Chapter 3 Generalized Linear Models (GLM)

Example — Fatality in Falling Accidents¹

1.0-					•		floor level	fatal falls	total falls	observed fatality rate
₽ ^{0.8} –							X	y_{x}	n_{x}	$p_x = y_x/n_x$
- 8.0 - 9.0 Rate - 7.0 - 7.0 - 8.0							1	2	37	0.05
						•	2	6	54	0.11
ata 19.0.4			٠	٠			3	8	46	0.17
^{LL} 0.2 –	•	•					4	13	38	0.34
0.0 -	•						5	10	32	0.31
Т						7	6	10	11	0.91
1	2	3	_4	5	6	7	7	1	2	0.50
			Floo	r						

If the falls were indep. of each other, and if the chance of fatality depended only on the floor level from which the victims fell, then

$$y_x \sim \text{binomial}(n_x, \pi(x)).$$

<u>The MLE of $\pi(x)$ is $p_x = y_x/n_x$.</u> ¹Courtesy of Prof. Stephen M. Stigler Chapter 3 - 1

First Attempt – Linear Regression

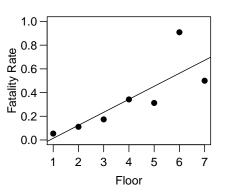
Suppose we model $\pi(x)$ as

$$\pi(\mathbf{x}) = \alpha + \beta \mathbf{x},$$

how to estimate α and β ? Let's try linear regression with

- response = the observed fatality rates $p_x = y_x/n_x$, and
- predictor = the floor level x





Why Modeling?

Without modeling we can estimate $\pi(x)$ at x = 1, 2, ..., 7 using the sample fatality rate y_x/n_x , but there are a few problems.

- ► cannot estimate π(x) at those x with no observation, e.g., x = 8 or 1.5.
- We expect the fatality rate π(x) to increase with the floor level x. However, the sample fatality rates p_x = y_x/n_x are not monotone increasing in x:

$$p_4 = 0.34 > p_5 = 0.31,$$

 $p_6 = 0.91 > p_7 = 0.50,$

which is not reasonable.

 By modeling, we can incorporate prior knowledge about π(x) to improve the accuracy of estimation.

E.g., we can model $\pi(x)$ as an increasing function

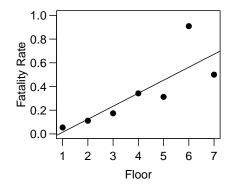
$$\pi(x) = \alpha + \beta x$$
 or $\pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$

First Model – Linear Regression

Fitting a linear regression model, we get

$$\widehat{\pi(x)} = -0.09566 + 0.10973x,$$

which means, if the fall occurs one floor higher, the chance for it to be fatal increases by about 11%.

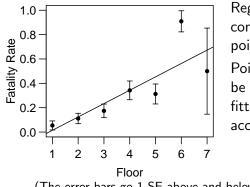


Any problem in this model?

Chapter 3 - 4

Problems of the Linear Regression Model

- 1. Non-normality of the response p_x
 - not a serious issue because regression models don't require the response to be normal
- 2. Non-constant variance of the response: $SE(p_x) = \sqrt{\frac{p_x(1-p_x)}{n_x}}$



Regression models assume constant variabilities of all points. Points w/ smaller SEs should

be more influential to the fitted line as they are more accurate.

- (The error bars go 1 SE above and below p_x).
 - Chapter 3 5

Second Attempt — Likelihood Methods

As $y_x \sim \text{binomial}(n_x, \pi(x))$, the likelihood of $\pi(x)$ is

$$\ell = \prod_{x=1}^{7} \binom{n_x}{y_x} [\pi(x)]^{y_x} [1 - \pi(x)]^{n_x - y_x}$$
$$= C \prod_{x=1}^{7} [\pi(x)]^{y_x} [1 - \pi(x)]^{n_x - y_x}$$

where $C = \prod_{x=1}^{7} {n_x \choose v_x}$ is a constant involving no parameters, having no effect on parameter inference, and hence is often ignored.

For the linear probability model

$$\pi(\mathbf{x}) = \alpha + \beta \mathbf{x},$$

the likelihood of α, β is

$$\ell(\alpha,\beta) = C \prod_{x=1}^{7} [\alpha + \beta x]^{y_x} [1 - \alpha - \beta x]^{n_x - y_x}.$$

▶ No close form formula for the MLEs of α and β . Numerical tools give their values as

$$\widehat{lpha} = -0.0577, \quad \widehat{eta} = 0.0949.$$

Chapter 3 - 7

Problems of the Linear Regression Model

3. For probabilities,

the diff. of $\pi = 0.01$ and $\pi = 0.0001$ is important, but the diff. of $\pi = 0.51$ and $\pi = 0.5001$ is often negligible.

- Least square method regards the two differences equal,
- Likelihood methods can reflect the distinction of the two differences.

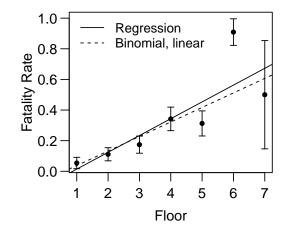
4. $\pi(x) = \alpha + \beta x$ may not stay between 0 and 1

Chapter 3 - 6

Compare the two fitted lines founded using regression and binomial likelihoods.

Regression :
$$\widehat{\pi(x)} = -0.0957 + 0.1097x$$

Binomial likelihoods : $\widehat{\pi(x)} = -0.0577 + 0.0949x$



Chapter 3 - 8

Why Likelihood Methods Improve Over Regression?

$$\begin{aligned} \text{likelihood} &: C \prod_x [\pi(x)]^{y_x} [1 - \pi(x)]^{n_x - y_x} \\ \text{log-likelihood} &: \log C + \sum_x \{y_x \log \pi(x) + (n_x - y_x) \log[1 - \pi(x)]\} \end{aligned}$$

Contribution of an observation (x, n_x, y_x) to the log-likelihood is

$$y_x \log \pi(x) + (n_x - y_x) \log[1 - \pi(x)]$$

- Observations with larger n_x are more influential as they have greater contributions to log-likelihood
- ► Each single y_x log π(x) + (n_x y_x) log[1 π(x)] reach its max. at π(x) = y_x/n_x. Likelihood methods will make the fitted π̂(x) as close to y_x/n_x as possible.
- ▶ log-likelihood changes a little when $\pi(x)$ changes from .51 to .501, a lot .001.

Logistic Regression Models

The logistic regression model models the success probability $\pi(x)$ for the binomial response as

$$\pi(x) = rac{e^{lpha+eta x}}{1+e^{lpha+eta x}},$$

or equivalently,

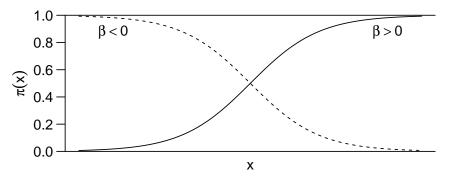
$$\log\left(\frac{\pi(x)}{1-\pi(x)}\right) = \alpha + \beta x.$$

- It ensures π(x) staying between 0 and 1 regardless of the values of α, β, and x
- $g(\pi) = \log(\frac{\pi}{1-\pi})$ is called the *logit* function
- Interpretation: $\log(\text{odds}) = \alpha + \beta x$ the odds increases by a factor of e^{β} whenever x increases by 1
- ▶ We'll discuss in detail in Chapter 4 & 5

S-shaped Relationships

In practice, $\pi(x)$ often increases or decreases slower as $\pi(x)$ gets closer to 0 or 1.

The S-shaped curves below are often (close to) realistic.



The most commonly used S-shaped function for modeling $\pi(x)$ is

$$\pi(x) = \frac{\exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)} = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

Chapter 3 - 10

For the example about accidental falls, the likelihood function of α and β is

$$\ell(\alpha,\beta) = C \prod_{x=1}^{7} \left(\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}} \right)^{y_x} \left(\frac{1}{1+e^{\alpha+\beta x}} \right)^{n_x-y_x}.$$

The MLE of α and β is:

$$\widehat{\alpha} = -3.492, \quad \widehat{\beta} = 0.660$$

The fitted model is

$$\widehat{\pi}(x) = \frac{e^{-3.492+0.660x}}{1+e^{-3.492+0.660x}}$$

The model estimates that 5.6% of the falls from the first floor is fatal because

$$\widehat{\pi}(1) = rac{e^{-3.492 + 0.660 imes 1}}{1 + e^{-3.492 + 0.660 imes 1}} pprox 0.0556 pprox 5.6\%.$$

▶ If a victim had fell from somewhere one floor higher, the odds of death would have increased by a factor of $e^{0.660} \approx 1.93$.

Probit Regression Model

Another model that has the S-shaped curves is the *probit model*, which assumes

$$\pi(x) = \Phi(\alpha + \beta x)$$

where Φ is the cumulative distribution function of N(0, 1),

$$\Phi(z) = \mathrm{P}(N(0,1) \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

• What are the values of $\Phi(0)$, $\Phi(-1.96)$, $\Phi(1.96)$?

Probit Regression Model

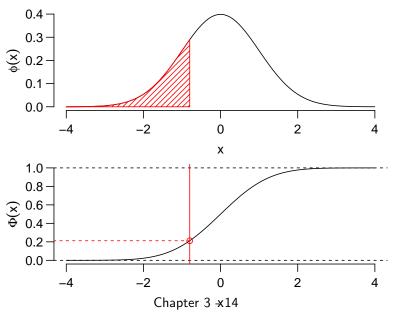
The fitted probit regression model for the accidental fall data (based on likelihood methods) is

 $\widehat{\pi}(x) = \Phi(\widehat{\alpha} + \widehat{\beta}x) = \Phi(-2.0241 + 0.3794x).$

▶ The estimated fatality rate of falling from the first floor is

$$\widehat{\pi}(1) = \Phi(-2.0241 + 0.3794 \times 1) = \Phi(-1.6447) \approx 0.0500.$$

N(0,1) density function $\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ (top panel) and cumulative distribution function $\Phi(x) = \int_{-\infty}^{x} \phi(z) dz$ (bottom panel).



Complementary Log-Log Models

Both logit and probit models assume that $\pi(x)$ approaches 0 at the same rate as it approaches 1.

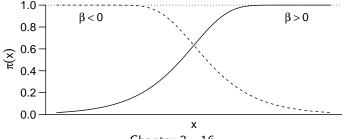
The complementary log-log models assume

$$\pi(x) = 1 - \exp(-\exp(\alpha + \beta x)),$$

or equivalently

$$\log(-\log(1-\pi(x))) = \alpha + \beta x.$$

In this model, $\pi(x)$ approaches 0 fairly slowly but approaches 1 quite sharply.



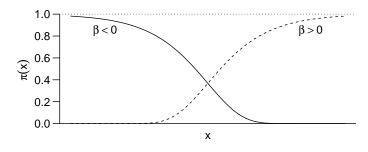
Chapter 3 - 16

Log-log Models

On the contrary, the log-log models assume

$$\pi(x) = \exp(-\exp(\alpha + \beta x)), \quad \text{or} \quad \log(-\log(\pi(x))) = \alpha + \beta x$$

of which $\pi(x)$ approaches 0 quickly but approaches 1 slowly



 Neither the complementary log-log models nor the log-log models are included in the textbook.

We include them here just for your reference.

Three Components of Generalized Linear Models

- ► Random component *Y*
 - the response variable with indep. obs. Y_1, Y_2, \ldots, Y_n from a common prob. dist. (e.g., normal, binomial, Poisson)
- System component the explanatory variables of a linear structure

$$\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

Some x_i can be based on others x_k 's, e.g., $x_3 = x_1x_2$, $x_4 = x_1^2$

• Link function $g(\mu)$

— connecting $\mu = \mathbb{E}[Y]$ and $\alpha + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k$ by a function

$$g(\mu) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k$$

The same maximum likelihood (ML) fitting procedure is used to estimate the coefficients $\alpha, \beta_1, \ldots, \beta_k$ for all GLMs.

Link Functions

All the models above assume a linear relationship between the explanatory variable x and some function $g(\pi)$ of the binomial proportion π .

logit:
$$\pi = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}} \Leftrightarrow g(\pi) = \log\left(\frac{\pi}{1 - \pi}\right) = \alpha + \beta x$$

- probit: $\pi = \Phi(\alpha + \beta x) \Leftrightarrow g(\pi) = \Phi^{-1}(\pi) = \alpha + \beta x$
- complementary log-log:

$$\pi = 1 - e^{-e^{lpha + eta x}} \Leftrightarrow g(\pi) = \log(-\log(1 - \pi)) = lpha + eta x$$

log-log:

$$\pi = e^{-e^{\alpha + \beta x}} \Leftrightarrow g(\pi) = \log(-\log(\pi)) = \alpha + \beta x$$

Linear Regression Models Are GLMs

Recall the ordinary linear regression models assume

$$Y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

where the noise ε has a normal distribution $N(0, \sigma^2)$

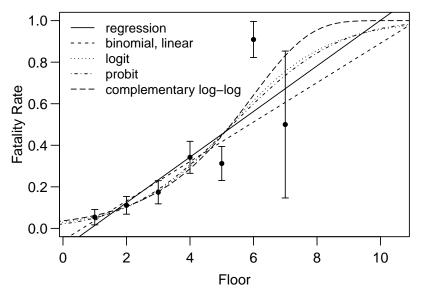
- The random component *Y* has a normal distribution
- $\alpha + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k$ is the systematic component
- The link function is the identity link $g(\mu) = \mu$

$$g(\mu) = \mu = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

The ML fitting procedure for estimating α, β₁,..., β_k reduces to the **least square method** when the response variable has a normal distribution.

Back to the Example of Fatal Falls

Which model fits the data the best?



Chapter 3 - 21

How to Fit GLM in $\ensuremath{\mathsf{R}}$

Loading data:

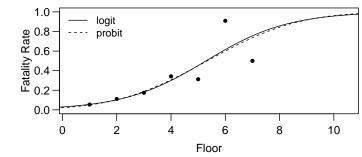
```
> ff = read.table("falls.dat",h=T)
> ff
  floor fatal live
1
      1
             2
                  35
2
      2
             6
                 48
3
      3
             8
                 38
4
      4
            13
                 25
5
      5
            10
                 22
6
      6
            10
                  1
7
      7
             1
                   1
```

Fitting a binomial model with identity link $\pi(x) = \alpha + \beta x$

The fitted model is $\hat{\pi}(x) = -0.05771138 + 0.09490576x$. Chapter 3 - 23

How to Choose a Link Function?

 Logit models and probit models usually give similar fitted curves



- Locally, both logit and probit link are close to linear
- Often, the conclusions made are not sensitive to the choice of the link function, though there are occasional exceptions.
- Logit models have nice interpretation (odds ratio) and hence are most commonly used for binomial response data

Chapter 3 - 22

Fitting a logit, a probit, or a complementary log-log model:

```
> ff.logit = glm(cbind(fatal,live) ~ floor,
                   family=binomial(link="logit"), data=ff)
> ff.probit = glm(cbind(fatal,live) ~ floor,
                   family=binomial(link="probit"), data=ff)
> ff.cloglog = glm(cbind(fatal,live) ~ floor,
                      family=binomial(link="cloglog"), data=ff)
> ff.logit$coef
(Intercept)
                    floor
 -3.4920438
                0.6600324
> ff.probit$coef
(Intercept)
                    floor
 -2.0241333
                0.3793616
> ff.cloglog$coef
(Intercept)
                    floor
 -3.2997589
                0.5540277
                                      e^{-3.492+0.660x}
The fitted logit model is \widehat{\pi}(x) = \frac{c}{1 + e^{-3.492 + 0.660x}},
the fitted probit model is \hat{\pi}(x) = \Phi(-2.024 + 0.3794x), and
the fitted complementary log-log model is \widehat{\pi}(x)\!=\!1\!-\!e^{-e^{-3.300+0.554x}}
```

Another syntax to fit a glm model

(Intercept) floor -3.4920438 0.6600324

> ff.logit\$coef
(Intercept) floor
-3.4920438 0.6600324

Chapter 3 - 25

Ungrouped Data and Grouped Data

Sometimes the data are ungrouped ...

Ungro	ouped	Data:		Grouped Data:					
file: f	alls	UG.dat	file: falls.dat						
no. f	loor d	outcome		floor	fatal	live			
1	2	live		1	2	35			
2	5	live		2	6	48			
3	5	live							
4	2	live		3	8	38			
5	1	live		4	13	25			
6	4	live		5	10	22			
7	5	fatal							
8	1	live		6	10	1			
9	4	live		7	1	1			
10	3	live							
11	4	live							
12	4	fatal							
÷									
219	1	live							
220	4	live							

Fitted Values $\widehat{\pi}(x)$

Fitted values for $\widehat{\pi}(x)$ at data points, e.g., for the model with identity link

> round(ff.lin\$fit, 3)
 1 2 3 4 5 6 7
0.037 0.132 0.227 0.322 0.417 0.512 0.607

for the models with logit and probit links

> round(ff.probit\$fit,3)
 1 2 3 4 5 6 7
0.050 0.103 0.188 0.306 0.449 0.599 0.736

Chapter 3 - 26

Fitting GLM for Ungrouped Data

> ffug.logit\$coef # same fitted coefficients! (Intercept) floor -3.4920437 0.6600324 > ff.logit\$coef (Intercept) floor -3.4920438 0.6600324 > round(ffug.logit\$fit,3) # estimated fatality rates 1 2 3 4 5 6 7 8 9

0.102 0.452 0.452 0.102 0.056 0.299 0.452 0.056 0.299 (... omitted ...) 214 215 216 217 218 219 220 0.102 0.102 0.615 0.299 0.181 0.056 0.299

3.4 Statistical Inference for GLMs

The **Wald statistic** for testing H_0 : $\beta = c$ is

$$z = \frac{\widehat{\beta} - \alpha}{\mathsf{SE}(\widehat{\beta})}$$

We omit the formula for SE($\hat{\beta}$), of which the value can be found in R as follows.

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

 (Intercept) -0.05771
 0.03927
 -1.469
 0.142

 floor
 0.09491
 0.01567
 6.057
 1.38e-09

The column Std.Error gives the desired SE.

<u>Remark</u>: The SE of $\hat{\beta}$ depends on the unknown true value of β . The SE in the Wald statistic is evaluated at $\beta = \hat{\beta}$, not at the value $\beta = c$ under H₀.

Chapter 3 - 29

Wald CIs

The Wald $(1 - \alpha)100\%$ CIs for β are

 $\widehat{\beta} \pm z_{\alpha/2} \mathsf{SE}(\widehat{\beta}).$

e.g., 95% CI for β :

```
0.09491 \pm 1.96 \times 0.01567 \approx (0.064, 0.126).
```

R command comfint.default() gives the Wald CIs.

Wald statistic is approx. N(0, 1) under H_0 .

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) -0.05771 0.03927 -1.469 0.142 floor 0.09491 0.01567 6.057 1.38e-09 ***

R summary output gives the Wald statistics z value for testing H₀: β = 0 and the corresponding *P*-values.

z value =
$$\frac{\texttt{Estimate}}{\texttt{Std. Error}} = \frac{\widehat{\beta}}{\texttt{SE}} = \frac{0.09491}{0.01567} = 6.057$$

• To test
$$H_0: \beta = 0.05$$
,

Wald statistic
$$z = \frac{\widehat{\beta} - 0.05}{\mathsf{SE}(\widehat{\beta})} = \frac{0.09491 - 0.05}{0.01567} \approx 2.866$$

The *P*-value is about 0.004.

Chapter 3 - 30

Likelihood Ratio Tests

To test H₀: $\beta = 0$ vs H_a: $\beta \neq 0$ $\ell_0 = \text{ max.}$ likelihood when $\beta = 0$, $\ell_1 = \text{ max.}$ likelihood over all possible β The likelihood ratio test statistic is

$$\begin{aligned} LRT &= -2\log\left(\ell_0/\ell_1\right) \\ &= -2\left[\log(\ell_0) - \log(\ell_1)\right] \\ &= -2(L_0 - L_1) \sim \chi_1^2 \quad \text{when sample size is large} \end{aligned}$$

where $L_i = \log(\ell_i).$

Example (Fatal Falls) . For identity link $\pi(x) = \alpha + \beta x$, • under H₀: $\beta = 0$, $\pi(x) = \alpha$, $L_0 = -117.9112$ • under H_a: $\beta \neq 0$, $\pi(x) = \alpha + \beta x$, $L_1 = -102.4135$ $LRT = -2(L_0 - L_1) = 30.995$, df = 1, P-value = 2.6 × 10⁻⁸ Chapter 3 - 32

Likelihood Ratio Tests in R

Remarks

The drop1() command in R can do LR tests for coefficients.

```
> drop1(ff.lin, test="Chisq")
Single term deletions
```

Model: cbind(fatal, live) ~ floor Df Deviance AIC LRT Pr(>Chi) <none> 11.037 35.959 floor 1 42.032 64.955 30.995 2.586e-08 ***

- ► For very large n, Wald and LR tests are approx. equivalent, but for small to moderate n, the LR test is more reliable and powerful.
- R does not report the maximized log-likelihood of a model but report its "*deviance*", which we will introduce in Section 3.4.3 and 5.2.2. Now just keep in mind that

Deviance = -2(max. log-likelihood) + constant

where the constant just depends on data but not the model. Thus

LR statistic = difference in deviances

Chapter 3 - 34

Chapter 3 - 33

LR Confidence Intervals

LR method also extends to CIs: $(1 - \alpha)100\%$ CI is set of β^* for which *P*-value > α in LR test of H₀: $\beta = \beta^*$. Computed by confint() function in R.

compared with Wald confidence intervals

We defer the following sections now and will come back to them later.

- Section 3.3 introduces GLMs for count data (rather than binary or binomial data), including *Poisson regression* and *negative binomial regression*. We will come back to this section when we reach Chapter 7.
- Section 3.4.3-3.4.5 introduce deviance, model comparisons, and residuals generally for all GLMs. We will discuss deviance and residuals for binary response models in Chapter 5 and how to use them to do model selection.