Qualitative Predictors: Passive Smoking Revisit

Spouse	Ja	apan	UK		US	
Smoked	Case	Control	Case	Control	Case	Control
Yes	73	188	19	38	137	363
No	21	82	5	16	71	249

Model: logit(π) = $\alpha + \beta x + \beta_{UK} C_{UK} + \beta_{US} C_{US}$

 \overline{C}

 $\pi = P(\mathsf{Case}(\mathsf{lung cancer}))$

,		Country	Passive Smoking	$\log(\pi)$
$x = \begin{cases} 1 \\ 1 \end{cases}$	if passive smoking	JP	N	α
x — (0	if no passive smoking		Y	$\alpha + \beta$
c (1	if $Country = UK$	UK	N	$\alpha + + \beta_{UK}$
$C_{UK} = \begin{cases} - \\ 0 \end{cases}$	if Country = JP or US		Y	$\alpha + \beta + \beta_{\rm UK}$
	,	US	N	$\alpha + + \beta_{US}$
$C_{\rm UC} = \begin{cases} 1 \\ 1 \end{cases}$	if Country $=$ US		Y	$\alpha + \beta + \beta_{US}$
$c_{03} = 0$	if Country = JP or UK			

Chapter 4 - 1

- > Case = c(73, 21, 19, 5, 137, 71)
- > Control = c(188, 82, 38, 16, 363, 249)
- > SpouseSmoking = rep(c("Yes","No"), 3)
- > Country = c("JP","JP","UK","UK","US","US")
- > PassSmok = data.frame(SpouseSmoking, Country, Case, Control)
- > PassSmok

SpouseSmoking Country Case Control

1	Yes	JP	73	188
2	No	JP	21	82
3	Yes	UK	19	38
4	No	UK	5	16
5	Yes	US	137	363
6	No	US	71	249

Homogeneous Association

The model

$$\mathsf{logit}(\pi) = lpha + eta x + eta_{\mathit{UK}} C_{\mathit{UK}} + eta_{\mathit{US}} C_{\mathit{US}}$$

has $\ensuremath{\mathbf{no}}$ interaction term, which means the same conditional odds ratio

$$\frac{\text{odds for passive smokers}}{\text{odds for non-passive smokers}} = \frac{e^{\alpha + \beta + \beta_{UK}C_{UK} + \beta_{US}C_{US}}}{e^{\alpha + \beta_{UK}C_{UK} + \beta_{US}C_{US}}} = e^{\beta}$$

for both levels of initial size of stone. That is **homogeneous association** — same conditional odds ratio at each level of other variable.

Likewise, the conditional odds ratio for "Country" is also constant regardless of smoking status.

$$\frac{\text{odds for UK}}{\text{odds for JP}} = \frac{e^{\alpha + \beta x + \beta_{UK}}}{e^{\alpha + \beta x}} = e^{\beta_{UK}}$$

Chapter 4 - 2

<pre>> fit1 = glm(cbind(Case, Control) ~ Country + SpouseSmoking,</pre>						
<pre>family = binomial, data=PassSmok)</pre>						
> summary(fit1)						
Coefficients:						
Estimate	Std. Error	z value	Pr(z)			
-1.293807	0.159199	-8.127	4.4e-16	***		
0.240844	0.273559	0.880	0.3786			
0.009867	0.145148	0.068	0.9458			
0.325530	0.139590	2.332	0.0197	*		
	nd(Case, Co ily = binor Estimate -1.293807 0.240844 0.009867 0.325530	<pre>hd(Case, Control) ~ Cd ily = binomial, data=H Estimate Std. Error -1.293807 0.159199 0.240844 0.273559 0.009867 0.145148 0.325530 0.139590</pre>	<pre>hd(Case, Control) ~ Country + ily = binomial, data=PassSmok) Estimate Std. Error z value -1.293807 0.159199 -8.127 0.240844 0.273559 0.880 0.009867 0.145148 0.068 0.325530 0.139590 2.332</pre>	<pre>ad(Case, Control) ~ Country + SpouseSmo ily = binomial, data=PassSmok) Estimate Std. Error z value Pr(> z) -1.293807 0.159199 -8.127 4.4e-16 0.240844 0.273559 0.880 0.3786 0.009867 0.145148 0.068 0.9458 0.325530 0.139590 2.332 0.0197</pre>		

After accounting for country effect, odds of getting lung cancer for passive smokers are estimated to be $e^{\widehat{\beta}} = e^{0.3255} \approx 1.38$ times the odds for non-passive smokers.

95% Wald CI for e^{β} :

$$e^{\widehat{eta} \pm 1.96 imes \mathsf{SE}} = e^{0.3255 \pm 1.96 imes 0.1396} = (e^{0.052}, e^{0.599}) pprox (1.05, 1.82)$$

Significant adverse effect of passive smoking after accounting for country effect.

Tests of Conditional Independence

In the model

 $\operatorname{logit}(\pi) = \alpha + \beta x + \beta_{UK} C_{UK} + \beta_{US} C_{US},$

 $\beta = 0$ means conditional odds ratio $e^{\beta} = e^{0} = 1$, i.e., lung cancer and passive smoking are **conditionally independent** given country.

Tests of conditional independence:

- CMH test
 - In fact, CMH test is the score test of $\beta = 0$ in the logistic model
- Wald test of $\beta = 0$ in the logistic model
- LR test of $\beta = 0$ in the logistic model

Chapter 4 - 5

Comparison of the Three Tests of Conditional Independence

- The three tests usually agree when the sample sizes in each partial table are big enough
- Wald and LR tests require the sample size in each partial table to be large enough
- CMH test can work when the counts in the partial tables are small as long as the overall count is large enough
- In H_a, Wald and LR tests assume homogeneous association, but CMH test does not assume equality of odds ratios
- To sum up, for testing conditional independence in 2 × 2 × K tables, CMH test is preferred over Wald or LR tests.

Tests of Conditional Independence (Cont'd)

Wald test of conditional independence gives P-value = 0.0197

<pre>> summary(fit1)</pre>					
Coefficients:					
	Estimate	Std. Error	z value	Pr(z)	
(Intercept)	-1.293807	0.159199	-8.127	4.4e-16	***
CountryUK	0.240844	0.273559	0.880	0.3786	
CountryUS	0.009867	0.145148	0.068	0.9458	
SpouseSmokingYes	0.325530	0.139590	2.332	0.0197	*

LR test of conditional independence gives P-value = 0.01842:

> drop1(fit1, test="Chisq")
Single term deletions

Model: cbind(Case, Control) ~ Country + SpouseSmoking Df Deviance AIC LRT Pr(>Chi) <none> 0.2396 38.595 Country 2 1.0647 35.420 0.8251 0.66195 SpouseSmoking 1 5.7952 42.150 5.5556 0.01842 *

CMH test gives the P-value 0.01957 (See Slide C02D.pdf).

Estimation of Common Odds Ratio

- MH estimate of the common odds ratio (See Slide C02D.pdf).
- In the logistic regression model:

 $\mathsf{logit}(\pi) = \alpha + \beta x + \beta_{UK} C_{UK} + \beta_{US} C_{US},$

 e^{β} is the common odds ratio, and $e^{\widehat{\beta}}$ is the maximum likelihood estimate (MLE) for the common odds ratio. One can construct the Wald or LR confidence interval for e^{β}

▶ MH estimate is preferred over MLE of the common odds ratio.

Test of Homogeneous Association

If we include the interaction term,

Model 2: logit(π) = $\alpha + \beta x + \beta_{UK} C_{UK} + \beta_{US} C_{US} + \gamma_{UK} x C_{UK} + \gamma_{US} x C_{US}$,

the conditional odds ratio

 $\frac{\text{odds for Passive Smokers}}{\text{odds for Non-Passive Smokers}} = \frac{e^{\alpha + \beta + \beta_{UK}C_{UK} + \beta_{US}C_{US} + \gamma_{UK}C_{UK} + \gamma_{US}C_{US}}}{e^{\alpha + \beta_{UK}C_{UK} + \beta_{US}C_{US}}} = e^{\beta + \gamma_{UK}C_{UK} + \gamma_{US}C_{US}}$

changes with Country, if γ_{UK} or $\gamma_{US} \neq 0$.

H₀: $\gamma_{UK} = \gamma_{US} = 0$ means homogeneous association.

> fit2 = glm(cbind(Case, Control) ~ Country + SpouseSmoking + Country:SpouseSmoking, family = binomial, data=PassSmok) > anova(fit1, fit2, test="Chisq") Analysis of Deviance Table

Model 1: cbind(Case, Control) ~ Country + SpouseSmoking Model 2: cbind(Case, Control) ~ Country + SpouseSmoking + Country:SpouseSmoking Resid. Df Resid. Dev Df Deviance Pr(>Chi) 2 0.23958 1

2 0 0.00000 2 0.23958 0.8871

Chapter 4 - 9