Qualitative Predictors: Passive Smoking Revisit

Spouse	Japan		UK		US	
Smoked	Case	Control	Case	Control	Case	Control
Yes	73	188	19	38	137	363
No	21	82	5	16	71	249

Model: $\operatorname{logit}(\pi)=\alpha+\beta x+\beta_{U K} C_{U K}+\beta_{U S} C_{U S}$

$$
\begin{aligned}
\pi & =\mathrm{P}(\text { Case (lung cancer })) \\
x & = \begin{cases}1 & \text { if passive smoking } \\
0 & \text { if no passive smoking }\end{cases} \\
C_{U K} & = \begin{cases}1 & \text { if Country }=\text { UK } \\
0 & \text { if Country }=\mathrm{JP} \text { or US }\end{cases} \\
C_{U S} & = \begin{cases}1 & \text { if Country }=\mathrm{US} \\
0 & \text { if Country }=\mathrm{JP} \text { or UK }\end{cases}
\end{aligned}
$$

Country	Passive Smoking	$\operatorname{logit}(\pi)$
JP	N	α
	Y	$\alpha+\beta$
UK	N	$\alpha++\beta_{U K}$
	Y	$\alpha+\beta+\beta_{U K}$
US	N	$\alpha++\beta_{U S}$
	Y	$\alpha+\beta+\beta_{U S}$

Chapter 4-1

Case $=\mathrm{c}(73,21,19,5,137,71)$			
SpouseSmoking = rep(c("Yes", "No"), 3)			
Country = c ("JP", "JP", "UK", "UK", "US", "US")			
$\begin{aligned} & \text { PassSmok = data } \\ & \text { PassSmok } \end{aligned}$	ta.frame	(Spous	seSmokin
SpouseSmoking	Country	Case	Control
Yes	JP	73	188
No	JP	21	82
Yes	UK	19	38
No	UK	5	16
Yes	US	137	363
No	US	71	249

Case $=c(73,21,19,5,137,71)$
Control = c(188, 82, 38, 16, 363, 249)
> SpouseSmoking = rep(c("Yes","No"), 3)
> Country = c("JP","JP", "UK", "UK", "US", "US")
> PassSmok = data.frame(SpouseSmoking, Country, Case, Control)
> PassSmok

Homogeneous Association

The model

$$
\operatorname{logit}(\pi)=\alpha+\beta x+\beta_{U K} C_{U K}+\beta_{U S} C_{U S}
$$

has no interaction term, which means the same conditional odds ratio

$$
\frac{\text { odds for passive smokers }}{\text { odds for non-passive smokers }}=\frac{e^{\alpha+\beta+\beta_{U K} C_{U K}+\beta_{U S} C_{U S}}}{e^{\alpha+\beta_{U K} C_{U K}+\beta_{U S} C_{U S}}}=e^{\beta}
$$

for both levels of initial size of stone. That is homogeneous association - same conditional odds ratio at each level of other variable.

Likewise, the conditional odds ratio for "Country" is also constant regardless of smoking status.

$$
\frac{\text { odds for UK }}{\text { odds for JP }}=\frac{e^{\alpha+\beta x+\beta} \beta_{K K}}{e^{\alpha+\beta x}}=e^{\beta U K}
$$

Chapter 4-2

```
> fit1 = glm(cbind(Case, Control) ~ Country + SpouseSmoking,
    family = binomial, data=PassSmok)
> summary(fit1)
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error z value \(\operatorname{Pr}(>|z|)\) \\
(Intercept) & -1.293807 & 0.159199 & -8.127 & \(4.4 \mathrm{e}-16 \quad * * *\) \\
CountryUK & 0.240844 & 0.273559 & 0.880 & 0.3786 \\
CountryUS & 0.009867 & 0.145148 & 0.068 & 0.9458 \\
SpouseSmokingYes & 0.325530 & 0.139590 & 2.332 & \(0.0197 *\)
\end{tabular}
```

After accounting for country effect, odds of getting lung cancer for passive smokers are estimated to be $e^{\widehat{\beta}}=e^{0.3255} \approx 1.38$ times the odds for non-passive smokers.
95% Wald Cl for e^{β} :

$$
e^{\widehat{\beta} \pm 1.96 \times \mathrm{SE}}=e^{0.3255 \pm 1.96 \times 0.1396}=\left(e^{0.052}, e^{0.599}\right) \approx(1.05,1.82)
$$

Significant adverse effect of passive smoking after accounting for country effect.

Tests of Conditional Independence

In the model

$$
\operatorname{logit}(\pi)=\alpha+\beta x+\beta_{U K} C_{U K}+\beta_{U S} C_{U S}
$$

$\beta=0$ means conditional odds ratio $e^{\beta}=e^{0}=1$, i.e., lung cancer and passive smoking are conditionally independent given country.
Tests of conditional independence:

- CMH test
- In fact, CMH test is the score test of $\beta=0$ in the logistic model
- Wald test of $\beta=0$ in the logistic model
- LR test of $\beta=0$ in the logistic model

Chapter 4-5

Comparison of the Three Tests of Conditional

 Independence- The three tests usually agree when the sample sizes in each partial table are big enough
- Wald and LR tests require the sample size in each partial table to be large enough
- CMH test can work when the counts in the partial tables are small as long as the overall count is large enough
- In H_{a}, Wald and LR tests assume homogeneous association, but CMH test does not assume equality of odds ratios
- To sum up, for testing conditional independence in $2 \times 2 \times K$ tables, CMH test is preferred over Wald or LR tests.

Tests of Conditional Independence (Cont'd)

Wald test of conditional independence gives P-value $=0.0197$
> summary (fit1)
Coefficients:

	Estimate	Std. Error z	value $\operatorname{Pr}(>\|z\|)$		
(Intercept)	-1.293807	0.159199	-8.127	$4.4 e-16$	$* * *$
CountryUK	0.240844	0.273559	0.880	0.3786	
CountryUS	0.009867	0.145148	0.068	0.9458	
SpouseSmokingYes	0.325530	0.139590	2.332	0.0197	$*$

LR test of conditional independence gives P-value $=0.01842$:
> drop1(fit1, test="Chisq")
Single term deletions

Model:
cbind(Case, Control) ~ Country + SpouseSmoking Df Deviance AIC LRT Pr (>Chi)
<none> $\quad 0.239638 .595$
$\begin{array}{llllll}\text { Country } & 2 & 1.0647 & 35.420 & 0.8251 & 0.66195\end{array}$
SpouseSmoking 1 5.7952 42.1505 .5556 0.01842 *
CMH test gives the P -value C Chapter 4 (See Slide C02D. pdf).

Estimation of Common Odds Ratio

- MH estimate of the common odds ratio (See Slide C02D.pdf).
- In the logistic regression model:

$$
\operatorname{logit}(\pi)=\alpha+\beta x+\beta_{U K} C_{U K}+\beta_{U S} C_{U S},
$$

e^{β} is the common odds ratio, and $e^{\widehat{\beta}}$ is the maximum likelihood estimate (MLE) for the common odds ratio. One can construct the Wald or LR confidence interval for e^{β}

- MH estimate is preferred over MLE of the common odds ratio.

Test of Homogeneous Association

If we include the interaction term,

Model 2: $\operatorname{logit}(\pi)=\alpha+\beta x+\beta_{U K} C_{U K}+\beta_{U S} C_{U S}+\gamma_{U K} \times C_{U K}+\gamma_{U S} \times C_{U S}$,
the conditional odds ratio
$\frac{\text { odds for Passive Smokers }}{\text { odds for Non-Passive Smokers }}=\frac{e^{\alpha+\beta+\beta u K} C_{U K}+\beta_{u s} C_{U S}+\gamma_{u K} C_{U K}+\gamma_{U S} C_{U S}}{e^{\alpha+\beta} \beta_{U K} C_{U K}+\beta_{U S} C_{U S}}=e^{\beta+\gamma_{U K} C_{U K}+\gamma_{U S} C_{U S}}$
changes with Country, if $\gamma_{u k}$ or $\gamma u s \neq 0$.
$\boldsymbol{H}_{0}: \gamma_{U K}=\gamma_{U S}=0$ means homogeneous association.
> fit2 = glm(cbind(Case, Control) ~ Country + SpouseSmoking + Country:SpouseSmoking, family = binomial, data=PassSmok)
> anova(fit1, fit2, test="Chisq")
Analysis of Deviance Table
Model 1: cbind(Case, Control) ~ Country + SpouseSmoking
Model 2: cbind(Case, Control) ~ Country + SpouseSmoking + Country:SpouseSmoking
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1
$\begin{array}{lll}2 & 0 & 0.00000\end{array}$
$20.23958 \quad 0.8871$
Chapter 4-9

