
Chapter 3 Generalized Linear Models (GLM)

Example — Fatality in Falling Accidents1

●
●

●

● ●

●

●

1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

Floor

Fa
ta

lit
y 

R
at

e

floor fatal total observed
level falls falls fatality rate
x yx nx px = yx/nx
1 2 37 0.05
2 6 54 0.11
3 8 46 0.17
4 13 38 0.34
5 10 32 0.31
6 10 11 0.91
7 1 2 0.50

If the falls were indep. of each other, and if the chance of fatality
depended only on the floor level from which the victims fell, then

yx ∼ binomial(nx , π(x)).

The MLE of π(x) is px = yx/nx .
1Courtesy of Prof. Stephen M. Stigler
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Why Modeling?
Without modeling we can estimate π(x) at x = 1, 2, . . . , 7 using
the sample fatality rate yx/nx , but there are a few problems.

I cannot estimate π(x) at those x with no observation,
e.g., x = 8 or 1.5.

I We expect the fatality rate π(x) to increase with the floor
level x . However, the sample fatality rates px = yx/nx are not
monotone increasing in x :

p4 = 0.34 > p5 = 0.31,

p6 = 0.91 > p7 = 0.50,

which is not reasonable.
I By modeling, we can incorporate prior knowledge about π(x)

to improve the accuracy of estimation.
E.g., we can model π(x) as an increasing function

π(x) = α + βx or π(x) =
eα+βx

1 + eα+βx
.

Chapter 3 - 2

First Attempt – Linear Regression
Suppose we model π(x) as

π(x) = α + βx ,

how to estimate α and β? Let’s try linear regression with

I response = the observed fatality rates px = yx/nx , and

I predictor = the floor level x

floor fatal total fatality
level falls falls rate
x yx nx px
1 2 37 0.05
2 6 54 0.11
3 8 46 0.17
4 13 38 0.34
5 10 32 0.31
6 10 11 0.91
7 1 2 0.50
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Chapter 3 - 3

First Model – Linear Regression
Fitting a linear regression model, we get

π̂(x) = −0.09566 + 0.10973x ,

which means, if the fall occurs one floor higher, the chance for it
to be fatal increases by about 11%.
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Any problem in this model?
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Problems of the Linear Regression Model

1. Non-normality of the response px
I not a serious issue because regression models don’t require the

response to be normal

2. Non-constant variance of the response: SE(px)=
√

px (1−px )
nx
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Regression models assume
constant variabilities of all
points.

Points w/ smaller SEs should
be more influential to the
fitted line as they are more
accurate.

(The error bars go 1 SE above and below px).
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Problems of the Linear Regression Model

3. For probabilities,
the diff. of π = 0.01 and π = 0.0001 is important, but
the diff. of π = 0.51 and π = 0.5001 is often negligible.

I Least square method regards the two differences equal,
I Likelihood methods can reflect the distinction of the two

differences.

4. π(x) = α + βx may not stay between 0 and 1
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Second Attempt — Likelihood Methods
As yx ∼ binomial(nx , π(x)), the likelihood of π(x) is

` =
∏7

x=1

(
nx
yx

)
[π(x)]yx [1− π(x)]nx−yx

= C
∏7

x=1
[π(x)]yx [1− π(x)]nx−yx

where C =
∏7

x=1

(nx
yx

)
is a constant involving no parameters, having

no effect on parameter inference, and hence is often ignored.

For the linear probability model

π(x) = α + βx ,

the likelihood of α, β is

`(α, β) = C
∏7

x=1
[α + βx ]yx [1− α− βx ]nx−yx .

I No close form formula for the MLEs of α and β. Numerical
tools give their values as

α̂ = −0.0577, β̂ = 0.0949.
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Compare the two fitted lines founded using regression and binomial
likelihoods.

Regression : π̂(x) = −0.0957 + 0.1097x

Binomial likelihoods : π̂(x) = −0.0577 + 0.0949x
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Why Likelihood Methods Improve Over Regression?

likelihood : C
∏

x
[π(x)]yx [1− π(x)]nx−yx

log-likelihood : logC +
∑
x

{yx log π(x) + (nx − yx) log[1− π(x)]}

Contribution of an observation (x , nx , yx) to the log-likelihood is

yx log π(x) + (nx − yx) log[1− π(x)].

I Observations with larger nx are more influential as they have
greater contributions to log-likelihood

I Each single yx log π(x) + (nx − yx) log[1− π(x)] reach its
max. at π(x) = yx/nx . Likelihood methods will make the
fitted π̂(x) as close to yx/nx as possible.

I log-likelihood changes
a little
a lot when π(x) changes

from .51 to .501,
from .01 to .001.
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S-shaped Relationships
In practice, π(x) often increases or decreases slower as π(x) gets
closer to 0 or 1.

The S-shaped curves below are often (close to) realistic.
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x

The most commonly used S-shaped function for modeling π(x) is

π(x) =
exp(α + βx)

1 + exp(α + βx)
=

eα+βx

1 + eα+βx
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Logistic Regression Models
The logistic regression model models the success probability π(x)
for the binomial response as

π(x) =
eα+βx

1 + eα+βx
,

or equivalently,

log

(
π(x)

1− π(x)

)
= α + βx .

I It ensures π(x) staying between 0 and 1 regardless of the
values of α, β, and x

I g(π) = log( π
1−π ) is called the logit function

I Interpretation: log(odds) = α + βx

the odds increases by a factor of eβ whenever x increases by 1

I We’ll discuss in detail in Chapter 4 & 5
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For the example about accidental falls, the likelihood function of α
and β is

`(α, β) = C
7∏

x=1

(
eα+βx

1 + eα+βx

)yx ( 1

1 + eα+βx

)nx−yx
.

The MLE of α and β is:

α̂ = −3.492, β̂ = 0.660

The fitted model is

π̂(x) =
e−3.492+0.660x

1 + e−3.492+0.660x
.

I The model estimates that 5.6% of the falls from the first floor
is fatal because

π̂(1) =
e−3.492+0.660×1

1 + e−3.492+0.660×1 ≈ 0.0556 ≈ 5.6%.

I If a victim had fell from somewhere one floor higher, the odds
of death would have increased by a factor of e0.660 ≈ 1.93.
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Probit Regression Model

Another model that has the S-shaped curves is the probit model,
which assumes

π(x) = Φ(α + βx)

where Φ is the cumulative distribution function of N(0, 1),

Φ(z) = P(N(0, 1) ≤ z) =

∫ z

−∞

1√
2π

e−
x2

2 dx .

I What are the values of Φ(0), Φ(−1.96), Φ(1.96)?
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N(0,1) density function φ(x) = 1√
2π
e−

x2

2 (top panel) and

cumulative distribution function Φ(x) =
∫ x
−∞ φ(z)dz (bottom

panel).
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Probit Regression Model

The fitted probit regression model for the accidental fall data
(based on likelihood methods) is

π̂(x) = Φ(α̂ + β̂x) = Φ(−2.0241 + 0.3794x).

I The estimated fatality rate of falling from the first floor is

π̂(1) = Φ(−2.0241 + 0.3794× 1) = Φ(−1.6447) ≈ 0.0500.
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Complementary Log-Log Models
Both logit and probit models assume that π(x) approaches 0 at
the same rate as it approaches 1.

The complementary log-log models assume

π(x) = 1− exp(− exp(α + βx)),

or equivalently

log(− log(1− π(x))) = α + βx .

In this model, π(x) approaches 0 fairly slowly but approaches 1
quite sharply.
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Log-log Models
On the contrary, the log-log models assume

π(x) = exp(− exp(α + βx)), or log(− log(π(x))) = α + βx

of which π(x) approaches 0 quickly but approaches 1 slowly
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I Neither the complementary log-log models nor the log-log
models are included in the textbook.

We include them here just for your reference.
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Link Functions
All the models above assume a linear relationship between the
explanatory variable x and some function g(π) of the binomial
proportion π.

I logit: π =
eα+βx

1 + eα+βx
⇔ g(π) = log

(
π

1− π

)
= α + βx

I probit: π = Φ(α + βx)⇔ g(π) = Φ−1(π) = α + βx

I complementary log-log:

π = 1− e−e
α+βx ⇔ g(π) = log(− log(1− π)) = α + βx

I log-log:

π = e−e
α+βx ⇔ g(π) = log(− log(π)) = α + βx

All models above belong to a large class of models . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the generalized linear models.
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Three Components of Generalized Linear Models

I Random component Y
— the response variable with indep. obs. Y1,Y2, . . . ,Yn from
a common prob. dist. (e.g., normal, binomial, Poisson)

I System component — the explanatory variables of a linear
structure

α + β1x1 + β2x2 + · · ·+ βkxk

Some xj can be based on others xk ’s, e.g., x3 = x1x2, x4 = x21
I Link function g(µ)

— connecting µ = E[Y ] and α+ β1x1 + β2x2 + · · ·+ βkxk by
a function

g(µ) = α + β1x1 + β2x2 + · · ·+ βkxk

The same maximum likelihood (ML) fitting procedure is used to
estimate the coefficients α, β1, . . . , βk for all GLMs.
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Linear Regression Models Are GLMs

Recall the ordinary linear regression models assume

Y = α + β1x1 + β2x2 + · · ·+ βkxk + ε

where the noise ε has a normal distribution N(0, σ2)

I The random component Y has a normal distribution

I α + β1x1 + β2x2 + · · ·+ βkxk is the systematic component

I The link function is the identity link g(µ) = µ

g(µ) = µ = α + β1x1 + β2x2 + · · ·+ βkxk

I The ML fitting procedure for estimating α, β1, . . . , βk reduces
to the least square method when the response variable has a
normal distribution.
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Back to the Example of Fatal Falls
Which model fits the data the best?
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complementary log−log
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How to Choose a Link Function?

I Logit models and probit models usually give similar fitted
curves
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I Locally, both logit and probit link are close to linear

I Often, the conclusions made are not sensitive to the choice of
the link function, though there are occasional exceptions.

I Logit models have nice interpretation (odds ratio) and hence
are most commonly used for binomial response data
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How to Fit GLM in R
Loading data:

> ff = read.table("falls.dat",h=T)

> ff

floor fatal live

1 1 2 35

2 2 6 48

3 3 8 38

4 4 13 25

5 5 10 22

6 6 10 1

7 7 1 1

Fitting a binomial model with identity link π(x) = α + βx

> ff.lin = glm(cbind(fatal,live) ~ floor,

family=binomial(link="identity"),data=ff)

> ff.lin$coef

(Intercept) floor

-0.05771138 0.09490576

The fitted model is π̂(x) = −0.05771138 + 0.09490576x .
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Fitting a logit, a probit, or a complementary log-log model:

> ff.logit = glm(cbind(fatal,live) ~ floor,

family=binomial(link="logit"), data=ff)

> ff.probit = glm(cbind(fatal,live) ~ floor,

family=binomial(link="probit"), data=ff)

> ff.cloglog = glm(cbind(fatal,live) ~ floor,

family=binomial(link="cloglog"), data=ff)

> ff.logit$coef

(Intercept) floor

-3.4920438 0.6600324

> ff.probit$coef

(Intercept) floor

-2.0241333 0.3793616

> ff.cloglog$coef

(Intercept) floor

-3.2997589 0.5540277

The fitted logit model is π̂(x) =
e−3.492+0.660x

1 + e−3.492+0.660x
,

the fitted probit model is π̂(x) = Φ(−2.024 + 0.3794x), and

the fitted complementary log-log model is π̂(x)=1−e−e−3.300+0.554x
.

Chapter 3 - 24



Another syntax to fit a glm model

> total = ff$fatal+ff$live

> percent = ff$fatal/total

> ff.logit2 = glm(percent ~ floor, family=binomial(link="logit"),

weight = total, data=ff)

> ff.logit2$coef # same fitted coefficients!

(Intercept) floor

-3.4920438 0.6600324

> ff.logit$coef

(Intercept) floor

-3.4920438 0.6600324
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Fitted Values π̂(x)
Fitted values for π̂(x) at data points, e.g., for the model with
identity link

> ff.lin$fit

1 2 3 4 5 6 7

0.03719438 0.13210014 0.22700590 0.32191166 0.41681743 0.51172319 0.60662895

> round(ff.lin$fit, 3)

1 2 3 4 5 6 7

0.037 0.132 0.227 0.322 0.417 0.512 0.607

for the models with logit and probit links

> round(ff.logit$fit,3)

1 2 3 4 5 6 7

0.056 0.102 0.181 0.299 0.452 0.615 0.756

> round(ff.probit$fit,3)

1 2 3 4 5 6 7

0.050 0.103 0.188 0.306 0.449 0.599 0.736
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Ungrouped Data and Grouped Data
Sometimes the data are ungrouped ...

Ungrouped Data:
file: fallsUG.dat

no. floor outcome

1 2 live

2 5 live

3 5 live

4 2 live

5 1 live

6 4 live

7 5 fatal

8 1 live

9 4 live

10 3 live

11 4 live

12 4 fatal
...

219 1 live

220 4 live

Grouped Data:
file: falls.dat

floor fatal live

1 2 35

2 6 48

3 8 38

4 13 25

5 10 22

6 10 1

7 1 1
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Fitting GLM for Ungrouped Data

> ffug = read.table("fallsUG.dat",h=T)

> ffug.logit = glm((outcome == "fatal") ~ floor,

family=binomial(link="logit"), data=ffug)

> ffug.logit$coef # same fitted coefficients!

(Intercept) floor

-3.4920437 0.6600324

> ff.logit$coef

(Intercept) floor

-3.4920438 0.6600324

> round(ffug.logit$fit,3) # estimated fatality rates

1 2 3 4 5 6 7 8 9

0.102 0.452 0.452 0.102 0.056 0.299 0.452 0.056 0.299

(... omitted ...)

214 215 216 217 218 219 220

0.102 0.102 0.615 0.299 0.181 0.056 0.299
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3.4 Statistical Inference for GLMs
The Wald statistic for testing H0: β = c is

z =
β̂ − c

SE(β̂)

We omit the formula for SE(β̂), of which the value can be found in
R as follows.

> ff.lin = glm(cbind(fatal,live) ~ floor,

family=binomial(link="identity"),data=ff)

> summary(ff.lin)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.05771 0.03927 -1.469 0.142

floor 0.09491 0.01567 6.057 1.38e-09 ***

The column Std.Error gives the desired SE.

Remark: The SE of β̂ depends on the unknown true value of β.
The SE in the Wald statistic is evaluated at β = β̂, not at the
value β = c under H0.
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Wald statistic is approx. N(0, 1) under H0.

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.05771 0.03927 -1.469 0.142

floor 0.09491 0.01567 6.057 1.38e-09 ***

I R summary output gives the Wald statistics z value for
testing H0: β = 0 and the corresponding P-values.

z value =
Estimate

Std. Error
=

β̂

SE
=

0.09491

0.01567
= 6.057.

I To test H0: β = 0.05,

Wald statistic z =
β̂ − 0.05

SE(β̂)
=

0.09491− 0.05

0.01567
≈ 2.866

The P-value is about 0.004.
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Wald CIs
The Wald (1− α)100% CIs for β are

β̂ ± zα/2SE(β̂).

e.g., 95% CI for β:

0.09491± 1.96× 0.01567 ≈ (0.064, 0.126).

> summary(ff.lin)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.05771 0.03927 -1.469 0.142

floor 0.09491 0.01567 6.057 1.38e-09 ***

R command command confint.default() gives the Wald CIs.

> confint.default(ff.lin, level=0.95)

2.5 % 97.5 %

(Intercept) -0.13468514 0.01926237

floor 0.06419697 0.12561455
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Likelihood Ratio Tests
To test H0: β = 0 vs Ha: β 6= 0

`0 = max. likelihood when β = 0,

`1 = max. likelihood over all possible β

The likelihood ratio test statistic is

LRT = −2 log (`0/`1)

= −2 [log(`0)− log(`1)]

= −2(L0 − L1) ∼ χ2
1 when sample size is large

where Li = log(`i ).

Example (Fatal Falls) . For identity link π(x) = α + βx ,

I under H0: β = 0, π(x) = α, L0 = −117.9112
I under Ha: β 6= 0, π(x) = α + βx , L1 = −102.4135

LRT = −2(L0 − L1) = 30.995, df = 1,

P-value = 2.6× 10−8
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Likelihood Ratio Tests in R

The drop1() command in R can do LR tests for coefficients.

> drop1(ff.lin, test="Chisq")

Single term deletions

Model:

cbind(fatal, live) ~ floor

Df Deviance AIC LRT Pr(>Chi)

<none> 11.037 35.959

floor 1 42.032 64.955 30.995 2.586e-08 ***
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Remarks

I For very large n, Wald and LR tests are approx. equivalent,
but for small to moderate n, the LR test is more reliable and
powerful.

I R does not report the maximized log-likelihood of a model but
report its “deviance”, which we will introduce in Section 3.4.3
and 5.2.2. Now just keep in mind that

Deviance = −2(max. log-likelihood) + constant

where the constant just depends on data but not the model.
Thus

LR statistic = difference in deviances
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LR Confidence Intervals

LR method also extends to CIs:
(1− α)100% CI is set of β∗ for which P-value > α in LR test of
H0: β = β∗. Computed by confint() function in R.

> confint(ff.lin, level=0.95) # LR confidence intervals

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -0.10588159 0.02906596

floor 0.06389293 0.12235797

There were 11 warnings (use warnings() to see them)

compared with Wald confidence intervals

> confint.default(ff.lin, level=0.95) # Wald confidence intervals

2.5 % 97.5 %

(Intercept) -0.13468514 0.01926237

floor 0.06419697 0.12561455
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We defer the following sections now and will come back to them
later.

I Section 3.3 introduces GLMs for count data (rather than
binary or binomial data), including Poisson regression and
negative binomial regression. We will come back to this
section when we reach Chapter 7.

I Section 3.4.3-3.4.5 introduce deviance, model comparisons,
and residuals generally for all GLMs. We will discuss deviance
and residuals for binary response models in Chapter 5 and how
to use them to do model selection.
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