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Variable (Model) Selection

Thus far. . .

• predictors identified in advance

Reality. . .

• Many predictors
• Several candidate models

• all may pass the usual diagnostics and tests

• How do we pick the best model?

What is variable (model) selection?

• the process of choosing a “best” subset of available
predictors.

• there might not be a single “best” subset.
• We do want a model we can interpret or justify with respect to

the questions of interest. 2



Questions of Variable Selection

1. Which variables to include? (X1, X2, . . .).
2. What form should these variables take?

• X2
1 , log(X2), 1/X3, BMI = Weight/(Height)2 . . ..

3. Should we include interaction terms, like x1*x2, X1/(X1 + X2)?

• Ideally, we answer these questions simultaneously.
• Instead, we will focus on the first question.
• We can then use variable transformations as needed.
• It would be impossible to compare all possible forms of all

possible variables.
• With n observations & p available predictors

there are p predictors +
(

p
2

)
=

p(p−1)
2 possible interactions +

numerous possible transformations
Impossible to consider all of them
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What Happens if We Miss
Necessary Predictors or Include
Unnecessary Predictors



Mean Squared Error

The Mean Squared Error (MSE) of β̂ is defined to be

MSE(β̂) = E
[
(β̂ − β)2

]
Warning: This MSE is different from the MSE = SSE/dfE of a MLR
model.

One can show that MSE = Variance +(Bias)2

E
[
(β̂ − β)2

]
= E
[(
β̂ − E[β̂] + E[β̂] − β

)2]
= E
[
(β̂ − E[β̂])2 + 2(β̂ − E[β̂])(E[β̂] − β) + (E[β̂] − β)2

]
= E
[
(β̂ − E[β̂])2

]︸            ︷︷            ︸
Variance

+2 E
[
β̂ − E[β̂]

]︸        ︷︷        ︸
=0

(
E[β̂] − β

)
+ (E[β̂] − β)2︸       ︷︷       ︸

(Bias)2

=
(
Variance of β̂

)
+
(
Bias of β̂

)2
where (Bias of β̂) is defined as E[β̂] − β, which might not be 0 if E[β̂] , β
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Notations

Suppose the “correct” model contains q predictors

yi =

correct model︷                                                            ︸︸                                                            ︷
β0 + β1xi1 + . . . + βpxip︸                        ︷︷                        ︸

retained

+ βp+1xi,p+1 + . . . + βqxiq︸                        ︷︷                        ︸
omitted

+εi

• Let β̂∗j be the estimated coefficients and ŷ∗i be the predicted
values for the correct (big) model

• Let β̂ j be the estimated coefficients and ŷi be the predicted
values for the smaller model that retains only the first p
predictors (p < q)

yi = β0 + β1xi1 + . . . + βpxip + εi
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What Happens if We Miss Necessary Predictors?

Gain: Smaller Variance

• Var(β̂∗j) ≥ Var(β̂ j), for j = 0, 1, . . . , p.
• Deleting variables cannot increase the variance.

Loss: Biased Estimates

• Bias = E[β̂] − β
• Bias = 0 if the β j’s of the omitted X j’s are all 0 or if the

predictors are uncorrelated
• Bias is small if β j of the omitted X j’s are small (relative to their

SDs)

Variance-Bias Tradeoff: The smaller model might have smaller
MSE if the increment in the (Bias)2 is less than the reduction in
variance
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What Happens if We Miss Necessary Predictors?

Effect of deleting predictors on the prediction of Y is similar

• the smaller model has smaller variance Var(ŷ∗i ) ≥ Var(ŷi) but
greater bias

• MSE will decrease for the smaller model if the increment in
the (Bias)2 is less than the reduction in variance

• The best models will keep the important variables —-
those with high

∣∣∣β j
∣∣∣.
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What Happens if We Include Unnecessary Predictors?

yi =

bigger model︷                                                         ︸︸                                                         ︷
β0 + β1xi1 + . . . + βpxip︸                        ︷︷                        ︸

necessary

+ βpxi,p+1 + . . . + βqxiq︸                     ︷︷                     ︸
=0, redudant

+εi

If some X j’s have coefficients β j’s equal to 0, but we include them
in the model,

• We gain nothing in the precision in estimating β’s and
predicting y

• The variance in estimation and prediction will increase
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Uses of Regression Models



Model Selection Criteria (Model Evaluation)

The way we evaluate a model depends on what we hope to
achieved with our model:

• Description
• Prediction
• Control

In many cases, these uses overlap.

There might not be a single best model
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Goal 1: Description

• Goal: To describe a given process or understand and model
the variation in a complex interacting system.

• Interpretability: Lots of thinking required about which variables
are important

• Two conflicting requirements:
1. Account for as much of the variation as possible;
2. The principle of parsimony;

Understanding and interpretation are easier with fewer
variables.

• Strategy: Choose the smallest set of variables that accounts
for the largest percentage of variation in the response.
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Goal 2: Prediction

• Goal: To use the patterns in our current data set to estimate
the mean of future response or to predict a future value.

• This is also called forecasting. The focus is on applying
knowledge to observations not in the current data.

• Strategy: Minimize the MSE of the estimation or prediction

MSE(ŷ) = E
[
(ŷ − E(y|x))2

]
or MSE(ŷ) = E

[
(ŷ − y)2

]
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Goal 3: Control

• Goal: To manipulate the response by altering some of the
predictor variables.

• Strategy: Minimize the MSE of β̂ j

MSE(β̂) = E
[
(β̂ − β)2

]
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Criteria for Evaluating Models



Summary of Model Comparison Methods

Nested models

• F-test (can provide P-values)

Any two models with the same response (no P-values)

• MSE (Mean Squared Error = SSE/(n − p − 1))
• AIC (Akaike Information Criterion)
• BIC (Bayesian Information Criterion)
• Mallow’s Cp (has fallen out of favor)

Any two models with the same response (but possibly differently
transformed)

• adjusted R2
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Information Criteria

Both Akaike and Bayesian Information Criteria
reward small variance (SSEp/n small) and penalize larger models (p
large).

AIC = n loge(SSEp/n) + 2p

BIC = n loge(SSEp/n) + p loge(n)

• CAUTION: For AIC, BIC, and Cp,
p = number of parameters (including the intercept).
different from our usual meaning of the letter p (= # of predictors).

• Smaller AIC/BIC is better
• Models with AIC differ < 2 should be considered equally adequate.
• Similarly, models with BIC differ ≤ 2 are considered equally good
• BIC penalty for larger models is more severe

• p loge(n) > 2p (whenever n > 8)
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Variable Selection Procedures



Searching Over All Possible Subsets (1)

The most direct and ideal approach is to examine all possible
subsets of potential predictors.

What are “all possible subsets”?

• e.g., if there are 3 potential predictors: X1, X2, and X3, the
models we could consider include

0 predictor 1 predictor 2 predictors 3 predictors
• Y ∼ 1 • Y ∼ X1 • Y ∼ X1 + X2 • Y ∼ X1 + X2 + X3

• Y ∼ X2 • Y ∼ X1 + X3
• Y ∼ X3 • Y ∼ X2 + X3

With q possible predictors X1, X2, . . . , Xq, there are

2 × 2 × . . . × 2︸            ︷︷            ︸
q times

= 2q

subsets of {X1, X2, . . . , Xq} as each Xi can be included or not
included in the model. There would be 2q possible models
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Searching Over All Possible Subsets (2)

• If q = 20, there are 220 > 1 million candidate models
• If q = 30, there are 230 > 1 billion candidate models

not practical to examine all of them unless q is quite small.

If it’s possible to search over all possible subsets, then a good
strategy is

1. Choose the best models in each class of p-term models, for
p = 0, 1, . . . , q

2. Analyze these best models more closely, including diagnostic
plots, possible transformations, etc.

3. Select the best model(s) (including transformations) by
comparing both diagnostics and scores.

16



Stepwise Precedures

As it’s not practical to search all possible subsets when q is large,
here are a few commonly used algorithms aimed to find the “best”
model without look at all possible subsets

• Forward selection (FS)
• Backward elimination (BE)
• Stepwise selection (SW)
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Forward Selection (FS)

The Forward Selection algorithm consider all candidate subsets
consisting of one additional term beyond the current subset

1. It begins with an intercept-only model.
2. At each iteration, add the predictor with the smallest P-value

and then fit the new model
3. Stop if:

• The new selected variable is not significant, or
• All variables have been selected (all variables added). 4

Otherwise, fit the new model with the new added variable, and
go to Step 2

The FS algorithm considers at most

q + (q − 1) + · · · + 2 + 1 = q(q + 1)/2

subsets, not all 2q possible subsets.
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Backward Elimination (BE)

1. The Backward Elimination (BE) algorithm begins with the
full set of variables.

2. Eliminate the least significant variable (the one with the
largest P-value)

3. Stop if:
• All variables are significant, or
• All variables have been eliminated (intercept-only model).

4. Otherwise, eliminate the least significant variable and go to
Step 2.

The BE algorithm considers at most

q + (q − 1) + · · · + 2 + 1 = q(q + 1)/2

subsets, not all 2q possible subsets.
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Stepwise Selection (SW)

1. At each iteration, the Stepwise Selection (SW) algorithm
consider all models obtained by either adding or deleting one
term to or from the current model.

2. At each iteration, choose the model with the lowest AIC or BIC
3. Stop if the model with the lowest AIC/BIC is the current model
4. Otherwise, let the model with the lowest AIC/BIC be the new

current model and then go back to Step 1

Using the SW algorithm, a term added to a model might be
removed at a later step
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FS, BE, SW Algorithms with AIC and BIC

• Instead of using P-values, we can use scoring methods like
AIC and BIC.

• At any iteration, compare models based on the chosen
scoring method.

• Among the models we are considering, we choose the model
with the lowest AIC (or BIC).

• We stop the procedure when no candidates reduce the score.
• The major difference is that we are not judging variables

based on significance levels, but only on the basis of how they
affect the score.
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Cautions About the FS, BE, SW Algorithms

• The indicator variables of a categorical predictor should be
included or removed altogether
• better using AIC/BIC rather than P-values since

adding/removing a categorical predictor may involve more than
1 parameter but a numerical predictor involves just 1
parameter

• May simplify a categorical predictor by merging some
categories

• If the possible pool of model terms include interactions, note
• an interaction is never added unless all the lower order effects

in the interaction are already included.
• if an interaction is in the current model, none of its component

variables or lower order interaction should be removed
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Example: Presidential Election Data (p.160)

Data: http://www.stat.uchicago.edu/~yibi/s224/data/P160.txt

Description of the variables on p.161 of the textbook

• V: Proportion of votes to the Democrat candidate out of the total
votes to the Dem + Rep candidates (i.e., votes to the 3rd or other
candidates are not included)

• I: 1 if the incumbent is a Democrat at the time of the election, −1 if
the incumbent is a Republican

• D: Democrat incumbent?
• D = 1 if the Democrat candidate is incumbent
• D = −1 if the Republican candidate is incumbent
• D = 0 if neither candidate is incumbent

• W: war time election? (1 = Yes, 0 = No)
• G: GDP growth rate in election year
• P: (absolute) GDP deflator growth rate
• N: number of quarters in which GDP growth rate > 3.2% in the

previous 4 years 23

http://www.stat.uchicago.edu/~yibi/s224/data/P160.txt


p160 = read.table("P160.txt", h=T)

See the file L17_example.pdf
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Final Remarks about FS, BE, Stepwise Methods

• These methods should NOT be used mechanically:
• Do chosen variables make sense according to domain-specific

knowledge?
• Do the diagnostic plots indicate that model assumptions are

valid?
• Be open to other models that may be approximately as

adequate.

• The order in which we add/remove variables do not indicate
relative importance.

• These methods may not give the “best” model
• All three methods usually give similar results for non-collinear

data.
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Problem & Goals

• When we have many predictors (with many possible
interactions), it can be difficult to find a good model.

• Which main effects do we include?
• Which interactions do we include?
• Model selection procedures try to simplify / automate this task.
• Election data has 26 = 64 different models with just main

effects!
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General comments

• This is generally an “unsolved” problem in statistics: there are
no magic procedures to get you the “best model.”

• Many machine learning methods look for good “sparse”
models: selecting a “sparse” model.

• “Machine learning” often work with very many predictors.
• Our model selection problem is generally at a much smaller

scale than “data mining” problems.
• Still, it is a hard problem.
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