Multiple Logistic Regression

Response: Y binary, $\pi=\mathrm{P}(Y=1)$
Explanatory variables: $x_{1}, x_{2}, \ldots, x_{k}$
can be quantitative, qualitative (dummy variables), or both.
Model form is

$$
\operatorname{logit}(\pi)=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}
$$

or equivalently

$$
\pi=\frac{\exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}\right)}{1+\exp \left(\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}\right)}
$$

$\beta_{i}=$ partial effect of x_{i} controlling for other variables in model
$e^{\beta_{i}}=$ conditional odds ratio at $x_{i}+1$ vs at x_{i} keeping other x^{\prime} s fixed
$=$ multiplicative effect on odds of 1-unit increase in x_{i}
$w /$ other x's fixed
Chapter 4-1

Example (Horseshoe Crabs)

Model 1:

$$
\begin{aligned}
\operatorname{logit}(\pi) & =\alpha+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} c_{4}+\beta x \\
& = \begin{cases}\alpha+\beta x & \text { if med. light }\left(c_{2}=c_{3}=c_{4}=0\right) \\
\alpha+\beta_{2}+\beta x & \text { if medium }\left(c_{2}=1, c_{3}=c_{4}=0\right) \\
\alpha+\beta_{3}+\beta x & \text { if med. dark }\left(c_{2}=0, c_{3}=1, c_{4}=0\right) \\
\alpha+\beta_{4}+\beta x & \text { if dark }\left(c_{2}=c_{3}=0, c_{4}=1\right)\end{cases}
\end{aligned}
$$

- Here we set $\beta_{1}=0$
- The category with no dummy var. in the model (or with coefficient $\beta_{i}=0$) is called the baseline category. In Model 1, the baseline category is the color medium light (Color $=1$).

Example (Horseshoe Crabs)

In addition to Width (X), consider adding a categorical predictor - Color, coded 1-4 as
$1=$ medium light, $2=$ medium, $3=$ medium dark, $4=$ dark
For a categorical predictor, need to create a dummy variable (= indicator variable) for each category:

$$
\begin{aligned}
& c_{1}=\left\{\begin{array}{ll}
1 & \text { medium light }, c_{2}=\left\{\begin{array}{ll}
1 & \text { medium } \\
0 & 0 / w
\end{array},\right. \\
c_{3}=\left\{\begin{array}{ll}
1 & \text { medium dark } \\
0 & o / w
\end{array}, c_{4}= \begin{cases}1 & \text { dark } \\
0 & o / w\end{cases} \right.
\end{array} .\left\{\begin{array}{l}
\end{array}\right.\right.
\end{aligned}
$$

$$
\text { Model: } \operatorname{logit}(\pi)=\alpha+\beta_{1} c_{1}+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} c_{4}+\beta x
$$

- $c_{1}+c_{2}+c_{3}+c_{4}=1$ always true, so one of them is redundant.
- To account for redundancies, most software set one of $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ to 0

Chapter 4-2

Below "odds" = odds having at least one satellite
odds $=\frac{\pi}{1-\pi}=e^{\alpha+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} c_{4}+\beta x}$

$$
= \begin{cases}e^{\alpha+\beta x} & \text { if med. light }\left(c_{2}=c_{3}=c_{4}=0\right) \\ e^{\alpha+\beta_{2}+\beta x} & \text { if medium }\left(c_{2}=1, c_{3}=c_{4}=0\right) \\ e^{\alpha+\beta_{3}+\beta x} & \text { if med. dark }\left(c_{2}=0, c_{3}=1, c_{4}=0\right) \\ e^{\alpha+\beta_{4}+\beta x} & \text { if dark }\left(c_{2}=c_{3}=0, c_{4}=1\right)\end{cases}
$$

For female crabs of the same width,

$$
\frac{\text { odds for a medium crab }}{\text { odds for a medium light crab }}=\frac{e^{\alpha+\beta_{2}+\beta x}}{e^{\alpha+\beta x}}=e^{\beta_{2}}
$$

- Likewise,
- $e^{\beta_{3}}=$ odds ratio of (med. dark v.s. med. light)
- $e^{\beta_{4}}=$ odds ratio of (dark v.s. med. light)
- Observe $e^{\beta_{i}}$'s are odds ratios of a category v.s. the baseline category (medium light), for crabs of the same width.
- Observe the effect of Color does not change with Width

Example (Horseshoe Crabs)

$$
\text { Model 1: } \quad \text { odds }=\frac{\pi}{1-\pi}=e^{\alpha+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} c_{4}+\beta x}
$$

For female crabs of same color but different width x_{1}, x_{2},

$$
\frac{\text { odds for crabs of Width } x_{1}}{\text { odds for crabs of Width } x_{2}}=\frac{e^{\alpha+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} c_{4}+\beta x_{1}}}{e^{\alpha+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} c_{4}+\beta x_{2}}}=e^{\beta\left(x_{1}-x_{2}\right)}
$$

\Rightarrow Width have the same effect for all colors.
As neither the effect of color change with width,
nor the effect of width change with color,
we said Model 1 assumes no interaction between color and width effects.

Chapter 4-5

$$
\begin{aligned}
\operatorname{logit}(\widehat{\pi}) & =-11.39+0.07 c_{2}-0.22 c_{3}-1.33 c_{4}+0.468 x \\
& = \begin{cases}-11.39+0.468 x & \text { if medium light } \\
-11.32+0.468 x & \text { if medium } \\
-11.61+0.468 x & \text { if medium dark } \\
-12.72+0.468 x & \text { if dark }\end{cases}
\end{aligned}
$$

Observe the four curves have the same shape because they have identical coefficient for Width.

R regards Color (coded 1-4) as a numeric variable.
The R command as.factor () can create the dummy variables.

```
> C = as.factor(Color)
> crabs.fit1 = glm(has.sate ~ C + Weight, family = binomial)
> crabs.fit1$coef
\begin{tabular}{rrrrr} 
(Intercept) & C2 & C3 & C4 & Width \\
-11.38519276 & 0.07241694 & -0.22379766 & -1.32991913 & 0.46795598
\end{tabular}
```

The fitted model is

$$
\operatorname{logit}(\widehat{\pi})=-11.39+0.07 c_{2}-0.22 c_{3}-1.33 c_{4}+0.468 x
$$

For a medium light female $\left(c_{2}=c_{3}=c_{4}=0\right)$ of width $x=25 \mathrm{~cm}$,

$$
\widehat{\pi}=\frac{\exp (-11.39+0.468 \times 25)}{1+\exp (-11.39+0.468 \times 25)} \approx 0.58
$$

For a dark female $\left(c_{2}=c_{3}=0, c_{4}=1\right)$ of width $x=25 \mathrm{~cm}$,

$$
\widehat{\pi}=\frac{\exp (-11.39+(-1.33)(1)+0.468 \times 25)}{1+\exp (-11.39+(-1.33)(1)+0.468 \times 25)} \approx 0.265
$$

Chapter 4-6

Medium v.s. Medium Light Crabs

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|\mathrm{z}\|)$	
(Intercept)	-11.38519	2.87346	-3.962	$7.43 \mathrm{e}-05$	$* * *$
C2	0.07242	0.73989	0.098	0.922	
C3	-0.22380	0.77708	-0.288	0.773	
C4	-1.32992	0.85252	-1.560	0.119	
Width	0.46796	0.10554	4.434	$9.26 \mathrm{e}-06 \quad * * *$	

- Interpretation of β_{2} : estimated odds of having satellite(s) for medium crabs are $e^{\widehat{\beta}_{2}}=e^{0.07} \approx 1.07$ times the estimated odds for medium light crabs of the same width.
- $\mathrm{H}_{0}: \beta_{2}=0$ means medium and medium light crabs do not differ in their chance of having satellite(s) given width. To test

$$
H_{0}: \beta_{2}=0 \quad \text { v.s. } \quad H_{a}: \beta_{2} \neq 0
$$

Wald statistic $z=\frac{\widehat{\beta}_{2}}{S E}=\frac{0.072}{0.74}=0.098, P$-value $=0.922$.
Conclusion: Medium light and medium crabs of the same width don't differ significantly in the prob. of having satellites.

Chapter 4-8

What about Medium v.s. Dark Crabs?

$95 \% \mathrm{LRCl}$ for β_{2} is ($-1.54,1.45$), which contains 0 .
So $L R$ test also fail to reject $\mathrm{H}_{0}: \beta_{2}=0$.

> confint(crabs.fit1,test="Chisq")		
	2.5%	97.5%
(Intercept)	-17.3084388	-5.9859523
C2	-1.5396596	1.4516138
C3	-1.8918959	1.2396603
C4	-3.1356611	0.2737758
Width	0.2712817	0.6870436

What about (medium dark v.s. medium light) crabs? What about (dark v.s. medium light) crabs?

Chapter 4-9

Change of Baseline

```
Model \(1: \operatorname{logit}(\pi)=\alpha \quad+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} c_{4}+\beta x\)
Model 1a : \(\operatorname{logit}(\pi)=\alpha^{\prime}+\beta_{1}^{\prime} c_{1}+\beta_{2}^{\prime} c_{2}+\beta_{3}^{\prime} c_{3}+\beta x\)
```

		$\operatorname{logit}(\pi)$ for	
Color $\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$	Model 1	Model 1a	
med. light $(1,0,0,0)$	α	$+\beta x$	$\alpha^{\prime}+\beta_{1}^{\prime}+\beta x$
medium $(0,1,0,0)$	$\alpha+\beta_{2}+\beta x$	$\alpha^{\prime}+\beta_{2}^{\prime}+\beta x$	
med. dark $(0,0,1,0)$	$\alpha+\beta_{3}+\beta x$	$\alpha^{\prime}+\beta_{3}^{\prime}+\beta x$	
dark $(0,0,0,1)$	$\alpha+\beta_{4}+\beta x$	α^{\prime}	$+\beta x$

The two models are equivalent, just a change of parameters.

$$
\alpha^{\prime}=\alpha+\beta_{4}, \quad \beta_{i}^{\prime}=\beta_{i}-\beta_{4} \quad \text { for } i=1,2,3
$$

Testing $\beta_{2}=\beta_{4}$ in Model 1 is equivalent to testing $\beta_{2}^{\prime}=0$ in Model 1a.

For medium and dark crabs of the same width, the odds ratio is

$$
\frac{\text { odds for a medium crab }}{\text { odds for a dark crab }}=\frac{e^{\alpha+\beta_{2}+\beta x}}{e^{\alpha+\beta_{4}+\beta x}}=e^{\beta_{2}-\beta_{4}} .
$$

Estimated odds of having satellite(s) for a medium crab is

$$
e^{\widehat{\beta}_{2}-\widehat{\beta}_{4}}=e^{0.07-(-1.33)}=e^{1.4} \approx 4.06
$$

times the estimated odds for a dark crabs of the same width.
However, to test $\mathrm{H}_{0}: \beta_{2}=\beta_{4}$, need SE for $\widehat{\beta}_{2}-\widehat{\beta}_{4}$, which is not provided in R.
The simplest solution is to change the baseline category. Say, use dark color as the baseline and model as

$$
\text { Model 1a }: \operatorname{logit}(\pi)=\alpha^{\prime}+\beta_{1}^{\prime} c_{1}+\beta_{2}^{\prime} c_{2}+\beta_{3}^{\prime} c_{3}+\beta x
$$

Chapter 4-10

```
> C1 = as.numeric(Color==1)
\(>\mathrm{C} 2=\) as.numeric (Color==2)
> C3 = as.numeric (Color==3)
\(>\) crabs.fit1a = glm(has.sate \(\sim \mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3+\) Width, family = binomial)
> summary (crabs.fit1a)
Coefficients:
Estimate Std. Error \(z\) value \(\operatorname{Pr}(>|z|)\)
\begin{tabular}{lrrrrrr} 
(Intercept) & -12.7151 & 2.7617 & -4.604 & \(4.14 \mathrm{e}-06\) & \(* * *\) \\
C1 & 1.3299 & 0.8525 & 1.560 & 0.1188 \\
C2 & 1.4023 & 0.5484 & 2.557 & 0.0106 & \(*\) \\
C3 & 1.1061 & 0.5921 & 1.868 & 0.0617 &. \\
Width & 0.4680 & 0.1055 & 4.434 & \(9.26 e-06\) & \(* * *\)
\end{tabular}
```

- $\widehat{\beta}_{2}^{\prime}=1.4023$, which is equal to $\widehat{\beta}_{2}-\widehat{\beta}_{4}$
- Wald test of $\mathrm{H}_{0}: \beta_{2}^{\prime}=0$ gives P-value 0.0106

Conclusion: Medium and dark crabs of the same width differ significantly in the prob. of having satellites.

Model

has.sate ~ C1 + C2 + C3 + Width
Df Deviance AIC LRT Pr (>Chi)

<none>		187.46	197.46			
C1	1	190.07	198.07	2.6154	0.105831	
C2	1	194.37	202.37	6.9101	0.008571	$* *$
C3	1	191.11	199.11	3.6518	0.056010	.

Width $1 \quad 212.06 \quad 220.06 \quad 24.6038 \quad 7.041 \mathrm{e}-07$ ***
LR test of $\beta_{2}^{\prime}=0$ gives P-value 0.0086 , same conclusion as Wald test
> confint(crabs.fit1a)
Waiting for profiling to be done..
$\begin{array}{lrr}\text { (Intercept) } & -18.45674069 & -7.5788795\end{array}$

C1	-0.27377584	3.1356611
C2	0.35269965	2.5260703
C3	-0.02792233	2.3138635

| Width $\quad 0.27128167$ | 0.6870436 |
| :--- | :--- | :--- |

95% for β_{2}^{\prime} is $(0.353,2.526) \Longrightarrow$ estimated odds for medium crabs are at least $e^{0.353} \approx 1.42$, at most $e^{2.526} \approx 12.5$ times the est. odds for dark crabs of the same width.

Likelihood Ratio Test for Model Comparison

- Likelihood ratio (LR) statistic $=-2\left(L_{0}-L_{1}\right)$, where $L_{0}=$ max. log-likelihood for the simpler model, $L_{1}=$ max. log-likelihood for the complex model
- In general, $L_{0} \leq L_{1}$. Under $H_{0}, L_{0} \approx L_{1}$.
- Large sample distribution of LR statistic is Chi-squared with
d.f. $=$ diff. in number of parameters for the 2 models

Likelihood Ratio Test for Model Comparison

Likelihood Ratio Test can be used to do model comparison between a simpler model and a more complex model.

- The simpler model must be a special case of the more complex model.
If not, CANNOT use LRT to do model comparison
- H_{0} : the simpler model is correct
H_{a} : the complex model is correct, the simpler model is not
- Rejecting H_{0} means the simpler model doesn't fit the data well, compared to the more complex model
- Not rejecting H_{0} means the simpler model fits the data nearly as well as the more complex model

Chapter 4-14

Likelihood Ratio Test for Model Comparison

Rather than reporting the max. log-likelihood for a model, R reports

$$
\text { Deviance }=-2(\text { max. log-likelihood }+C)
$$

in which C is a constant depends only on the data but not the model. So

$$
\begin{aligned}
\text { LR statistic } & =-2\left(L_{0}-L_{1}\right) \\
& =-2\left(L_{0}+C\right)-\left[-2\left(L_{1}+C\right)\right]
\end{aligned}
$$

$=$ diff. in deviance for the two models

- We will introduce deviance in Chapter 5
- d.f. for a deviance is
(num. of observations) - (num. of parameters)
- so d.f. for a LR statistic $=$ diff. in d.f. for the two deviances
- LR test for model comparison is also called "analysis of deviance"
> summary(crabs.fit1)
Call:
glm(formula = has.sate ~ C + Width, family = binomial)

Deviance Residuals:				
Min	$1 Q$	Median	$3 Q$	Max
-2.1124	-0.9848	0.5243	0.8513	2.1413

Coefficients:

	Estimate Std. Error z value $\operatorname{Pr}(>\|\mathrm{z}\|)$				
(Intercept)	-11.38519	2.87346	-3.962	$7.43 \mathrm{e}-05$	$* * *$
C2	0.07242	0.73989	0.098	0.922	
C3	-0.22380	0.77708	-0.288	0.773	
C4	-1.32992	0.85252	-1.560	0.119	
Width	0.46796	0.10554	4.434	$9.26 e-06$	$* * *$

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 187.46 on 168 degrees of freedom
AIC: 197.46
Number of Fisher Scoring iterations: 4

For Model 1, deviance $=187.46$ with d.f. $=173-5=168$ ($n=173$ for horseshoe crabs data)

Chapter 4-17

R command drop1 on a model performs LRT comparing
H_{0} : the model w/ one term deleted
H_{a} : the model itself
for each term in the model, e.g., the P-value for for Width in the R output below is LRT for comparing

$$
\begin{aligned}
& \mathrm{H}_{0}: \operatorname{logit}(\pi)=\alpha+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} c_{4} \\
& \mathrm{H}_{a}: \operatorname{logit}(\pi)=\alpha+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} c_{4}+\beta x
\end{aligned}
$$

> drop1(crabs.fit1, test="Chisq")
Single term deletions

Model:
has.sate ~ C + Width

	Df	Deviance	AIC	LRT	$\operatorname{Pr}(>$ Chi)	
<none>		187.46	197.46			
C	3	194.45	198.45	6.9956	0.07204	.
Width	1	212.06	220.06	24.6038	$7.041 \mathrm{e}-07$	***

Some evidence (not strong) of a color effect given width.
There is strong evidence of width effect.

Example (Horseshoe Crabs)

Do We Need Color in the Model?
$\mathrm{H}_{0}: \beta_{2}=\beta_{3}=\beta_{4}=0 \quad$ (given width, Y indep. of color)
i.e.,

$$
\begin{array}{lr}
\mathrm{H}_{0}: \operatorname{logit}(\pi)=\alpha+\beta x & \text { (simpler model) } \\
\mathrm{H}_{a}: \operatorname{logit}(\pi)=\alpha+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} c_{4}+\beta x & \text { (complex model) }
\end{array}
$$

> anova(crabs.logit, crabs.fit1, test="Chisq")
Analysis of Deviance Table

Model 1: has.sate ~ Width
Model 2: has.sate ~ C + Width
Resid. Df Resid. Dev Df Deviance $\operatorname{Pr}(>C h i)$
$1171 \quad 194.45$
$2 \quad 168 \quad 187.46 \quad 3 \quad 6.9956 \quad 0.07204$.
The LR statistic $=$ diff. of deviance $=194.45-187.46=6.99$ with $d f=171-168=3, P$-value $=0.072$
\Longrightarrow Some evidence (not strong) of a color effect given width.
Chapter 4-18

Other simpler models might be adequate.
Plot of the four curves on Slide 9 suggests that maybe only dark crabs are different from others.
Model 2: $\operatorname{logit}(\pi)=\alpha+\beta_{4} c_{4}+\beta x, \quad$ where $c_{4}= \begin{cases}1 & \text { dark } \\ 0 & o / w\end{cases}$
Fitting gives $\widehat{\beta}_{4}=-1.300(\mathrm{SE}=0.5259)$.
Odds of satellites for a dark crab is estimated to be $e^{-1.300}=0.27$ times the odds a non-dark crab of the same width.

```
> crabs.fit2 = glm(has.sate ~ I(Color==4) + Width, family = binomial)
```

> summary(crabs.fit2)

Coefficients:

	Estimate	Std. Error z value $\operatorname{Pr}(>\|z\|)$			
(Intercept)	-11.6790	2.6925	-4.338	$1.44 \mathrm{e}-05$	$* * *$
I (Color == 4)TRUE	-1.3005	0.5259	-2.473	0.0134	$*$
Width	0.4782	0.1041	4.592	$4.39 \mathrm{e}-06$	$* * *$

Compare model with 1 dummy for color to full model with 3 dummies.
$\begin{array}{lr}\mathrm{H}_{0}: \operatorname{logit}(\pi)=\alpha+\beta_{4} c_{4}+\beta x & \text { (simple model) } \\ \mathrm{H}_{\mathrm{a}}: \operatorname{logit}(\pi)=\alpha+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} c_{4}+\beta x & \text { (more complex model) }\end{array}$
Note H_{0} is $\beta_{2}=\beta_{3}=0$ in more complex model.
> anova(crabs.fit2, crabs.fit1, test="Chisq")
Analysis of Deviance Table

Model 1: has.sate ~ I (Color == 4) + Width
Model 2: has.sate ~ C + Width
Resid. Df Resid. Dev Df Deviance $\operatorname{Pr}(>C h i)$
$1 \quad 170 \quad 187.96$

2	168	187.46	2	0.50085	0.7785

LR stat $=$ diff. in deviances $=187.96-187.45=0.50$
$d f=170-168=2, P$-value $=0.7785$
Simpler model is adequate.
Chapter 4-21

Does model treating color as nominal fit as well as model treating it as qualitative?

$\mathrm{H}_{0}: \operatorname{logit}(\pi)=\alpha+\gamma c+\beta x$	(simpler (ordinal) model)
$\mathrm{H}_{a}: \operatorname{logit}(\pi)=\alpha+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} c_{4}+\beta x$	(more complex model)

> anova(crabs.fit3, crabs.fit1, test="Chisq")
Analysis of Deviance Table
Model 1: has.sate \sim Color + Width
Model 2: has.sate \sim C + Width
Resid. Df Resid. Dev Df Deviance $\operatorname{Pr}(>$ Chi)

1	170	189.12		
2	168	187.46	2	1.6641

LR stat $=$ diff. in deviances $=189.12-187.46=1.66$
$d f=170-168=2, P$-value $=0.4351$
Simpler model is adequate.
Chapter 4-23

Ordinal Factors

- Color of horseshoe crabs is ordinal (from light to dark). Models with dummy variables treat color as nominal.
- To treat as quantitative, assign scores such as $(1,2,3,4)$ and model trend.
Model 3: $\operatorname{logit}(\pi)=\alpha+\gamma c+\beta x, \quad c$: color, $x:$ width
> crabs.fit3 = glm(has.sate ~ Color + Width, family = binomial)
> summary (crabs.fit3)
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -10.0708 $2.8068-3.5880 .000333$ ***
Color $-0.5090 \quad 0.2237-2.2760 .022860$ *
Width $0.4583 \quad 0.1040 \quad 4.4061 .05 \mathrm{e}-05$ ***
The fitted model is logit $(\pi)=-10.071-0.509 c+0.458 x$.
Controlling for width, odds of having satellite(s) is estimated to decrease by a factor of $e^{\widehat{\gamma}}=e^{-0.509}=0.601$ for each 1-category increase in shell darkness.

Chapter 4-22

Models Allowing Interactions

$$
\begin{aligned}
\operatorname{logit}(\pi) & =\alpha+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} c_{4}+\beta x+\gamma_{2} c_{2} x+\gamma_{3} c_{3} x+\gamma_{4} c_{4} x \\
& = \begin{cases}\alpha+\beta x & \text { if medium light } \\
\alpha+\beta_{2}+\left(\beta+\gamma_{2}\right) x & \text { if medium } \\
\alpha+\beta_{3}+\left(\beta+\gamma_{3}\right) x & \text { if medium dark } \\
\alpha+\beta_{4}+\left(\beta+\gamma_{4}\right) x & \text { if dark }\end{cases}
\end{aligned}
$$

Different colors have different coefficient for "Width."

Chapter 4-24
> crabs.fit4 = glm(has.sate ~ C + Width + C:Width, family = binomial)
> summary (crabs.fit4)
Call:
glm(formula $=$ has.sate \sim C + Width + C:Width, family $=$ binomial)

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

(Intercept)	-1.75261	11.46409	-0.153	0.878
C2	-8.28735	12.00363	-0.690	0.490
C3	-19.76545	13.34251	-1.481	0.139
C4	-4.10122	13.27532	-0.309	0.757
Width	0.10600	0.42656	0.248	0.804
C2:Width	0.31287	0.44794	0.698	0.485
C3:Width	0.75237	0.50435	1.492	0.136
C4:Width	0.09443	0.50042	0.189	0.850

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 183.08 on 165 degrees of freedom

Testing \boldsymbol{H}_{0} : no interaction ($\gamma_{2}=\gamma_{3}=\gamma_{4}=0$)
> anova(crabs.fit1,crabs.fit4,test="Chisq")
Analysis of Deviance Table
Model 1: has.sate \sim C + Width
Model 2: has.sate ~ C + Width + C:Width
Resid. Df Resid. Dev Df Deviance $\operatorname{Pr}(>C h i)$
$1168 \quad 187.46$
$\begin{array}{llllll}2 & 165 & 183.08 & 3 & 4.3764 & 0.2236\end{array}$
LR stat $=$ diff. in deviances $=187.46-183.08=4.3764$
$d f=168-165=3, P$-value $=0.2236$
Simpler model is adequate (no interaction).

