### 2.7 Association In Three-Way Tables

2.7.1 Partial Tables and Marginal Tables
2.7.2 Conditional Versus Marginal Associations
2.7.3 Simpson's Paradox
2.7.4 Conditional and Marginal Odds Ratios
2.7.5 Conditional Independence v.s. Marginal Independence
2.7.6 Homogeneous Association
4.3.4 The Cochran-Mantel-Haenszel Test for Conditional Indep. Mantel-Haenszel Estimate for the Common Odds Ratio

Chapter 2D-1

## Example - Kidney Stone Treatments (Cont'd)

a $2 \times 2 \times 2$ table -2 rows, 2 columns, 2 layers:
$Y=$ Outcome (response variable)
$X=$ Treatment (explanatory variable)
$Z=$ Initial size of kidney stone (control variable)

| Initial Size of |  | Outcome $(Y)$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Kidney Stone $(Z)$ | Treatment $(X)$ | Success | Failure | \% Success |
| Small | A | 81 | 6 | $93.1 \%$ |
|  | B | 234 | 36 | $86.7 \%$ |
| Large | A | 192 | 71 | $73.0 \%$ |
|  | B | 55 | 25 | $68.8 \%$ |
| Total | A | 273 | 77 | $78.0 \%$ |
|  | B | 289 | 61 | $82.6 \%$ |

## Example - Kidney Stone Treatments

Result for a study comparing 2 treatments for reducing or eliminating kidney stones is shown below.

|  | Outcome $(Y)$ |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| Treatment $(X)$ | Success | Failure | \% Success |
| A | 273 | 77 | $78 \%$ |
| B | 289 | 61 | $83 \%$ |

Here, "Success" means no stone of size $>2 \mathrm{~mm}$.

- An observational study needs to control for confounders.
- 3-way contingency tables can be used to control for a single confounder. In later chapters, we can control for more confounders by models.


## Partial Tables

The tables

| $Z=$ Small |  |  |
| :---: | :---: | :---: |
|  | Outcome |  |
| Trt | Success | Failure |
| A | 81 | 6 |
| B | 234 | 36 |


| $Z=$ Large |  |  |
| :---: | :---: | :---: |
|  | Outcome |  |
| Trt | Success | Failure |
| A | 192 | 71 |
| B | 55 | 25 |

are called partial tables. They control for $Z$ (hold it constant).
The (estimated) conditional odds ratios are:

$$
\begin{array}{ll}
Z=\text { Small }: & \widehat{\theta}_{X Y(1)}=\frac{81 \times 36}{6 \times 234} \approx 2.08 \\
Z=\text { Large }: & \widehat{\theta}_{X Y(2)}=\frac{192 \times 25}{71 \times 55} \approx 1.23
\end{array}
$$

Controlling for the initial size of kidney stone, odds of success were higher for treatment $A$ than for treatment $B$.

## Marginal Table

Adding the partial tables gives the $X Y$ marginal table, which ignores the effect of $Z$.

|  | Outcome (Y) |  |
| :---: | :---: | :---: |
| Trt $(X)$ | Success | Failure |
| A | 273 | 77 |
| B | 289 | 61 |

(estimated) marginal odds ratio

$$
=\widehat{\theta}_{X Y}=\frac{273 \times 61}{77 \times 289} \approx 0.75
$$

Ignoring the initial size of kidney stones, odds of success were lower for treatment $A$ than for treatment $B$.

Definition: Simpson's Paradox
All partial tables show reverse association from that in marginal table.

- Cause?
- Moral: can be dangerous to "collapse" contingency tables.

Chapter 2D-5

## Conditional Independence $\nRightarrow$ Marginal Independence

Conditional independence of $X$ and $Y$, given $Z$, does NOT imply marginal independence of $X$ and $Y$.

## Example.

| Clinic | Treatment | Outcome $(Y)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(Z)$ | $(X)$ | Success | Failure | $\%$ |  |  |
| 1 | A | 18 | 12 | $60 \%$ | 1.0 |  |
|  | B | 12 | 8 | $60 \%$ |  |  |
| 2 | A | 2 | 8 | $25 \%$ | 1.0 |  |
|  | B | 8 | 32 | $25 \%$ |  |  |
| Total | A | 20 | 20 | $50 \%$ | 2.0 |  |
|  | B | 20 | 40 | $33 \%$ |  |  |

Definition
$X$ and $Y$ are conditionally independent given $Z$ if they are independent in each partial table.
In a $2 \times 2 \times K$ table this means

$$
\theta_{X Y(1)}=\cdots=\theta_{X Y(K)}=1.0
$$

Chapter 2D-6

## Homogeneous Association

- Associations of $X$ and $Y$ are the same at each level of $Z$.
- In a $2 \times 2 \times K$ table this means all partial tables share a common odds ratio:

$$
\theta_{X Y(1)}=\cdots=\theta_{X Y(K)}
$$

- Conditional independence is a special case of homogeneous association.


## Understanding Homogeneous Association

Example. Suppose we want to compare the effectiveness ( $Y=S$ or $F$ ) of two treatments ( $X=A$ or $B$ ) using patients from several hospitals $(Z=1,2, \ldots, k)$. Let $\pi_{A i}$ and $\pi_{B i}$ be the prob. of success for the two treatments in Hospital $i$.

- $X$ and $Y$ are conditionally indep. if $\pi_{A i}=\pi_{B i}$ for all $i$. In this case, the two treatments are equally effective, but different hospitals can have different probability of success (due to difference in the demographics of patients or in the quality of the hospitals, etc).
- $X Y$ have homogeneous association if

$$
\frac{\pi_{A i}}{1-\pi_{A i}}=\theta \frac{\pi_{B i}}{1-\pi_{B i}} \quad \text { for some constant } \theta \text { for all } i
$$

In this case, different hospitals can have different probabilities of success, and changing the treatment from $B$ to $A$ just change the odds of success by a constant $\theta$.

Chapter 2D-9

- The "Kidney Stone Treatments" examples have illustrated
- it is not appropriate to use marginal odds ratio to examine the association of two variables $X$ and $Y$ when there is a confounding variable $Z$,
- the need to use conditional odds ratios
- Therefore, the population parameters of interest are those conditional odds ratios rather than the marginal odds ratio.
- If $X Y$ associations (odds ratios) change with $Z$, in this case, we should discuss the $X Y$ relations at each level of $Z$ by analyzing the partial tables at each level of $Z$.
- If $X Y$ associations (odds ratios) do not change too much across different levels of $Z$, we may
- estimate the common odds ratio using the Mantel-Haenszel estimate of the common odds ratio
- test the conditional independence using the Cochran-Mantel-Haenszel test


## Homogeneous Association

In a 3-way table, if $X Y$ has homogeneous association given $Z$, then so do $Y Z$ given $X$ and $X Z$ given $Y$.

\[

\]

Homogeneous $X Y$ association given $Z$ means

$$
\begin{aligned}
\theta_{X Y(1)} & =\frac{a d}{c b}=\frac{A D}{C B}=\theta_{X Y(2)} \\
\Longleftrightarrow \theta_{Y Z(1)} & =\frac{a C}{c A}=\frac{b D}{d B}=\theta_{Y Z(2)}
\end{aligned}
$$

which means homogeneous $Y Z$ association given $X$.

$$
\begin{aligned}
& \\
& \text { Chapter 2D-10 }
\end{aligned}
$$

## Example: Effect of Smoking

The following table shows the result of a survey conducted in 1972-74 cross-classifying 1314 women in the United Kingdom by their smoking status and age in 1972-1974 and their survival status 20 years later (determined by a follow-up survey 20 years later) ${ }^{1}$.

| Age | 18-34 |  | 35-54 |  | 55-64 |  | 65+ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dead | Alive | Dead | Alive | Dead | Alive | Dead | Alive |
| Smoker | 5 | 174 | 41 | 198 | 51 | 64 | 42 | 7 |
| Nonsmoker | 6 | 213 | 19 | 180 | 40 | 81 | 165 | 28 |
| Odds ratio | 1.02 |  | 1.96 |  | 1.61 |  | 1.02 |  |

In this example, the effect of smoking appears to depend on age.

- Association between smoking and survival was much stronger for middle age women (35-54 and 44-64) than young (18-34) or old ( $65+$ ) women.

[^0]
## Cochran-Mantel-Haenszel (CMH) Test of Conditional Independence

Suppose the $X Y$ partial table for $Z=k$ is

| $Z=k$ |  |  |  |
| :---: | :---: | :---: | :---: |
|  | $Y=1$ | $Y=2$ | row total |
| $X=1$ | $n_{11 k}$ | $n_{12 k}$ | $R_{1 k}$ |
| $X=2$ | $n_{21 k}$ | $n_{22 k}$ | $R_{2 k}$ |
| column total | $C_{1 k}$ | $C_{2 k}$ | $T_{k}$ |

Recall that in Fisher's exact test, under the $\mathrm{H}_{0}$ of (conditional) independence, $n_{11 k}$ has a hypergeometric distribution. It can be show that

$$
\begin{aligned}
\mathbb{E}\left[n_{11 k}\right] & =\frac{R_{1 k} C_{1 k}}{T_{k}} \\
\operatorname{Var}\left(n_{11 k}\right) & =\frac{R_{1 k} R_{2 k} C_{1 k} C_{2 k}}{T_{k}^{2}\left(T_{k}-1\right)}
\end{aligned}
$$

Chapter 2D-13

## Example: Lung Cancer and Passive Smoking

To study the effect of passive smoking and lung cancer, the 3 tables below summarize results of case-control studies from 3 countries among nonsmoking women married to smokers.

| Spouse | Japan |  | UK |  | US |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smoked | Case | Control | Case | Control | Case | Control |
| Yes | 73 | 188 | 19 | 38 | 137 | 363 |
| No | 21 | 82 | 5 | 16 | 71 | 249 |
| Odds ratio | 1.52 |  | 1.60 |  | 1.32 |  |

Though the estimated odds ratios of the 3 partial tables are all $>1$, none of them are significant by Pearson's $X^{2}$ test or Fisher's exact test. (The two-sided $P$-values of the two tests for each of the 3 tables are as follows).

| $P$-value | Japan | UK | US |
| :---: | :---: | :---: | :---: |
| Pearson $X^{2}$ | 0.14 | 0.42 | 0.09 |
| Fisher Exact | 0.15 | 0.58 | 0.10 |

## Cochran-Mantel-Haenszel (CMH) Test of Conditional Independence

For testing
$\mathrm{H}_{0}: X Y$ are conditionally independent across all levels of $Z$,
$\mathrm{H}_{\mathrm{a}}: X Y$ are not independent in at least one level of $Z$,
the Cochran-Mantel-Haenszel (CMH) statistic is

$$
\mathrm{CMH}=\frac{\text { sum of }\left(n_{11 k}-\mathbb{E}\left[n_{11 k}\right]\right) \text { over all partial tables }}{\sqrt{\text { sum of } \operatorname{Var}\left(n_{11 k}\right) \text { over all partial tables }}} .
$$

Under $\mathrm{H}_{0}$, the CMH statistic is approximately $N(0,1)$.
(Or equivalently (CMH) $)^{2}$ is approximately $\chi_{1}^{2}$.)

Chapter 2D-14

## Example: Lung Cancer and Passive Smoking

- The associations in the 3 partial tables are not significant might be due to the small sample sizes of the 3 studies
- As the 3 partial tables indicate association in the same direction $(\theta>1)$, can we combine evidence from the 3 tables and make a test on all 3 tables simultaneously?
- Simply combining 3 tables and doing Pearson's $X^{2}$ or Fisher's exact test on the combined table (marginal table) will ignore the country effect, which might be associated with both passive smoking and lung cancer
- There might be a higher percentage of people suffering from passive smoking in one country than in another.
- The prevalence of lung cancer may also change from country to country.
Ignoring the country effect might result in Simpson's paradox.
- CMH test allows us to combine evidence from the 3 tables while taking the country effect into account.


## Example: Lung Cancer and Passive Smoking (CMH-test)

| Spouse | Japan |  | UK |  |  | US |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smoked | Case Control | total | Case | Control | total | Case | Control | total |
| Yes | 73188 | 261 | 19 | 38 | 57 | 137 | 363 | 500 |
| No | 2182 | 103 | 5 | 16 | 21 | 71 | 249 | 320 |
| total | $94 \quad 270$ | 364 | 24 | 54 | 78 | 208 | 612 | 820 |
| $\mathbb{E}\left(n_{11}\right)$ | $\begin{gathered} \frac{261.94}{364} \approx 67.4 \\ \frac{261.103 .94 .270}{364^{2}(364-1)} \approx 14.2 \\ \hline \end{gathered}$ |  | $\begin{gathered} \frac{57.24}{78} \approx 17.5 \\ \frac{57.21 \cdot 24.54}{7821.78} \approx 3.3 \end{gathered}$ |  |  | $\frac{500 \cdot 208}{820} \approx 126.8$ |  |  |
| $\operatorname{Var}\left(n_{11}\right)$ |  |  | $\frac{500 \cdot 320 \cdot 208 \cdot 612}{820^{2}(820-1)} \approx 37.0$ |

To test conditional independence of passive smoking and lung cancer, the CMH statistic

$$
C M H=\frac{(73-67.4)+(19-17.5)+(137-126.8)}{\sqrt{14.2+3.3+37.0}} \approx 2.34
$$

The two-sided $P$-value is $2 P(Z>2.34) \approx 2 \%$, which shows that the association between passive smoking and lung cancer is significant.

Chapter 2D-17

## Three Way Tables in R

To enter 3-way contingency table data $(X, Y, Z)$ into R as a 3-dimensional array, we first write the cell counts as a vector in the order that
$X Y$ table for $Z=1, X Y$ table for $Z=2, \ldots$
and within each $X Y$ table, the counts are entered by column.
For the "lung cancer and passive smoking" study, we can enter the data as follows.

PSM =
array (c ( 73, 21, 188, 82, \# table for Japan
19, 5, 38, 16, \# table for UK
137, 71, 363, 249), \# table for US
$\operatorname{dim}=c(2,2,3)$,
dimnames = list(
SpouseSmoking = c("Yes", "No"),
LungCancer = c("Case", "Control"), Country = c("Japan", "UK", "US")))

Chapter 2D-18

## CMH Test in R

The R command for CHM test is mantelhaen.test()
> mantelhaen.test(PSM, correct = F)

Mantel-Haenszel chi-squared test without continuity correction
data: PSM
Mantel-Haenszel X-squared $=5.4497$, df $=1$, $p$-value $=0.01957$
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
1.0535541 .821709
sample estimates:
common odds ratio
1.385377

By default, R perform CMH test with a continuity correction. To go without the correction, we need to add correct=F.
R use $(\mathrm{CHM})^{2}=(2.34)^{2}=5.4756$ as the test statistic, which has a $\chi^{2}$ distribution

Chapter 2D-20

## CMH Test in R

By default, R will conduct two-sided tests.
R can also perform one-sided CHM test.
mantelhaen.test(PSM, correct = F, alternative = "greater")
mantelhaen.test(PSM, correct = F, alternative = "less")

## Remarks About CMH Test

- The formula for the CMH statistic is given using the $n_{11}$ cell in the partial tables. In fact, CMH statistic can be calculated using any of the other three cells: $n_{21}, n_{21}$, or $n_{22}$. The value of CMH statistic does not depend on the choice of which cell to use, which makes sense any of them will determine the value of the other three.
- CMH test can be applied to both prospective and retrospective study.
- The textbook introduces CMH test in Section 4.3.4 along with two other tests of conditional independence from logistic models.
- The normal approximation for CMH statistic requires only overall sample size (sum over all tables) to be big enough.
- CMH test can be used when there are big numbers of partial tables with only a few observations each, provided the total number of observations is big enough.
- The number of observations in a partial table can be as small as 2 , but the marginal counts ( $R_{1}, R_{2}, C_{1}, C_{2}$ ) must be non-zero. Otherwise the marginal counts will completely determines the cell counts, making
$n_{11}-\mathbb{E}\left(n_{11}\right)=\operatorname{Var}\left(n_{11}\right)=0$, and the partial table will have no contribution to the CMH statistic.


## After Rejecting the $\mathrm{H}_{0}$ of Conditional Independence. . .

When the $\mathrm{H}_{0}$ of $X Y$ conditional independence is rejected, we may examine the estimated odds ratios in the partial tables.

- If estimated odds ratios varies a lot (several times larger) from table to table, i.e, no homogeneous $X Y$ association, this means how $X$ is associated $Y$ depends on $Z$. We'll have to describe $X Y$ association separately for each levels of $Z$.
- If estimated odds ratios do not change much from table to table, we might suspect if $X Y$ is homogeneously associated and want to estimate the common odds ratio.
- In fact, we can test homogeneous association (in Chapter 4).


## Estimate of the Common Odds Ratio

Suppose the $k$ th $X Y$ partial table is

| $Z=k$ |  |  |  |
| :---: | :---: | :---: | :---: |
|  | $Y=1$ | $Y=2$ | row total |
| $X=1$ | $n_{11 k}$ | $n_{12 k}$ | $R_{1 k}$ |
| $X=2$ | $n_{21 k}$ | $n_{22 k}$ | $R_{2 k}$ |
| column total | $C_{1 k}$ | $C_{2 k}$ | $T_{k}$ |

Mantel-Haenszel's estimate of the common odds ratio from several tables

$$
\widehat{\theta}_{M H}=\frac{\text { Sum of } n_{11 k} n_{22 k} / T_{k} \text { over all partial tables }}{\text { Sum of } n_{12 k} n_{21 k} / T_{k} \text { over all partial tables }}
$$

Chapter 2D-25

Confidence Interval for the Common Odds Ratio (in R)
In fact, the R function mantelhaen.test() that performs the CHM test also reports the MH estimate for the common odds ratio (1.385 as follows, which agrees with our calculation) and provides a confidence interval for it ( 1.05 to 1.82 ). The formula for the Cl is complex and will not be described here.
> mantelhaen.test(PSM, correct = F)

> Mantel-Haenszel chi-squared test without continuity correction
data: PSM
Mantel-Haenszel X-squared $=5.4497, \mathrm{df}=1$, p -value $=0.01957$
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
1.0535541 .821709
sample estimates:
common odds ratio
1.385377

With 95\% confidence, the odds of getting lung cancer for nonsmoking wives were about 1.05 to 1.82 times higher if their husbands smoked.

| Spouse | Japan |  |  | UK |  |  | US |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smoked | Case | Control | total | Case | Control | total | Case | Control | total |
| Yes | 73 | 188 | 261 | 19 | 38 | 57 | 137 | 363 | 500 |
| No | 21 | 82 | 103 | 5 | 16 | 21 | 71 | 249 | 320 |
| total | 94 | 270 | 364 | 24 | 54 | 78 | 208 | 612 | 820 |

Mantel-Haenszel's estimate of the common odds ratio is

$$
\widehat{\theta}_{M H}=\frac{(73 \cdot 82) / 364+(19 \cdot 16) / 78+(137 \cdot 249) / 820}{(188 \cdot 21) / 364+(38 \cdot 5) / 78+(363 \cdot 71) / 820} \approx 1.4
$$

The odds of getting lung cancer for nonsmoking wives were about 1.4 times higher if their husbands smoked.


[^0]:    ${ }^{1}$ Source: Example 1 in p. 90 and Example 16 on p. 134 of the book Statistics - The Art and Science of Learning from Data (3rd) by Agresti and Franklin

    Chapter 2D-12

