STAT 224 Lecture 18
Ridge and Lasso Regressions

Yibi Huang



Bias-Variance Tradeoff

In Chapter 11 Variable Selections (L17.pdf), we showed that

MSE()) = E[(3; - 5’
= E|(B; - EIB;1*| + (EIBj1 - B,

= (Variance of 3;) + (Bias of 3,)*

e OLS estimates for ;’s are unbiased
e However, the variances of OLS estimates [Sj can be large
when
e the number of predictors is large, or when
e the predictors are multicollinear
e Is there a way to reduce the variance of 3;, possibly at the
cost of increased bias?



Shrinkage Estimates (aka. Regularization)

e OLS estimates ,3,- have no upper bound, and hence is
susceptible to very high variance

e By shrinking the OLS estimates ,[?,- toward 0, we can often
substantially reduce the variance at the cost of a negligible
increase in bias, substantially improving the accuracy of
prediction for future observations

e Shrinkage is called “Regularization” in Machine Learning

e Two common shrinkage estimates are

e Ridge regression
e Lasso (Least Absolute Shrinkage and Selection Operator)



OLS v.s. Ridge v.s. Lasso

Ordinary Least Square minimizes:
n
Z(yi —Bo=Bixin — ... = Bpxip)®
i=1
Ridge Regression minimizes:

n p
Z(y,- —Bo—Pixi — ... = Bpxip)*  with the constraint Zﬁ? <t
i=1 =

Lasso mininizes:

n p
Z(yi —Bo—Pixi — ... = Bpxip)*  with the constraint Z |B, | <t
i=1 =1

Note there is no constraint placed on the magnitude of the
intercept .



Geometric lllustration of Ridge and Lasso Estimates

B2 B2

e Ellipses are the contours of 3, (v; = Bo — Bixi1 — Baxn)?, which
centered at the OLS estimates (81.0.s, B2.01s)-

o (Left) Ellipse intersects the circle of radius ¢ at the Ridge estimate.

o (Right) Ellipse intersects the square (|3)] + |3,| < 1) at the Lasso
estimate




Equivalent Forms of Ridge and Lasso

By the Lagrange multiplier methods, minimizing
S i —Bo - Bixin — ... — Bpxip)? under the constraints

P A p A
Zj:lﬁjst or Zj:] |’8/|St
is equivalent to
Ridge Regression, minimizing
n A P
i = Bo = Prxit — ... = Bpxip)* + ﬂZﬂ?
= J’:]

i=1

Lasso, minimizing:

i@i ~Bo = Bixit — ... = Bpxip)* + ﬂi |,3J|
i=1 J=1



Tuning Parameter 1 or ¢

Both Ridge and Lasso have a tunning parameter A (or ¢)

e The Ridge estimates f3; 1 riage’s and Lasso estimates f3; 1. 1asso
depend on the value of A (or ¢)

A (or 1) is the shrinkage parameter that controls the size of the
coefficients

e As 1| Oort T oo, the Ridge and Lasso estimates become the
OLS estimates

e As 1 T o ort | 0, Ridge and Lasso estimates shrink to 0
(intercept only model)



Ridge and Lasso Estimates Are NOT Scale Invariant

Say we change the unit of a predictor X; from inches to feet
X;. =X;/12

its coefficient would be scaled as
B = 12;

so that the product B’I.X;. = B;X; stays unchanged.

However, the Ridge and Lasso estimates are not scaled
accordingly

N . N .
B aridge  12BjaRidges  Bjarasso  12BjaLasso

since large B’s are penalized



Must Standardize Predictors Before Applying Ridge and Lasso

As Ridge and Lasso estimates are not scale invariant, by
convention, we standardize all predictors

Xi-X;
Zi=———, j=1,...,p,
Sj
where s; is the sample SD of X;. before applying Ridge and Lasso.
That is, all predictors X’s in Ridge and Lasso regression are
assumed to have mean 0 and variance 1.



Ridge Estimates Are Biased but Have Smaller Variance

e Recall OLS estimate for B = (8o, 51, - .-, Bp)! is XIX)'XTY
e One can show Ridge estimate for Bis (X’ X + AI,) 'X7Y
e Keep in mind that X is standardized
that each predictor has mean 0 and variance 1

Expected value for the Ridge estimate for # can be shown to
be

I, + XXy 'g£B

If all predictors are standardized and uncorrelated,

,A,Ri = 7T PJ,0OL
ﬁj, ,Ridge 1+/lﬁ]’0 S

Smaller variance than OLS estimates,
Variance of 3; 1 riage is much smaller than 3 ors when the
data have multicollinearity problem



Properties of Lasso Estimates

No close form formula for the Lasso estimates

Also biased (toward 0)

Smaller variance than OLS estimates

NOT perform as well as Ridge when data have
multicollinearity problem

Greatest advantage of Lasso: Sparsity (See next page)



Sparsity of Lasso Estimates

e In a model with many predictors
Y=,3() +,31X1 +...+ﬁpo+8

we may believe many of the 8;’s are actually 0.
e Hence, we seek a set of sparse solutions

e Lasso estimates will set some coefficients exactly equal to 0
when A is large (or when ¢ is small)

So the LASSO will perform model selection for us!



How to Choose 1?

e We need a disciplined way of choosing 1

e Obviously want to choose A that minimizes the mean squared
error

e Issue is part of the bigger problem of variable selection



Choosing 1 Using Cross-Validation

e If we have a good model, it should predict well when we have
new data

e Data are hence split into 2 parts — training data and test
data

e For each A, use the training set to fit (train) a model and than
use the model to predict values in the test set and compute
the rooted mean square error (RMSE)

Z (vi —3i)*/n, where n = size of the test data
test data

e Choose the A that has the smallest RMSE
e The training set and test set should be chosen randomly
e May split the whole data into several different training set and
test set and compute the mean of the RMSE for different splits



Ridge and Lasso Regression in R




Ridge Regression in R

Recall the Equal Educational Opportunity (EEQO) Data in the slides
L16.pdf.

Data: http://www.stat.uchicago.edu/~yibi/s224/data/P236.txt

e ACHV: Student achievement index (higher values are better)
e FAM: Faculty credentials index

e PEER: the influence of their peer group in the school

e SCHOOL: School facility/resource index

EEO = read.table("P236.txt", h=T)


http://www.stat.uchicago.edu/~yibi/s224/data/P236.txt

Ridge Regression in R

The 1m.ridge () function in the MASS library can perform the
Ridge Regression.

The lambda (1) value(s) must be specified. The following gives the
Ridge estimates for the intercept gy and the coefficients 3; for FAM,
PEER, and SCHOOL for A = 1, 5, and 10 respectively.

library (MASS)

Im.ridge(ACHV ~ FAM + PEER + SCHOOL, EEO, c(1,5,10))
FAM PEER SCHOOL

1 -0.04055 0.3769 1.3205 -0.62767

5 -0.02708 0.2318 0.7230 0.04196

10 -0.02355 0.2384 0.5568 0.16240



We can try more values of 1lambda and plot how the coefficients
shrink as lambda grows larger:

EEO.rg = Im.ridge(ACHV ~ FAM + PEER + SCHOOL, data=EEO,
lambda=10"seq(1.5, -2, by = -.1))
par(mai=c(0.6,0.6,0.01,0.01), mgp=c(2,0.7,0))
plot (EEO.rg)
matplot (EEO.rg$lambda, coef(EEO.rg), type = "1", lwd=2,
xlab = "lambda", ylab = "coefficients")
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Selecting 1 Using Cross-Validation

For each 4, the Im.ridge () function computes the generalized
cross-validation (GCV), similar to cross-validation using RMSE
based on training data and test data.

par( c(0.6,0.6,0.01,0.01), c(2,0.7,0))
plot(EEO.rg$lambda, EEO.rg$GCV, 1",
"lambda", "GCV Score™)
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The best 1ambda (among those lambda’s specified in EEO.rg) can
be selected automatically to be 19.95.

select (EEO.rg)

modified HKB estimator is 0.3786
modified L-W estimator is 4.082
smallest value of GCV at 19.95



Setting lambda at the optimal value 19.95 that minimize the GCV,
the Ridge estimates for coefficients of the EEO data can be
obtained as follows.

Im.ridge (ACHV ~ FAM + PEER + SCHOOL, data-EEQ, lambda=19.95)

FAM PEER  SCHOOL
-0.02034 0.24403 0.44264 0.21867

The Ridge estimates of the 3 coefficients are all positive, which
makes more sense than the OLS estimates below that asserts
better SCHOOL facility has a negative impact on students’
performance.

Im(ACHV ~ FAM + PEER + SCHOOL, data=EEO)$coef

(Intercept) FAM PEER SCHOOL
-0.06996 1.10126 2.32206 -2.28100

The 3 Ridge estimates all have smaller magnitudes than
corresponding OLS estimates.
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Example (Meat Spectroscopy Data)

Data: 215 samples of finely chopped pure meat (Ch11 in Linear Models
with R (2014) by J Faraway)

A Tecator near-infrared spectrometer was used to measure the
spectrum of light transmitted through each sample of meat. The
spectrum gives the absorbance at 100 wavelengths in the range
850-1050 nm. Since determining the fat content via analytical
chemistry is time consuming, we would like to build a model to
predict the fat content of new samples using the 100 absorbances
which can be measured more easily.

meatspec = read.table(

"http://www.stat.uchicago.edu/~yibi/s224/data/meatspec.txt",
header=TRUE)

The first 100 variables are the 100 absorbances of different wave
lengths. The 101th variable fat is the fat content determined via
analytical chemistry.
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The meatspec data contain n = 215 observations but have p = 100
predictors.

Lasso is most useful for problems with much larger numbers of
predictors like meatspec.

The lars() function in the lars library (installation required) can
perform the Lasso Regression.

We first split the meatspec data into training data and test data

trainmeat = meatspec[1:172,]
testmeat = meatspec[173:215,]

22



We compute the Lasso fit for the training data:

trainy = trainmeat$fat

trainx = as.matrix(trainmeat[,-101])
library(lars)

lassomod = lars(trainx,trainy)

Below is the plot of the estimated coefficients as a function of ¢.

plot(lassomod)
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par( c(0.6,0.6,0.01,0.01), c(2,0.7,0))
set.seed(123) # you can change the value within ‘set.seed()’
cvout = cv.lars(trainx, trainy)

50 100

Cross—Validated MSE

0

I I I I I I
00 02 04 06 08 1.C

Fraction of final L1 norm

cvout$index[which.min(cvout$cv)]
[1] 0.0101

The best t selected by cross-validation is = 0.0101.
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Setting ¢ at the optimal value 0.0101 determined by
cross-validation, the Lasso estimates for coefficients of the meat
data can be obtained as follows.

predlars = predict(lassomod, s=0.0101, type="coef", mode="fraction")

predlars$coef
V1 V2 V3 V4 V5 Ve V7 V8
0.00 -137.11 0.00 0.00 0.00 0.00 0.00 0.00
V9 V10 V11 V12 V13 V14 V15 V16
0.00 0.00 0.00 249.46 0.00 0.00 0.00 0.00
V17 V18 V19 V20 V21 V22 V23 V24
0.00 0.00 0.00 0.00 0.00 0.00 0.00 -266.12
V25 V26 V27 V28 V29 V30 V31 V32
0.00 0.00 0.00 0.00 0.00 1827.73 0.00 0.00
V33 V34 V35 V36 V37 V38 V39 V40
0.00 -4255.89 0.00 0.00 1931.28 1383.86 0.00 0.00
V41l V42 V43 V44 V45 V46 Va7 V48
0.00 -1202.58 0.00 0.00 867.18 324.93 131.61 0.00
V49 V50 V51 V52 V53 V54 V55 V56
-1102.57 -15.74 0.00 0.00 0.00 189.47 0.00 %5®®

V57 V58 V59 V60 V61l V62 V63 Vo4



We can see that only 20 coefficients have non-zero Lasso

estimates.

sum(predlars$coef != 0)
[1] 20

Here are the 20 variables non-zero estimates.

predlars$coef[predlars$coef != 0]

V2 V12 V24 V30 V34
-137.11 249.46 -266.12 1827.73 -4255.89
V45 V46 V47 V49 V50
867.18  324.93 131.61 -1102.57 -15.74
V79 V89 V96 V100

80.76 27.26  -96.87 81.65

V37
1931.28
V54
189.47

V38 V42
1383.86 -1202.58
V61l V71
205.20 -223.67
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