Section 4.1-4.2 Simple Logistic Regression

Simple logistic regression has a single explanatory variable x and models the success probability $\pi(x)$ for the binomial response as

$$
\pi(x)=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}} .
$$

- If $\beta=0$, then $\pi(x)=\frac{e^{\alpha}}{1+e^{\alpha}}$ doesn't change with x
- bigger $|\beta|$, steeper curve
- point of symmetry:

$$
\begin{aligned}
\pi(x)=1 / 2 & \Longleftrightarrow e^{\alpha+\beta x}=1=e^{0} \\
& \Longleftrightarrow \alpha+\beta x=0 \Longleftrightarrow x=-\alpha / \beta
\end{aligned}
$$

Chapter 4-1

Example: Horseshoe Crabs

See Section 3.3.2 and 4.1.2-4.1.3 for background information.

4.1.1 Linear Approximation Interpretations

$$
\pi(x)=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}, \quad \Rightarrow \quad 1-\pi(x)=\frac{1}{1+e^{\alpha+\beta x}}
$$

One can show that

$$
\frac{d}{d x} \pi(x)=\frac{\beta e^{\alpha+\beta x}}{\left(1+e^{\alpha+\beta x}\right)^{2}}=\beta \pi(x)(1-\pi(x))
$$

i.e., the slope of $\pi(x)$ at x is $\beta \pi(x)(1-\pi(x))$.

- At x with $\pi(x)=\frac{1}{2}$, slope $=\beta \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{\beta}{4}$.
- At x with $\pi(x)=0.1$ or 0.9 , slope $=\beta \cdot 0.1 \cdot 0.9=0.09 \beta$.
- Steepest slope at where $\pi(x)=1 / 2$, i.e., at point of symmetry $x=-\alpha / \beta$.
- If x increases by Δx, then π increases by $\approx \beta \pi(1-\pi) \Delta x$.

Chapter 4-2

Example: Horseshoe Crabs

$$
\begin{aligned}
& Y= \begin{cases}1 & \text { if female crab has satellite(s) } \\
0 & \text { if no satellites }\end{cases} \\
& X=\text { carapace width (cm) of female crab }
\end{aligned}
$$

```
> attach(crabs)
> has.sate = as.numeric(Satellites > 0)
> crabs.logit = glm(has.sate ~ Width, family = binomial)
> crabs.logit$coef
(Intercept) 
-12.3508177 0.4972306
```

If unspecified, R use logit link by default. The fitted model is

$$
\widehat{\pi}(x)=\frac{e^{-12.351+0.497 x}}{1+e^{-12.351+0.497 x}}
$$

plot(Width, has.sate,
xlab = "Carapace Width (cm)",ylab = "Has Satellites")
$>$ curve $(\exp (-12.351+0.497 * x) /(1+\exp (-12.351+0.497 * x))$, add $=\mathrm{T})$

There are multiple observations (crabs) at same points (left plot).
To see them, we can "jitter" their Y values by adding a small amount of noise (right plot).
> plot(Width, jitter(has.sate),
xlab = "Carapace Width (cm)",ylab = "Has Satellites")
$>\operatorname{curve}(\exp (-12.351+0.497 * x) /(1+\exp (-12.351+0.497 * x))$, add $=\mathrm{T})$
Hard to visually assess how well the curve fits the data
Chapter 4-5

The 8 triangle dots indicate the sample proportions against the mean widths of crabs in the 8 categories.
> wd.ave = tapply(Width,wd.grp,mean)
> wd.ave
$(0,23.2](23.2,24.2](24.2,25.2](25.2,26.2](26.2,27.2]$
$\begin{array}{rrr}22.69286 & 23.84286 & 24.77500 \\ 27.2,28.2] & (28.2,29.2] & (29.2, \text { Inf] }\end{array}$
$27.73750 \quad 28.66667 \quad 30.40714$
> plot(Width, jitter(has.sate), cex=0.5,
xlab = "Carapace Width (cm)",ylab = "Has Satellites")
$>\operatorname{curve}(\exp (-12.351+0.497 * x) /(1+\exp (-12.351+0.497 * x))$, add $=\mathrm{T})$
> points(wd.ave, percent, pch = 2) \# "pch=2" use triangle dots

To better access the fit visually, one can group crabs of similer width and compute sample proportions for each group.

```
> wd.grp = cut(Width, breaks= c(0,23.25,24.25,25.25,26.25,
                                    27.25,28.25,29.25,Inf))
> wd.table = table(wd.grp, Satellites > 0)
> wd.table
\begin{tabular}{crr} 
wd.grp & FALSE & TRUE \\
\((0,23.2]\) & 9 & 5 \\
\((23.2,24.2]\) & 10 & 4 \\
\((24.2,25.2]\) & 11 & 17 \\
\((25.2,26.2]\) & 18 & 21 \\
\((26.2,27.2]\) & 7 & 15 \\
\((27.2,28.2]\) & 4 & 20 \\
\((28.2,29.2]\) & 3 & 15 \\
\((29.2\), Inf] & 0 & 14
\end{tabular}
```

> percent = wd.table[,2]/rowSums(wd.table)
$>$ percent

$(0,23.2]$	$(23.2,24.2]$	$(24.2,25.2]$	$(25.2,26.2]$	$(26.2,27.2]$
0.3571429	0.2857143	0.6071429	0.5384615	0.6818182
$27.2,28.2]$	$(28.2,29.2]$	$(29.2, \operatorname{Inf}]$		
0.8333333	0.8333333	1.0000000		
		Chapter $4-6$		

Fitted Model:

$$
\widehat{\pi}(x)=\frac{\exp (\widehat{\alpha}+\widehat{\beta} x)}{1+\exp (\widehat{\alpha}+\widehat{\beta} x)}=\frac{\exp (-12.351+0.497 x)}{1+\exp (-12.351+0.497 x)}
$$

- $\widehat{\beta}=0.497>0$, so $\widehat{\pi}$ increases as Width (x) increases
- Point of symmetry:

$$
\widehat{\pi}(x)=\frac{1}{2} \text { when } x=-\frac{\widehat{\alpha}}{\widehat{\beta}}=-\frac{-12.351}{0.497}=24.85 \mathrm{~cm}
$$

- Steepest slope at point of symmetry $x=24.85 \mathrm{~cm}$ with slope

$$
\widehat{\beta} \pi(1-\pi)=0.497 \times \frac{1}{2} \times \frac{1}{2} \approx 0.124
$$

If Width (x) increases by 1 cm , then π increases by 0.124 (actual $\widehat{\pi}$ at $x=25.85$ is 0.623).

- At $x=33.5$ (max. obs. width), $\widehat{\pi} \approx 0.987$, and the estimated slope is $0.497 \cdot(0.987) \cdot(1-0.987) \approx 0.0064$.
\Rightarrow Rate of change varies with x.
Chapter 4-8

Predictions

The probability that an average-size female crab (w/ Width at $\bar{x}=26.3 \mathrm{~cm}$) has satellite(s) is estimated to be

$$
\widehat{\pi}(x)=\frac{e^{-12.351+0.497 \times 26.3}}{1+e^{-12.351+0.497 \times 26.3}} \approx 0.67
$$

R provides two kinds of predicted values.
The first one gives $\widehat{\alpha}+\widehat{\beta} x=-12.351+0.497 \times 26.3 \approx 0.72$.
> predict(crabs.logit, data.frame(Width=26.3),type="link")
1
0.7263467
The second one gives $\widehat{\pi}(x)=\frac{\exp (\widehat{\alpha}+\widehat{\beta} x)}{1+\exp (\widehat{\alpha}+\widehat{\beta} x)}$ as computed above.
> predict(crabs.logit, data.frame(Width=26.3),type="response")
1
0.6740031

Chapter 4-9

Odds Ratio Interpretation of Logistic Models

Since $\log \left(\frac{\pi}{1-\pi}\right)=\alpha+\beta x$, odds are

$$
\frac{\pi}{1-\pi}= \begin{cases}e^{\alpha+\beta x} & \text { at } x \\ e^{\alpha+\beta(x+1)}=e^{\beta} e^{\alpha+\beta x} & \text { at } x+1\end{cases}
$$

So

$$
\frac{\text { odds at }(x+1)}{\operatorname{odds~at~} x}=\frac{e^{\beta} e^{\alpha+\beta x}}{e^{\alpha+\beta x}}=e^{\beta}
$$

More generally,

$$
\frac{\text { odds at }(x+\Delta x)}{\text { odds at } x}=\frac{e^{\Delta x} e^{\alpha+\beta x}}{e^{\alpha+\beta x}}=e^{\beta \Delta x}
$$

If $\beta=0$, then $e^{\beta}=1$ and odds do not depend on x.

Remarks

- Fitting linear probability model $\pi(x)=\alpha+\beta x$ (binomial $\mathbf{w} /$ identity link) fails in the crabs example.
> glm(has.sate ~ Width, family=binomial(link="identity"))
Error: no valid set of coefficients has been found:
please supply starting values
- If we pretend $Y \sim$ Normal and fit a linear regression model

$$
Y=\alpha+\beta x+\varepsilon,
$$

```
> lm(has.sate ~ Width)
Coefficients: 隹 (h)
(Intercept) Width
\[
-1.76553 \quad 0.09153
\]
```

We get the model $\widehat{Y}=-1.7655+0.09153 x$.
At $x=33.5 \mathrm{~cm}$, the predicted value (estimated prob. of satellites) is

$$
-1.7655+0.09153 \times 33.5=1.30 \quad!?!
$$

Chapter 4-10

Example (Horseshoe Crabs)

$$
\widehat{\beta}=0.497 \quad \Longrightarrow \quad e^{\widehat{\beta}}=e^{0.497} \approx 1.64
$$

Odds of having satellite(s) are estimated to increase by a factor of 1.64 for each 1 cm increase in width.

If width increases by 0.1 cm , then odds are estimated to increase by a factor of

$$
e^{(0.497)(0.1)}=e^{0.0497}=1.051
$$

Inference for Simple Logistic Regression

Wald Cls
Wald $(1-\alpha) 100 \% \mathrm{Cls}$ for β are $\widehat{\beta} \pm z_{\alpha / 2} \operatorname{SE}(\widehat{\beta})$.
Example (Horseshoe Crabs)
> summary(crabs.logit)
Coefficients:

$$
\text { Estimate Std. Error z value } \operatorname{Pr}(>|z|)
$$

(Intercept) -12.3508 $2.6287-4.6982 .62 \mathrm{e}-06$ ***
Width $0.4972 \quad 0.1017 \quad 4.887 \quad 1.02 \mathrm{e}-06$ ***
$95 \% \mathrm{Cl}$ for β :

$$
0.497 \pm(1.96)(0.102)=0.497 \pm 0.200=(0.297,0.697)
$$

$95 \% \mathrm{Cl}$ for $e^{\beta}:\left(e^{0.297}, e^{0.697}\right)=(1.35,2.01)$
\Longrightarrow Odds are estimated to increase by a factor of at least 1.35 , at most 2.01 for every 1 cm increment in Width.

Chapter 4-13

Wald Tests for β

$\mathrm{H}_{0}: \beta=0$ (i.e., Y indep. of X, i.e., $\pi(x)$ constant in x)
$\mathrm{H}_{a}: \beta \neq 0$
> summary(crabs.logit)
Coefficients:

$$
\text { Estimate Std. Error } z \text { value } \operatorname{Pr}(>|z|)
$$

(Intercept) -12.3508 $2.6287-4.6982 .62 \mathrm{e}-06$ ***
$\begin{array}{llll}\text { Width } 0.4972 \quad 0.1017 & 4.887 & 1.02 \mathrm{e}-06 & \text { *** }\end{array}$
We see

$$
z=\frac{\widehat{\beta}}{\mathrm{SE}}=\frac{0.4972}{0.1017}=4.887
$$

or

$$
z^{2}=4.887^{2} \approx 23.88, \quad d f=1 \quad(\text { chi-squared })
$$

P-value <0.0001 : very strong evidence that $\pi \uparrow$ with width.

Wald Cl for β and e^{β} in R :
> confint.default(crabs.logit)

$$
2.5 \% \quad 97.5 \%
$$

(Intercept) -17.5030100 -7.1986254
Width 0.29783260 .6966286
> $\exp ($ confint.default(crabs.logit))

$$
2.5 \% \quad 97.5 \%
$$

(Intercept) 2.503452e-08 0.0007476128
Width $\quad 1.346936 \mathrm{e}+002.0069749360$
Safer to use LR CI than Wald CI.
For crabs example, $95 \% \operatorname{LR~CI~for~} e^{\beta}$ is $(1.36,2.03)$.
> confint(crabs.logit)
Waiting for profiling to be done..

$$
2.5 \% \quad 97.5 \%
$$

(Intercept) -17.8100090-7.4572470
Width 0.30838060 .7090167
$>\exp ($ confint(crabs.logit))
Waiting for profiling to be done...

$$
2.5 \% \quad 97.5 \%
$$

(Intercept) $1.841668 \mathrm{e}-080.0005772432$
Width $\quad 1.361219 \mathrm{e}+002.0319922986$
Chapter 4-14

Likelihood Ratio Tests for β

```
> drop1(crabs.logit, test="Chisq")
Single term deletions
Model:
has.sate ~ Width
<none> 194.45 198.45
Width 1 225.76 227.76 31.306 2.204e-08 ***
```

