

-1.25380765 -0.05602052 1.26287232 0.08260773 1.24151319 -0.20620096

7 8 9 10 11 12

3.51866744 0.26895159 -0.92077831 -0.08573167 -0.84403319 0.20648081
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By default, R function rstandard() gives standardized deviance
residuals.

> rstandard(UCB.fit1)

1 2 3 4 5 6

-4.0107986 -0.2796622 1.8666312 0.1411928 1.6058628 -0.3046444

7 8 9 10 11 12

4.2564872 0.2814450 -1.8881065 -0.1413270 -1.6468462 0.3007342

With option type="pearson", rstandard() gives standardized
Pearson residuals.

> rstandard(UCB.fit1, type="pearson")

1 2 3 4 5 6

-4.0272880 -0.2797222 1.8808316 0.1412619 1.6334924 -0.3026439

7 8 9 10 11 12

4.0272880 0.2797222 -1.8808316 -0.1412619 -1.6334924 0.3026439
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> pearson.res = round(residuals(UCB.fit1, type="pearson"),2)

> std.res = round(rstandard(UCB.fit1,type="pearson"), 2)

> cbind(UCB, pearson.res, std.res)

Gender Dept Admitted Rejected pearson.res std.res

1 Male A 512 313 -1.25 -4.03 <--

2 Male B 353 207 -0.06 -0.28

3 Male C 120 205 1.26 1.88

4 Male D 138 279 0.08 0.14

5 Male E 53 138 1.24 1.63

6 Male F 22 351 -0.21 -0.30

7 Female A 89 19 3.52 4.03 <--

8 Female B 17 8 0.27 0.28

9 Female C 202 391 -0.92 -1.88

10 Female D 131 244 -0.09 -0.14

11 Female E 94 299 -0.84 -1.63

12 Female F 24 317 0.21 0.30

Standardized residuals suggest Dept. A as main source of lack of
fit (ri = −4.03 and 4.03), while Pearson residuals fail to catch the
lack of fit of the first observation (Gender = Male, Dept = A).
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Leaving out Dept. A, the model with Dept main effects and gender
main effects fits well (Deviance = 2.556, df = 4, P-value ≈ 0.63.)

> UCB.fit2 = glm(cbind(Admitted,Rejected) ~ Dept + Gender,

family=binomial, data=UCB, subset=(Dept != "A"))

> UCB.fit2$deviance

[1] 2.556429

> UCB.fit2$df.residual

[1] 4

> pchisq(2.556429, df=4, lower.tail=F)

[1] 0.6345606
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Knowing the main effect model fits the data well when leaving out
Dept. A, we can use it to do inference.

LRT shows gender effect is not significant (P-value = 0.72),
meaning little evidence of gender bias in UCB graduate admissions
in Dept. B, C, D, E, F.

> drop1(UCB.fit2, test="Chisq")

Single term deletions

Model:

cbind(Admitted, Rejected) ~ Dept + Gender

Df Deviance AIC LRT Pr(>Chi)

<none> 2.56 71.79

Dept 4 500.85 562.08 498.29 <2e-16 ***

Gender 1 2.68 69.92 0.13 0.7236

In Dept. A, odds of admission for
men are 512×19

313×89 = 0.35 times the
odds for women.

Dept A Admitted Rejected
Male 512 313

Female 89 19

Chapter 5 - 53

Conclusion:
I In Dept. A, women are more likely to be admitted
I In Dept. B-F, no significant diff. in admission rates of men

and women.

However, if we ignore Dept, Gender effect is significant but in the
opposite direction — odds of admission for men are e0.61 = 1.84
times the odds for women (95% CI for odds ratio is 1.625 to
2.087.) Men are more likely to be admitted. Why?

> UCB.fit3 = glm(cbind(Admitted,Rejected) ~ Gender,

family=binomial, data=UCB)

> UCB.fit3$coef

(Intercept) GenderMale

-0.8304864 0.6103524

> exp(confint(UCB.fit3))

2.5 % 97.5 %

(Intercept) 0.3942898 0.4811371

GenderMale 1.6249557 2.0874993

I This is an example of Simpson’s paradox.
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Sparse Data
Caution: Parameter estimates in logistic regression can be infinite.

Example 1:

S F

X = 1 8 2
X = 2 10 0

Model:

log

(
Pr(S)

Pr(F )

)
= α + βx e β̂ = odds-ratio =

8× 0

2× 10
= 0

β̂ = log-odds-ratio = −∞

Empty cells in multi-way contingency table can cause infinite
estimates.

Software may not realize this, and gives a finite estimate!
I Large Number of Fisher Scoring iterations is a

warning sign
I Large values of SEs for coefficients are also warning signs
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> S = c(8,10)

> F = c(2,0)

> X = c(1,2)

> glm1 = glm(cbind(S,F) ~ X, family = binomial)

> summary(glm1)

Call:

glm(formula = cbind(S, F) ~ X, family = binomial)

Deviance Residuals:

[1] 0 0

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -22.35 54605.92 0 1

X 23.73 54605.92 0 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2.9953e+00 on 1 degrees of freedom

Residual deviance: 2.4675e-10 on 0 degrees of freedom

AIC: 6.3947

Number of Fisher Scoring iterations: 22
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Infinite estimates exist when x-values where y = 1 can be
“separated” from x-values where y = 0.
Example 2:

> X = c(0,1,2,3,4,5,6,7)

> Y = c(0,0,0,0,1,1,1,1)

Model:

logit(Pr(Y = 1)) = α + βx

What does the XY scatter plot look like?
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> X = c(0,1,2,3,4,5,6,7)

> Y = c(0,0,0,0,1,1,1,1)

> glm2 = glm(Y ~ X, family = binomial)

Warning message:

glm.fit: fitted probabilities numerically 0 or 1 occurred

> summary(glm2)

Call:

glm(formula = Y ~ X, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.504e-05 -2.110e-08 0.000e+00 2.110e-08 1.504e-05

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -160.3 285119.4 -0.001 1

X 45.8 80643.9 0.001 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1.1090e+01 on 7 degrees of freedom

Residual deviance: 4.5253e-10 on 6 degrees of freedom

AIC: 4

Number of Fisher Scoring iterations: 25
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