Multiple Logistic Regression

Response: Y binary, $\pi = P(Y = 1)$

Explanatory variables: x_1, x_2, \ldots, x_k

can be quantitative, qualitative (dummy variables), or both.

Model form is

$$\mathsf{logit}(\pi) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

or equivalently

$$\pi = \frac{\exp(\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)}{1 + \exp(\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)}$$

 β_i = partial effect of x_i controlling for other variables in model

$$e^{\beta_i} = \text{conditional odds ratio at } x_i + 1 \text{ vs at } x_i \text{ keeping other } x' \text{s fixed}$$

= multiplicative effect on odds of 1-unit increase in x_i

w/ other x's fixed

Chapter 4 - 1

Example (Horseshoe Crabs)

Model 1:

$$logit(\pi) = \alpha + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4 + \beta x$$
$$= \begin{cases} \alpha + \beta x & \text{if med. light } (c_2 = c_3 = c_4 = 0) \\ \alpha + \beta_2 + \beta x & \text{if medium } (c_2 = 1, c_3 = c_4 = 0) \\ \alpha + \beta_3 + \beta x & \text{if med. dark } (c_2 = 0, c_3 = 1, c_4 = 0) \\ \alpha + \beta_4 + \beta x & \text{if dark } (c_2 = c_3 = 0, c_4 = 1) \end{cases}$$

- Here we set $\beta_1 = 0$
- The category with no dummy var. in the model (or with coefficient β_i = 0) is called the <u>baseline</u> category. In Model 1, the baseline category is the color medium light (Color = 1).

Example (Horseshoe Crabs)

In addition to Width (X), consider adding a categorical predictor — Color, coded 1-4 as

1 = medium light, 2 = medium, 3 = medium dark, 4 = dark

For a categorical predictor, need to create a **dummy variable** (= indicator variable) for each category:

$$c_1 = \begin{cases} 1 & \text{medium light} \\ 0 & \text{o/w} \end{cases}, c_2 = \begin{cases} 1 & \text{medium} \\ 0 & \text{o/w} \end{cases}, c_3 = \begin{cases} 1 & \text{medium dark} \\ 0 & \text{o/w} \end{cases}, c_4 = \begin{cases} 1 & \text{dark} \\ 0 & \text{o/w} \end{cases}$$
$$Model: \text{ logit}(\pi) = \alpha + \beta_1 c_1 + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4 + \beta_3 c_4 + \beta_4 c_4 + \beta_3 c_4 + \beta_4 c_4$$

- $c_1 + c_2 + c_3 + c_4 = 1$ always true, so one of them is redundant.
- To account for redundancies, most software set one of β₁, β₂, β₃, β₄ to 0

Below "odds" = odds having at least one satellite

$$\begin{aligned} \mathsf{odds} &= \frac{\pi}{1 - \pi} = e^{\alpha + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4 + \beta_X} \\ &= \begin{cases} e^{\alpha + \beta_X} & \text{if med. light } (c_2 = c_3 = c_4 = 0) \\ e^{\alpha + \beta_2 + \beta_X} & \text{if medium } (c_2 = 1, c_3 = c_4 = 0) \\ e^{\alpha + \beta_3 + \beta_X} & \text{if med. dark } (c_2 = 0, c_3 = 1, c_4 = 0) \\ e^{\alpha + \beta_4 + \beta_X} & \text{if dark } (c_2 = c_3 = 0, c_4 = 1) \end{cases} \end{aligned}$$

For female crabs of the same width,

 $\frac{\text{odds for a medium crab}}{\text{odds for a medium light crab}} = \frac{e^{\alpha + \beta_2 + \beta_X}}{e^{\alpha + \beta_X}} = e^{\beta_2}$

- Likewise,
 - $e^{\beta_3} = \text{odds ratio of (med. dark v.s. med. light)}$
 - $e^{\beta_4} = \text{odds ratio of (dark v.s. med. light)}$
- Observe e^β's are odds ratios of a category v.s. the baseline category (medium light), for crabs of the same width.
- Observe the effect of Color does not change with Width

Example (Horseshoe Crabs)

Model 1: odds =
$$\frac{\pi}{1-\pi} = e^{\alpha+\beta_2 c_2+\beta_3 c_3+\beta_4 c_4+\beta x}$$

For female crabs of same color but different width x_1, x_2 ,

 $\frac{\text{odds for crabs of Width } x_1}{\text{odds for crabs of Width } x_2} = \frac{e^{\alpha + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4 + \beta x_1}}{e^{\alpha + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4 + \beta x_2}} = e^{\beta(x_1 - x_2)}$

 \Rightarrow Width have the same effect for all colors.

As neither the effect of color change with width,

nor the effect of width change with color,

we said Model 1 assumes **no interaction** between color and width effects.

$$\begin{aligned} \text{logit}(\widehat{\pi}) &= -11.39 + 0.07c_2 - 0.22c_3 - 1.33c_4 + 0.468x \\ &= \begin{cases} -11.39 + 0.468x & \text{if medium light} \\ -11.32 + 0.468x & \text{if medium} \\ -11.61 + 0.468x & \text{if medium dark} \\ -12.72 + 0.468x & \text{if dark} \end{cases} \end{aligned}$$

Observe the four curves have the same shape because they have identical coefficient for Width.

R regards Color (coded 1-4) as a numeric variable. The R command as.factor() can create the dummy variables.

<pre>> C = as.facto</pre>	r(Color)			
<pre>> crabs.fit1 =</pre>	glm(has.sate	e ~ C + Weigh	t, family =	binomial)
<pre>> crabs.fit1\$c</pre>	oef			
(Intercept)	C2	C3	C4	Width
-11.38519276	0.07241694	-0.22379766	-1.32991913	0.46795598

The fitted model is

$$\mathsf{logit}(\widehat{\pi}) = -11.39 + 0.07c_2 - 0.22c_3 - 1.33c_4 + 0.468x$$

For a medium light female ($c_2 = c_3 = c_4 = 0$) of width x = 25 cm,

$$\widehat{\pi} = rac{\exp(-11.39 + 0.468 imes 25)}{1 + \exp(-11.39 + 0.468 imes 25)} pprox 0.58$$

For a dark female $(c_2 = c_3 = 0, c_4 = 1)$ of width x = 25 cm,

$$\widehat{\pi} = rac{\exp(-11.39 + (-1.33)(1) + 0.468 \times 25)}{1 + \exp(-11.39 + (-1.33)(1) + 0.468 \times 25)} \approx 0.265.$$

Medium v.s. Medium Light Crabs

	Estimate	Std. Error	z value	Pr(z)	
(Intercept)	-11.38519	2.87346	-3.962	7.43e-05	***
C2	0.07242	0.73989	0.098	0.922	
C3	-0.22380	0.77708	-0.288	0.773	
C4	-1.32992	0.85252	-1.560	0.119	
Width	0.46796	0.10554	4.434	9.26e-06	***

- Interpretation of β₂: estimated odds of having satellite(s) for medium crabs are e^{β̂2} = e^{0.07} ≈ 1.07 times the estimated odds for medium light crabs of the same width.
- H₀: β₂ = 0 means medium and medium light crabs do not differ in their chance of having satellite(s) given width. To test

$$H_0: \beta_2 = 0$$
 v.s. $H_a: \beta_2 \neq 0$

Wald statistic $z = \frac{\widehat{\beta}_2}{SE} = \frac{0.072}{0.74} = 0.098$, *P*-value = 0.922.

<u>Conclusion</u>: Medium light and medium crabs of the same width don't differ significantly in the prob. of having satellites.

95% LR CI for β_2 is (-1.54, 1.45), which contains 0. So LR test also fail to reject H₀: $\beta_2 = 0$.

<pre>> confint(crabs.fit1,test="Chisq")</pre>						
	2.5 %	97.5 %				
(Intercept)	-17.3084388	-5.9859523				
C2	-1.5396596	1.4516138				
C3	-1.8918959	1.2396603				
C4	-3.1356611	0.2737758				
Width	0.2712817	0.6870436				

What about (medium dark v.s. medium light) crabs? What about (dark v.s. medium light) crabs?

Change of Baseline

Model 1 $$:	$logit(\pi) = \alpha$	$+\beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4$	$+\beta x$
Model 1a :	$logit(\pi) = \alpha' + \beta'_1 c_1$	$+\beta_2'c_2+\beta_3'c_3$	$+\beta x$

		$logit(\pi)$ for			
Color ((c_1, c_2, c_3, c_4)	N	Nodel 1	Μ	odel 1a
med. light	(1, 0, 0, 0)	α	$+\beta x$	α' +	$-\beta_1' + \beta x$
medium	(0, 1, 0, 0)	α +	$\beta_2 + \beta x$	α' +	$\beta_2' + \beta x$
med. dark	(0, 0, 1, 0)	α +	$\beta_3 + \beta x$	α' +	$\beta'_3 + \beta x$
dark	(0, 0, 0, 1)	$\alpha +$	$\beta_4 + \beta x$	α'	$+\beta x$

The two models are equivalent, just a change of parameters.

$$lpha'=lpha+eta_4, \quad eta_i'=eta_i-eta_4 \quad {
m for}\,\,i=1,2,3$$

Testing $\beta_2 = \beta_4$ in Model 1 is equivalent to testing $\beta_2' = 0$ in Model 1a.

What about Medium v.s. Dark Crabs?

For medium and dark crabs of the same width, the odds ratio is

$$\frac{\text{odds for a medium crab}}{\text{odds for a dark crab}} = \frac{e^{\alpha + \beta_2 + \beta_x}}{e^{\alpha + \beta_4 + \beta_x}} = e^{\beta_2 - \beta_4}.$$

Estimated odds of having satellite(s) for a medium crab is

$$e^{\widehat{\beta}_2 - \widehat{\beta}_4} = e^{0.07 - (-1.33)} = e^{1.4} \approx 4.06$$

times the estimated odds for a dark crabs of the same width.

However, to test $H_0: \beta_2 = \beta_4$, need SE for $\hat{\beta}_2 - \hat{\beta}_4$, which is not provided in R.

The simplest solution is to change the baseline category. Say, use $\ensuremath{\mathsf{dark}}$ color as the baseline and model as

Model 1a : logit(
$$\pi$$
) = $\alpha' + \beta'_1 c_1 + \beta'_2 c_2 + \beta'_3 c_3 + \beta x$

> C1 = as.nu	umeric(Colo	or==1)				
> C2 = as.nu	meric(Colo	or==2)				
> C3 = as.nu	umeric(Colo	or==3)				
> crabs.fit:	1a = glm(ha	us.sate ~ C:	1+C2+C3	+ Width,	<pre>family = binomial</pre>	L)
> summary(c)	rabs.fit1a)					
Coefficients	3:					
	Estimate S	td. Error a	z value	Pr(z)		
(Intercept)	-12.7151	2.7617	-4.604	4.14e-06	***	
C1	1.3299	0.8525	1.560	0.1188		
C2	1.4023	0.5484	2.557	0.0106	*	
C3	1.1061	0.5921	1.868	0.0617		
Width	0.4680	0.1055	4.434	9.26e-06	***	

- $\widehat{eta}_2'=$ 1.4023, which is equal to $\widehat{eta}_2-\widehat{eta}_4$
- Wald test of H₀: $\beta'_2 = 0$ gives *P*-value 0.0106

<u>Conclusion</u>: Medium and dark crabs of the same width differ significantly in the prob. of having satellites.

```
> drop1(crabs.fit1a,test="Chisq")
Single term deletions
Model:
has.sate \sim C1 + C2 + C3 + Width
      Df Deviance
                   AIC
                            LRT Pr(>Chi)
           187.46 197.46
<none>
C1
       1 190.07 198.07 2.6154 0.105831
C2
       1 194.37 202.37 6.9101 0.008571 **
C3
     1 191.11 199.11 3.6518 0.056010
Width 1 212.06 220.06 24.6038 7.041e-07 ***
```

LR test of $\beta'_2 = 0$ gives *P*-value 0.0086, same conclusion as Wald test

95% for β'_2 is (0.353, 2.526) \implies estimated odds for medium crabs are at least $e^{0.353} \approx 1.42$, at most $e^{2.526} \approx 12.5$ times the est. odds for dark crabs of the same width.

Chapter 4 - 13

Likelihood Ratio Test for Model Comparison

- Likelihood ratio (LR) statistic = -2(L₀ L₁), where
 L₀ = max. log-likelihood for the simpler model,
 L₁ = max. log-likelihood for the complex model
- ▶ In general, $L_0 \leq L_1$. Under H₀, $L_0 \approx L_1$.
- Large sample distribution of LR statistic is Chi-squared with

d.f. = diff. in number of parameters for the 2 models

Likelihood Ratio Test for Model Comparison

Likelihood Ratio Test can be used to do model comparison between a *simpler model* and a *more complex model*.

- The simpler model must be a special case of the more complex model.
 If not, CANNOT use LRT to do model comparison
- H₀: the simpler model is correct
 H_a: the complex model is correct, the simpler model is not
- Rejecting H₀ means the simpler model doesn't fit the data well, compared to the more complex model
- Not rejecting H₀ means the simpler model fits the data nearly as well as the more complex model

Chapter 4 - 14

Likelihood Ratio Test for Model Comparison

Rather than reporting the max. log-likelihood for a model, R reports

Deviance =
$$-2(\max, \log-k + C)$$

in which C is a constant depends only on the data but not the model. So

LR statistic =
$$-2(L_0 - L_1)$$

= $-2(L_0 + C) - [-2(L_1 + C)]$
= diff. in deviance for the two models

- ► We will introduce deviance in Chapter 5
- d.f. for a deviance is

(num. of observations) – (num. of parameters)

- so d.f. for a LR statistic = diff. in d.f. for the two deviances
- LR test for model comparison is also called "analysis of deviance"

> summary(crabs.fit1) Call: glm(formula = has.sate ~ C + Width, family = binomial) Deviance Residuals: Min 10 Median 3Q Max -2.1124 -0.9848 0.5243 0.8513 2.1413 Coefficients: Estimate Std. Error z value Pr(|z|)(Intercept) -11.38519 2.87346 -3.962 7.43e-05 *** C2 0.07242 0.73989 0.098 0.922 C3 -0.223800.77708 -0.288 0.773 C4 -1.329920.85252 -1.560 0.119 Width 0.46796 4.434 9.26e-06 *** 0.10554 ____ (Dispersion parameter for binomial family taken to be 1) Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 187.46 on 168 degrees of freedom AIC: 197.46 Number of Fisher Scoring iterations: 4 For Model 1, deviance = 187.46 with d.f. = 173 - 5 = 168

For Model 1, deviance = 187.46 with d.f. = 173 - 5 = 168(n = 173 for horseshoe crabs data) Chapter 4 - 17

R command drop1 on a model performs LRT comparing

 H_0 : the model w/ one term deleted H_a : the model itself

for each term in the model, e.g., the *P*-value for for Width in the R output below is LRT for comparing

 $\begin{aligned} \mathsf{H}_0 : \mathsf{logit}(\pi) &= \alpha + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4 \\ \mathsf{H}_a : \mathsf{logit}(\pi) &= \alpha + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4 + \beta_X \end{aligned}$

```
> drop1(crabs.fit1, test="Chisq")
Single term deletions
```

Model: has.sate ~ C + Width Df Deviance AIC LRT Pr(>Chi) <none> 187.46 197.46 C 3 194.45 198.45 6.9956 0.07204. Width 1 212.06 220.06 24.6038 7.041e-07 ***

Some evidence (not strong) of a color effect given width. There is strong evidence of width effect.

Example (Horseshoe Crabs)

Do We Need Color in the Model?

 $H_0: \ \beta_2 = \beta_3 = \beta_4 = 0$ (given width, Y indep. of color)

i.e.,

 $\begin{aligned} \mathsf{H}_0 : \mathsf{logit}(\pi) &= \alpha + \beta x & (\mathsf{simpler model}) \\ \mathsf{H}_a : \mathsf{logit}(\pi) &= \alpha + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4 + \beta x & (\mathsf{complex model}) \end{aligned}$

> anova(crabs.logit, crabs.fit1, test="Chisq")
Analysis of Deviance Table

Model 1: has.sate ~ Width Model 2: has.sate ~ C + Width Resid. Df Resid. Dev Df Deviance Pr(>Chi) 1 171 194.45 2 168 187.46 3 6.9956 0.07204 .

The LR statistic = diff. of deviance = 194.45 - 187.46 = 6.99with df = 171 - 168 = 3, *P*-value= 0.072 \implies Some evidence (not strong) of a color effect given width. Chapter 4 - 18

Other simpler models might be adequate.

Plot of the four curves on Slide 9 suggests that maybe only **dark** crabs are different from others.

Model 2: logit(π) = $\alpha + \beta_4 c_4 + \beta x$, where $c_4 = \begin{cases} 1 & \text{dark} \\ 0 & \text{o/w} \end{cases}$

Fitting gives $\widehat{\beta}_4=-1.300$ (SE = 0.5259).

Odds of satellites for a dark crab is estimated to be $e^{-1.300} = 0.27$ times the odds a non-dark crab of the same width.

```
> crabs.fit2 = glm(has.sate ~ I(Color==4) + Width, family = binomial)
> summary(crabs.fit2)
```

```
Coefficients:
```

	Estimate	Std. Error	z value	$\Pr(z)$	
(Intercept)	-11.6790	2.6925	-4.338	1.44e-05	***
I(Color == 4)TRUE	-1.3005	0.5259	-2.473	0.0134	*
Width	0.4782	0.1041	4.592	4.39e-06	***

Compare model with 1 dummy for color to full model with 3 dummies.

 $\begin{aligned} \mathsf{H}_0: \mathsf{logit}(\pi) &= \alpha + \beta_4 c_4 + \beta x & (\mathsf{simple model}) \\ \mathsf{H}_a: \mathsf{logit}(\pi) &= \alpha + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4 + \beta x & (\mathsf{more complex model}) \end{aligned}$

Note H_0 is $\beta_2 = \beta_3 = 0$ in more complex model.

```
> anova(crabs.fit2, crabs.fit1, test="Chisq")
Analysis of Deviance Table
```

```
Model 1: has.sate ~ I(Color == 4) + Width
Model 2: has.sate ~ C + Width
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 170 187.96
2 168 187.46 2 0.50085 0.7785
```

LR stat = diff. in deviances = 187.96 - 187.45 = 0.50df = 170 - 168 = 2, *P*-value = 0.7785Simpler model is adequate.

Does model treating color as nominal fit as well as model treating it as qualitative?

$H_{0}: logit(\pi) = \alpha + \gamma \boldsymbol{c} + \beta \boldsymbol{x}$	(simpler (ordinal) model)
$H_{a}:logit(\pi) = \alpha + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4 + \beta x$	(more complex model)

```
> anova(crabs.fit3, crabs.fit1, test="Chisq")
Analysis of Deviance Table
Model 1: has.sate ~ Color + Width
Model 2: has.sate ~ C + Width
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 170 189.12
2 168 187.46 2 1.6641 0.4351
```

LR stat = diff. in deviances = 189.12 - 187.46 = 1.66df = 170 - 168 = 2, *P*-value = 0.4351Simpler model is adequate.

Ordinal Factors

- Color of horseshoe crabs is ordinal (from light to dark). Models with dummy variables treat color as nominal.
- To treat as quantitative, assign scores such as (1,2,3,4) and model trend.

Model 3: logit(π) = $\alpha + \gamma c + \beta x$, c: color, x : width

The fitted model is $logit(\pi) = -10.071 - 0.509c + 0.458x$.

Controlling for width, odds of having satellite(s) is estimated to decrease by a factor of $e^{\hat{\gamma}} = e^{-0.509} = 0.601$ for each 1-category increase in shell darkness.

Chapter 4 - 22

Models Allowing Interactions

 $\begin{aligned} \mathsf{logit}(\pi) &= \alpha + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4 + \beta x + \gamma_2 c_2 x + \gamma_3 c_3 x + \gamma_4 c_4 x \\ &= \begin{cases} \alpha + \beta x & \text{if medium light} \\ \alpha + \beta_2 + (\beta + \gamma_2) x & \text{if medium} \\ \alpha + \beta_3 + (\beta + \gamma_3) x & \text{if medium dark} \\ \alpha + \beta_4 + (\beta + \gamma_4) x & \text{if dark} \end{cases} \end{aligned}$

Different colors have different coefficient for "Width."

Chapter 4 - 24

> crabs.fit4 = glm(has.sate ~ C + Width + C:Width, family = binomial)
> summary(crabs.fit4)
Call:
glm(formula = has.sate ~ C + Width + C:Width, family = binomial)

Coefficients:

	Estimate	Std. Error	z value	Pr(z)
(Intercept)	-1.75261	11.46409	-0.153	0.878
C2	-8.28735	12.00363	-0.690	0.490
C3	-19.76545	13.34251	-1.481	0.139
C4	-4.10122	13.27532	-0.309	0.757
Width	0.10600	0.42656	0.248	0.804
C2:Width	0.31287	0.44794	0.698	0.485
C3:Width	0.75237	0.50435	1.492	0.136
C4:Width	0.09443	0.50042	0.189	0.850

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom Residual deviance: 183.08 on 165 degrees of freedom

Chapter 4 - 25

Testing H₀: no interaction ($\gamma_2 = \gamma_3 = \gamma_4 = 0$)

> anova(crabs.fit1,crabs.fit4,test="Chisq")
Analysis of Deviance Table

Model 1: has.sate ~ C + Width Model 2: has.sate ~ C + Width + C:Width Resid. Df Resid. Dev Df Deviance Pr(>Chi) 1 168 187.46 2 165 183.08 3 4.3764 0.2236

LR stat = diff. in deviances = 187.46 - 183.08 = 4.3764df = 168 - 165 = 3, *P*-value = 0.2236 Simpler model is adequate (no interaction).

Chapter 4 - 26