
Multiple Logistic Regression
Response: Y binary, π = P(Y = 1)

Explanatory variables: x1, x2, . . . , xk
can be quantitative, qualitative (dummy variables), or both.

Model form is

logit(π) = α + β1x1 + β2x2 + · · ·+ βkxk

or equivalently

π =
exp(α + β1x1 + β2x2 + · · ·+ βkxk)

1 + exp(α + β1x1 + β2x2 + · · ·+ βkxk)

βi = partial effect of xi controlling for other variables in model

eβi = conditional odds ratio at xi + 1 vs at xi keeping other x’s fixed

= multiplicative effect on odds of 1-unit increase in xi

w/ other x’s fixed
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Example (Horseshoe Crabs)
In addition to Width (X ), consider adding a categorical predictor
— Color, coded 1-4 as

1 = medium light, 2 = medium, 3 = medium dark, 4 = dark

For a categorical predictor, need to create a dummy variable (=
indicator variable) for each category:

c1 =

{
1 medium light
0 o/w

, c2 =

{
1 medium
0 o/w

,

c3 =

{
1 medium dark
0 o/w

, c4 =

{
1 dark
0 o/w

Model: logit(π) = α + β1c1 + β2c2 + β3c3 + β4c4 + βx

I c1 + c2 + c3 + c4 = 1 always true, so one of them is redundant.

I To account for redundancies, most software set one of
β1, β2, β3, β4 to 0
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Example (Horseshoe Crabs)

Model 1:

logit(π) = α + β2c2 + β3c3 + β4c4 + βx

=


α + βx if med. light (c2 = c3 = c4 = 0)

α + β2 + βx if medium (c2 = 1, c3 = c4 = 0)

α + β3 + βx if med. dark (c2 = 0, c3 = 1, c4 = 0)

α + β4 + βx if dark (c2 = c3 = 0, c4 = 1)

I Here we set β1 = 0

I The category with no dummy var. in the model (or with
coefficient βi = 0) is called the baseline category. In Model 1,
the baseline category is the color medium light (Color = 1).
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Below “odds” = odds having at least one satellite

odds =
π

1− π
= eα+β2c2+β3c3+β4c4+βx

=


eα+βx if med. light (c2 = c3 = c4 = 0)

eα+β2+βx if medium (c2 = 1, c3 = c4 = 0)

eα+β3+βx if med. dark (c2 = 0, c3 = 1, c4 = 0)

eα+β4+βx if dark (c2 = c3 = 0, c4 = 1)

For female crabs of the same width,

odds for a medium crab

odds for a medium light crab
=

eα+β2+βx

eα+βx
= eβ2

I Likewise,
I eβ3 = odds ratio of (med. dark v.s. med. light)
I eβ4 = odds ratio of (dark v.s. med. light)

I Observe eβi ’s are odds ratios of a category v.s. the baseline
category (medium light), for crabs of the same width.

I Observe the effect of Color does not change with Width
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Example (Horseshoe Crabs)

Model 1: odds =
π

1− π
= eα+β2c2+β3c3+β4c4+βx

For female crabs of same color but different width x1, x2,

odds for crabs of Width x1
odds for crabs of Width x2

=
eα+β2c2+β3c3+β4c4+βx1

eα+β2c2+β3c3+β4c4+βx2
= eβ(x1−x2)

⇒ Width have the same effect for all colors.

As neither the effect of color change with width,
nor the effect of width change with color,

we said Model 1 assumes no interaction between color and width
effects.
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R regards Color (coded 1-4) as a numeric variable.
The R command as.factor() can create the dummy variables.

> C = as.factor(Color)

> crabs.fit1 = glm(has.sate ~ C + Weight, family = binomial)

> crabs.fit1$coef

(Intercept) C2 C3 C4 Width

-11.38519276 0.07241694 -0.22379766 -1.32991913 0.46795598

The fitted model is

logit(π̂) = −11.39 + 0.07c2 − 0.22c3 − 1.33c4 + 0.468x

For a medium light female (c2 = c3 = c4 = 0) of width x = 25 cm,

π̂ =
exp(−11.39 + 0.468× 25)

1 + exp(−11.39 + 0.468× 25)
≈ 0.58

For a dark female (c2 = c3 = 0, c4 = 1) of width x = 25 cm,

π̂ =
exp(−11.39 + (−1.33)(1) + 0.468× 25)

1 + exp(−11.39 + (−1.33)(1) + 0.468× 25)
≈ 0.265.
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logit(π̂) = −11.39 + 0.07c2 − 0.22c3 − 1.33c4 + 0.468x

=


−11.39 + 0.468x if medium light

−11.32 + 0.468x if medium

−11.61 + 0.468x if medium dark

−12.72 + 0.468x if dark

Observe the four curves have the same shape because they have
identical coefficient for Width.
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Medium v.s. Medium Light Crabs

Estimate Std. Error z value Pr(>|z|)

(Intercept) -11.38519 2.87346 -3.962 7.43e-05 ***

C2 0.07242 0.73989 0.098 0.922

C3 -0.22380 0.77708 -0.288 0.773

C4 -1.32992 0.85252 -1.560 0.119

Width 0.46796 0.10554 4.434 9.26e-06 ***

I Interpretation of β2: estimated odds of having satellite(s) for

medium crabs are e β̂2 = e0.07 ≈ 1.07 times the estimated
odds for medium light crabs of the same width.

I H0 : β2 = 0 means medium and medium light crabs do not
differ in their chance of having satellite(s) given width. To test

H0 : β2 = 0 v.s. Ha : β2 6= 0

Wald statistic z =
β̂2
SE

=
0.072

0.74
= 0.098, P-value = 0.922.

Conclusion: Medium light and medium crabs of the same
width don’t differ significantly in the prob. of having satellites.
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95% LR CI for β2 is (−1.54, 1.45), which contains 0.
So LR test also fail to reject H0: β2 = 0.

> confint(crabs.fit1,test="Chisq")

2.5 % 97.5 %

(Intercept) -17.3084388 -5.9859523

C2 -1.5396596 1.4516138

C3 -1.8918959 1.2396603

C4 -3.1356611 0.2737758

Width 0.2712817 0.6870436

What about (medium dark v.s. medium light) crabs?
What about (dark v.s. medium light) crabs?
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What about Medium v.s. Dark Crabs?
For medium and dark crabs of the same width, the odds ratio is

odds for a medium crab

odds for a dark crab
=

eα+β2+βx

eα+β4+βx
= eβ2−β4 .

Estimated odds of having satellite(s) for a medium crab is

e β̂2−β̂4 = e0.07−(−1.33) = e1.4 ≈ 4.06

times the estimated odds for a dark crabs of the same width.

However, to test H0 : β2 = β4, need SE for β̂2 − β̂4, which is not
provided in R.

The simplest solution is to change the baseline category. Say, use
dark color as the baseline and model as

Model 1a : logit(π) = α′ + β′1c1 + β′2c2 + β′3c3 + βx
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Change of Baseline

Model 1 : logit(π) = α + β2c2 + β3c3 + β4c4 + βx

Model 1a : logit(π) = α′ + β′1c1 + β′2c2 + β′3c3 + βx

logit(π) for
Color (c1, c2, c3, c4) Model 1 Model 1a

med. light (1, 0, 0, 0) α + βx α′ + β′1 + βx
medium (0, 1, 0, 0) α + β2 + βx α′ + β′2 + βx

med. dark (0, 0, 1, 0) α + β3 + βx α′ + β′3 + βx
dark (0, 0, 0, 1) α + β4 + βx α′ + βx

The two models are equivalent, just a change of parameters.

α′ = α + β4, β′i = βi − β4 for i = 1, 2, 3

Testing β2 = β4 in Model 1 is equivalent to testing β′2 = 0 in
Model 1a.
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> C1 = as.numeric(Color==1)

> C2 = as.numeric(Color==2)

> C3 = as.numeric(Color==3)

> crabs.fit1a = glm(has.sate ~ C1+C2+C3 + Width, family = binomial)

> summary(crabs.fit1a)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.7151 2.7617 -4.604 4.14e-06 ***

C1 1.3299 0.8525 1.560 0.1188

C2 1.4023 0.5484 2.557 0.0106 *

C3 1.1061 0.5921 1.868 0.0617 .

Width 0.4680 0.1055 4.434 9.26e-06 ***

I β̂′2 = 1.4023, which is equal to β̂2 − β̂4
I Wald test of H0: β′2 = 0 gives P-value 0.0106

Conclusion: Medium and dark crabs of the same width differ
significantly in the prob. of having satellites.
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> drop1(crabs.fit1a,test="Chisq")

Single term deletions

Model:

has.sate ~ C1 + C2 + C3 + Width

Df Deviance AIC LRT Pr(>Chi)

<none> 187.46 197.46

C1 1 190.07 198.07 2.6154 0.105831

C2 1 194.37 202.37 6.9101 0.008571 **

C3 1 191.11 199.11 3.6518 0.056010 .

Width 1 212.06 220.06 24.6038 7.041e-07 ***

LR test of β′
2 = 0 gives P-value 0.0086, same conclusion as Wald test

> confint(crabs.fit1a)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -18.45674069 -7.5788795

C1 -0.27377584 3.1356611

C2 0.35269965 2.5260703

C3 -0.02792233 2.3138635

Width 0.27128167 0.6870436

95% for β′
2 is (0.353, 2.526) =⇒ estimated odds for medium crabs are at

least e0.353 ≈ 1.42, at most e2.526 ≈ 12.5 times the est. odds for dark

crabs of the same width.
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Likelihood Ratio Test for Model Comparison

Likelihood Ratio Test can be used to do model comparison
between a simpler model and a more complex model.

I The simpler model must be a special case of the more
complex model.
If not, CANNOT use LRT to do model comparison

I H0: the simpler model is correct
Ha: the complex model is correct, the simpler model is not

I Rejecting H0 means the simpler model doesn’t fit the data
well, compared to the more complex model

I Not rejecting H0 means the simpler model fits the data nearly
as well as the more complex model
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Likelihood Ratio Test for Model Comparison

I Likelihood ratio (LR) statistic = −2(L0 − L1), where
L0 = max. log-likelihood for the simpler model,
L1 = max. log-likelihood for the complex model

I In general, L0 ≤ L1. Under H0, L0 ≈ L1.

I Large sample distribution of LR statistic is Chi-squared with

d .f . = diff. in number of parameters for the 2 models
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Likelihood Ratio Test for Model Comparison
Rather than reporting the max. log-likelihood for a model, R
reports

Deviance = −2(max. log-likelihood + C )

in which C is a constant depends only on the data but not the
model. So

LR statistic = −2(L0 − L1)

= −2(L0 + C )− [−2(L1 + C )]

= diff. in deviance for the two models

I We will introduce deviance in Chapter 5

I d.f. for a deviance is

(num. of observations) − (num. of parameters)

I so d.f. for a LR statistic = diff. in d.f. for the two deviances

I LR test for model comparison is also called “analysis of
deviance”
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> summary(crabs.fit1)

Call:

glm(formula = has.sate ~ C + Width, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.1124 -0.9848 0.5243 0.8513 2.1413

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -11.38519 2.87346 -3.962 7.43e-05 ***

C2 0.07242 0.73989 0.098 0.922

C3 -0.22380 0.77708 -0.288 0.773

C4 -1.32992 0.85252 -1.560 0.119

Width 0.46796 0.10554 4.434 9.26e-06 ***

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 187.46 on 168 degrees of freedom

AIC: 197.46

Number of Fisher Scoring iterations: 4

For Model 1, deviance = 187.46 with d.f. = 173− 5 = 168
(n = 173 for horseshoe crabs data)
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Example (Horseshoe Crabs)
Do We Need Color in the Model?

H0 : β2 = β3 = β4 = 0 (given width, Y indep. of color)

i.e.,

H0 : logit(π) = α + βx (simpler model)

Ha : logit(π) = α + β2c2 + β3c3 + β4c4 + βx (complex model)

> anova(crabs.logit, crabs.fit1, test="Chisq")

Analysis of Deviance Table

Model 1: has.sate ~ Width

Model 2: has.sate ~ C + Width

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 171 194.45

2 168 187.46 3 6.9956 0.07204 .

The LR statistic = diff. of deviance = 194.45− 187.46 = 6.99
with df = 171− 168 = 3, P-value= 0.072
=⇒ Some evidence (not strong) of a color effect given width.
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R command drop1 on a model performs LRT comparing

H0 : the model w/ one term deleted

Ha : the model itself

for each term in the model, e.g., the P-value for for Width in the
R output below is LRT for comparing

H0 : logit(π) = α + β2c2 + β3c3 + β4c4
Ha : logit(π) = α + β2c2 + β3c3 + β4c4 + βx

> drop1(crabs.fit1, test="Chisq")

Single term deletions

Model:

has.sate ~ C + Width

Df Deviance AIC LRT Pr(>Chi)

<none> 187.46 197.46

C 3 194.45 198.45 6.9956 0.07204 .

Width 1 212.06 220.06 24.6038 7.041e-07 ***

Some evidence (not strong) of a color effect given width.
There is strong evidence of width effect.
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Other simpler models might be adequate.
Plot of the four curves on Slide 9 suggests that maybe only dark
crabs are different from others.

Model 2: logit(π) = α + β4c4 + βx , where c4 =

{
1 dark

0 o/w

Fitting gives β̂4 = −1.300 (SE = 0.5259).

Odds of satellites for a dark crab is estimated to be e−1.300 = 0.27
times the odds a non-dark crab of the same width.

> crabs.fit2 = glm(has.sate ~ I(Color==4) + Width, family = binomial)

> summary(crabs.fit2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -11.6790 2.6925 -4.338 1.44e-05 ***

I(Color == 4)TRUE -1.3005 0.5259 -2.473 0.0134 *

Width 0.4782 0.1041 4.592 4.39e-06 ***
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Compare model with 1 dummy for color to full model with 3
dummies.

H0: logit(π) = α + β4c4 + βx (simple model)

Ha: logit(π) = α + β2c2 + β3c3 + β4c4 + βx (more complex model)

Note H0 is β2 = β3 = 0 in more complex model.

> anova(crabs.fit2, crabs.fit1, test="Chisq")

Analysis of Deviance Table

Model 1: has.sate ~ I(Color == 4) + Width

Model 2: has.sate ~ C + Width

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 170 187.96

2 168 187.46 2 0.50085 0.7785

LR stat = diff. in deviances = 187.96− 187.45 = 0.50
df = 170− 168 = 2, P-value = 0.7785

Simpler model is adequate.
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Ordinal Factors
I Color of horseshoe crabs is ordinal (from light to dark).

Models with dummy variables treat color as nominal.
I To treat as quantitative, assign scores such as (1,2,3,4) and

model trend.

Model 3: logit(π) = α + γc + βx , c : color, x : width

> crabs.fit3 = glm(has.sate ~ Color + Width, family = binomial)

> summary(crabs.fit3)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.0708 2.8068 -3.588 0.000333 ***

Color -0.5090 0.2237 -2.276 0.022860 *

Width 0.4583 0.1040 4.406 1.05e-05 ***

The fitted model is logit(π) = −10.071− 0.509c + 0.458x .

Controlling for width, odds of having satellite(s) is estimated to
decrease by a factor of e γ̂ = e−0.509 = 0.601 for each 1-category
increase in shell darkness.
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Does model treating color as nominal fit as well as model treating
it as qualitative?

H0: logit(π) = α + γc + βx (simpler (ordinal) model)

Ha: logit(π) = α + β2c2 + β3c3 + β4c4 + βx (more complex model)

> anova(crabs.fit3, crabs.fit1, test="Chisq")

Analysis of Deviance Table

Model 1: has.sate ~ Color + Width

Model 2: has.sate ~ C + Width

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 170 189.12

2 168 187.46 2 1.6641 0.4351

LR stat = diff. in deviances = 189.12− 187.46 = 1.66
df = 170− 168 = 2, P-value = 0.4351

Simpler model is adequate.
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Models Allowing Interactions

logit(π) = α + β2c2 + β3c3 + β4c4 + βx + γ2c2x + γ3c3x + γ4c4x

=


α + βx if medium light

α + β2 + (β + γ2)x if medium

α + β3 + (β + γ3)x if medium dark

α + β4 + (β + γ4)x if dark

Different colors have different coefficient for “Width.”
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> crabs.fit4 = glm(has.sate ~ C + Width + C:Width, family = binomial)

> summary(crabs.fit4)

Call:

glm(formula = has.sate ~ C + Width + C:Width, family = binomial)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.75261 11.46409 -0.153 0.878

C2 -8.28735 12.00363 -0.690 0.490

C3 -19.76545 13.34251 -1.481 0.139

C4 -4.10122 13.27532 -0.309 0.757

Width 0.10600 0.42656 0.248 0.804

C2:Width 0.31287 0.44794 0.698 0.485

C3:Width 0.75237 0.50435 1.492 0.136

C4:Width 0.09443 0.50042 0.189 0.850

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 183.08 on 165 degrees of freedom
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Testing H0: no interaction (γ2 = γ3 = γ4 = 0)

> anova(crabs.fit1,crabs.fit4,test="Chisq")

Analysis of Deviance Table

Model 1: has.sate ~ C + Width

Model 2: has.sate ~ C + Width + C:Width

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 168 187.46

2 165 183.08 3 4.3764 0.2236

LR stat = diff. in deviances = 187.46− 183.08 = 4.3764
df = 168− 165 = 3, P-value = 0.2236

Simpler model is adequate (no interaction).
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