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Predictors of an MLR Model Cannot Be Linearly Dependent

MLR requires predictors to be linearly independent, i.e., no
predictor can be expressed as a linear combination of others

• Ex: X1 = # of undergrads, X2 =# of grads, X3 = # of students,
then X1, X2, X3 are linearly dependent since X1 + X2 = X3

No unique LS estimates for coefficients if predictors are linearly
dependent

• Ex. if X1 + X2 = X3, then in the model

Y = β0 + β1X1 + β2X2 + β3X3 + ε

= β0 + β1X1 + β2X2 + β3(X1 + X2) + ε

= β0 + (β1 + β3)X1 + (β2 + β3)X2 + ε

the coefficients (β0, β1, β2, β3) and (β0, β
′
1, β
′
2, β
′
3) give identical

mean of Y if β′1 = β1 + β3, β′2 = β2 + β3, β′3 = 0.
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The Problem of Multicollinearity (MC)

• Multicollinearity (MC) means predictors in an MLR model
have a close-to-exact linear relationship, i.e., predictors are
nearly linearly dependent

• When MC problem exists, the LS estimates for β j’s exists but
would have large variability.

• Recall We interpret β̂ j as the mean response change when X j

increases by one unit holding all other predictors fixed If
predictors are strongly correlated, we might not be able to
alter X j while holding other predictors fixed.
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Equal Educational Opportunity
(EEO) Data



Ex: Equal Educational Opportunity (EEO) Data

Data: http://www.stat.uchicago.edu/~yibi/s224/data/P236.txt

To examine the existence (or lack) of equal educational
opportunities in public educational institutions, the following
variables were measured for 70 schools selected at random in
1965.

• ACHV: Student achievement index (higher values are better)
• FAM: Faculty credentials index
• PEER: the influence of their peer group in the school
• SCHOOL: School facility/resource index

Goal: to identify important determinants of student achievement

EEO = read.table("P236.txt", h=T)
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ACHV = β0 + β1 · FAM + β2 · PEER + β3 · SCHOOL + ε.

summary(lm(ACHV ~ FAM + PEER + SCHOOL, data=EEO))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.06996 0.25064 -0.279 0.781

FAM 1.10126 1.41056 0.781 0.438

PEER 2.32206 1.48129 1.568 0.122

SCHOOL -2.28100 2.22045 -1.027 0.308

Residual standard error: 2.07 on 66 degrees of freedom

Multiple R-squared: 0.2063, Adjusted R-squared: 0.1702

F-statistic: 5.717 on 3 and 66 DF, p-value: 0.001535

• None of the 3 predictors is significant but the overall model
F-statistic is significant (i.e., at least one of the 3 predictor is
significant)

• The coefficient of SCHOOL is negative!
Normally, we expect higher student achievement if schools
have more resources.
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All Residual Plots Look Fine
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All 3 Predictors Are Highly Correlated!
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All 3 Predictors Are Highly Correlated!

• Correlations between the 3 predictors are extremely high!
• Knowing anyone of 3 predictors, we can predict the other 2

very accurately.
• So it’s almost like we have only one predictor.

Only 1 of the 3 predictors is really needed.
However, multicollinearity prevents us from identifying the
important predictors
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Look! FAM, PEER, and SCHOOL are all significant if only one of them
is included in the model.

summary(lm(ACHV ~ FAM, data=EEO))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.02427 0.2486 -0.09761 0.922526

FAM 0.88010 0.2310 3.81036 0.000301

summary(lm(ACHV ~ PEER, data=EEO))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.03087 0.2460 -0.1255 0.900525

PEER 1.08090 0.2676 4.0387 0.000139

summary(lm(ACHV ~ SCHOOL, data=EEO))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.01043 0.2487 -0.04194 0.9666696

SCHOOL 0.92834 0.2446 3.79540 0.0003163

The multiple R2 for the 3 models above are 0.1759, 0.1935, and
0.1748 respectively, all close to the multiple R2 0.2063 of the model
including all 3 predictors.
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lmFPS = lm(ACHV ~ FAM+PEER+SCHOOL, data=EEO)

lmF = lm(ACHV ~ FAM, data=EEO)

lmP = lm(ACHV ~ PEER, data=EEO)

lmS = lm(ACHV ~ SCHOOL, data=EEO)

anova(lmF, lmFPS)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 68 294

2 66 283 2 10.8 1.26 0.29

anova(lmP, lmFPS)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 68 287

2 66 283 2 4.56 0.53 0.59

anova(lmS, lmFPS)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 68 294

2 66 283 2 11.2 1.31 0.28

All 3 single-predictor models fit the data nearly as well as the model

including all 3 predictors. Cannot tell which predictor is more important. 10



Summary: Effects of Multicollinear Data

• Trouble in identifying important predictors
• Estimates are very sensitive to what other variables exist in

the model,
• the estimated coefficient of SCHOOL changes from −2.281 to

0.928 when FAM and PEER is removed from the model.

lm(ACHV ~ FAM+PEER+SCHOOL, data=EEO)$coef

(Intercept) FAM PEER SCHOOL

-0.06996 1.10126 2.32206 -2.28100

lm(ACHV ~ SCHOOL, data=EEO)$coef

(Intercept) SCHOOL

-0.01043 0.92834

• Estimated coefficients are very sensitive to small changes in
data. See the example on the next page.
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If the value of SCHOOL of the
28th school is decreased by 0.5
from −1.713 to −2.213,
observe the estimates for β’s
are changed drastically!
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EEO.new = EEO

EEO.new$SCHOOL[28] = EEO$SCHOOL[28] - 0.5

lm(ACHV ~ FAM+PEER+SCHOOL, data=EEO.new)$coef

(Intercept) FAM PEER SCHOOL

-0.02081 -0.28845 0.94995 0.41394

lm(ACHV ~ FAM+PEER+SCHOOL, data=EEO)$coef # original estimates

(Intercept) FAM PEER SCHOOL

-0.06996 1.10126 2.32206 -2.28100
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Why Multicollinearity Making Predictors Insignificant?

In Slides L02.pdf, we said the LS estimate β̂1 for FAM in the MLR
model

ACHV = β0 + β1 FAM + β2 PEER + β3 SCHOOL + ε

would be identical to the slope for the SLR model below

1. Regress ACHV on PEER and SCHOOL
2. Regress FAM on PEER and SCHOOL
3. Fit a SLR model using the residuals from Step 1 as the

response and the residuals from Step 2 as the predictor.

Recall in SLR, s.e.(̂β1) = σ̂/
√∑

i(xi − x̄)2 is inversely proportional
to the SD of the predictor.

When FAM is highly-collinear with PEER and SCHOOL, the residuals
in Step 2 would be nearly 0, and hence the SD ≈ 0 as well.
So s.e.(̂β1) would be huge⇒ small t-value⇒ insignificant predictor 13



library(car)

Loading required package: carData

avPlots(lm(ACHV ~ FAM+PEER+SCHOOL, data=EEO), "FAM")
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Missing Data Viewpoint of Multicollinearity

• To examine the effect of FAM on ACHV after accounting for
PEER and SCHOOL, one need to fix the level of PEER and
SCHOOL and the vary FAM, and see how ACHV changes.

• In other words, we need observations with similar values of
PEER and SCHOOL but different FAM.

• However, as the 3 predictors are highly collinear, once PEER
and SCHOOL are fixed, FAM is nearly completely determined.
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Missing Data Viewpoint of Multicollinearity

We can divide the 3-dim space of our predictors into 8 regions,
based on having high/low values for each variable.

Combination FAM PEER SCHOOL
1 + + +

2 + + −

3 + − +

4 − + +

5 + − −

6 − + −

7 − − +

8 − − −

• To completely understand the process, we need data from all
eight combinations.

• But we only have (+,+,+) and (−,−,−) in our data.
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A Solution to Tackle Multicollinearity

Problem: We do not have the necessary diversity of data to
separate the effects of FAM, PEER, and SCHOOL.

• One solution to tackle multicollinearity is to obtain more data
with the missing combinations of predictors

• Better to taking to obtain more combinations when the data
are collected, though not always possible

• Moreover, obtaining more data is not always possible due to
limitations on time or money

• Sometimes such observations doesn’t exist
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Inherent Multicollinearity

• Sometimes, MC is an inherent characteristic of the variables
being studied.

• FAM, PEER, and SCHOOL may only exist in the population in
combinations (−,−,−) and (+,+,+).

• Hence, it may be impossible to sample from the other
combinations.

• In this case, we may seek to explain what causes the
correlation to discover more fundamental variables
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Example: French Import Data



Example: French Import Data (p.241)

Goal: to understand the relation betw. French import and other economic
variables.

• IMPORT: Amount of Import
• DOPROD: Amount of Domestic Production
• STOCK: Amount of Stock Formation
• CONSUM: Amount of Domestic Consumption
• YEAR: Last 2 digits of year 1949-1966

All measured in billions of French francs for the years 1949-1966.
Data: http://www.stat.uchicago.edu/~yibi/s224/data/P241.txt
p241 = read.table("P241.txt", h=T)

Questions:

• If the relationship between IMPORT and the other variables is
volatile, then our predictions will be unreliable.

• These are concerns for all forecasting models and are not a
problem specific to multicollinearity.
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IMPORT = β0 + β1 · DOPROD + β2 · STOCK + β3 · CONSUM + ε.

french1 = lm(IMPORT ~ DOPROD + STOCK + CONSUM, data=p241)

french2 = lm(IMPORT ~ DOPROD + STOCK + CONSUM,

data=p241, subset=YEAR<60)

• Residual plot of the full data is not satisfactory.
• Inception of the European Common Market in 1960 seemed

to change the relationship
• We focus only on Years 1949-1959 to simplify our discussion

of multicollinearity. and the residual plot looks fine.

−2

0

2

4

50 55 60 65
YEAR

R
es

id
ua

ls

1949−1966 (full data)

−0.5

0.0

0.5

51 54 57
YEAR

R
es

id
ua

ls

1949−1959 only

20



Fitted Model (1949-1959)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -10.12799 1.21216 -8.355 6.9e-05 ***

DOPROD -0.05140 0.07028 -0.731 0.488344

STOCK 0.58695 0.09462 6.203 0.000444 ***

CONSUM 0.28685 0.10221 2.807 0.026277 *

---

Residual standard error: 0.4889 on 7 degrees of freedom

Multiple R-squared: 0.9919, Adjusted R-squared: 0.9884

F-statistic: 285.6 on 3 and 7 DF, p-value: 1.112e-07

• R2 and F-test indicate that the model is very significant.
• STOCK and CONSUM are significant.
• DOPROD and IMPORT should be positively correlated

• Generally, higher Domestic Production requires importing
more materials.

• However, DOPROD has a insignificant negative slope! Why? 21



Pairwise Scatterplot of Predictors (French Economy Data)
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Relationship between DOPROD and CONSUM

• DOPROD and CONSUM have a correlation of about 0.999!
CONSUM explains 0.9992 ≈ 99.8% of the variance in DOPROD.

• The least squares relationship is:

CONSUM = 6.259 + .686 · DOPROD

• Hence, CONSUM consisted of about 69% ≈ 2/3 of DOPROD each
year.

• Intuitively, it makes sense that CONSUMption is correlated
positively with DOmestic PRODuction.
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Questions of Interest

1. How can MC be detected?
2. How does MC affect statistical inference and forecasting?
3. How can we resolve problems with MC?
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Detection of Multicollinearity



Looking for Multicollinearity

Multicollinearity is. . .

• associated with unstable coefficient estimates.
• a result of linear relationships between predictors.
• not due to model mis-specification.

Therefore, we do not worry about fixing multicollinearity until the
model diagnostics of other assumptions are satisfactory.

• Nevertheless, some indications of multicollinearity arise
during the process of adding and removing variables and
altering or removing observations.
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Signs of Multicollinearity

While finding a good model, look for instability in estimated β̂ j’s:

• Large changes in some β̂ j’s when a variable is added or deleted.
• Large changes in some β̂ j’s when a data point is altered or dropped.

Once the model fit is good, look for:

• Signs of some β̂ j’s do not conform to prior expectations.
• Coefficients or variables that are expected to be important have

large standard errors (small t values.)

Examples:

• Standard errors for all predictors are high in the EEO Data, resulting
in small t-values. We would expect all three to be important.

• t-value for DOPROD was small and negative, when we would expect it
to be positive and important.
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Multicollinearity and Correlation

• Of course, the pairwise scatterplot is helpful for detecting
multicollinearity.

• Unfortunately, it only helps to detect linear relationships
between pairs of variables.

• There may be a higher-level relationship even with no
pairwise correlations.

• The next example exhibits this type of sneaky multicollinearity.
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Example: Tricky Multicollinearity — Sales Data

Data: http://www.stat.uchicago.edu/~yibi/s224/data/P248.txt

p248 = read.table("P248.txt", h=T)

At Advertising Expenditures
Pt Promotion Expenditures
Et Sales Expense
S t Aggregate Sales (Response)

Proposed Model:

S t = β0 + β1At + β2Pt + β3Et + β4At−1 + β5Pt−1 + εt

• Pairwise correlations are all small (|ρ̂i j| < 0.5).
• Volatility of estiamted coefficients indicates MC.
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Pairwise Scatterplot — Sales Data
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summary(lm(S_t ~ E_t+A_t+P_t+A_.t.1.+P_.t.1., data = p248))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -14.194 18.715 -0.7584 0.45923402483

E_t 22.521 2.142 10.5123 0.00000001365

A_t 5.361 4.028 1.3310 0.20185348337

P_t 8.372 3.586 2.3345 0.03293209971

A_.t.1. 3.855 3.578 1.0774 0.29728619770

P_.t.1. 4.125 3.895 1.0590 0.30534041713

summary(lm(S_t ~ E_t + P_t + A_.t.1. + P_.t.1., data = p248))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.5094 2.4576 4.2763 0.000510400859

E_t 22.7942 2.1804 10.4544 0.000000008041

P_t 3.7018 0.7571 4.8893 0.000138233208

A_.t.1. -0.7692 0.8746 -0.8795 0.391387968077

P_.t.1. -0.9687 0.7423 -1.3050 0.209273037432

When we delete At, the estimates and s.e. for coefficients of Pt,
At−1, and Pt−1 change wildly! Sign of multicollinearity.

30



Higher-Level Correlation (Sales Data)

• Regression diagnostics for both models are satisfactory (not
shown).

• It turns out that the firm exercised strict control over promotion
and sales expenditures:

At + Pt + At−1 + Pt−1 ≈ 5

• R2 for regressing At on these 3 variables is .9727.
• Hence Pt, At−1, and Pt−1 together explain 97% of the

variability in At.
• This linear relationship is not seen in any pairwise

correlations.
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Variance Inflation Factor

The variance inflation factor for a predictor X j in the MLR model

Y = β0 + β1X1 + · · · + βpXp + ε

is defined to be

VIF j =
1

1 − R2
j

, j = 1, . . . , p,

where R2
j is the multiple R2 for regressing X j on the other

predictors in the model.

• If X j is orthogonal (has 0 correlation) to all other predictors,
then R2

j = 0 and VIF j = 1.
• Increasing values of VIF j indicate departure from

orthogonality toward multicollinearity.
• A rule of thumb: VIFs > 10 suggest multicollinearity

32



Intrepeting VIF j

• In simple linear regression, Var(β̂1) = σ2/
∑n

i=1(xi − x̄)2.
• In multiple linear regression, the situation is complicated by

the existence of correlation among the predictors. This is
what VIF measures.

• In fact, one can show that

Var(β̂ j) =
σ2∑n

i=1(xi j − x̄ j)2 · VIF j

• We see that it looks like the SLR equation, but with an extra
factor of VIF j.

• VIF j indicates the proportional increase in Var(β̂ j) due to its
collinearity with other predictors, relative to the orthogonal
case.
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VIF in R

The vif() function in the car library can calculate the VIF j for us.

library(car)

vif(lm(ACHV ~ FAM + PEER + SCHOOL, data=EEO))

FAM PEER SCHOOL

37.58 30.21 83.16

Observe the VIF for SCHOOL in the model above is
1

1 − R2 =
1

1 − 0.987974
≈ 83.155

where R2 = 0.987974 is the multiple R2 of regressing SCHOOL on
the other two predictors FAM and PEER.

summary(lm(SCHOOL ~ FAM + PEER, data=EEO))$r.squared

[1] 0.987974
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VIF in R

The vif() function in the car library can calculate the VIF j for us.

library(car)

vif(lm(ACHV ~ FAM + PEER + SCHOOL, data=EEO))

FAM PEER SCHOOL

37.58 30.21 83.16

Observe the VIF for SCHOOL in the model above is
1

1 − R2 =
1

1 − 0.987974
≈ 83.155

where R2 = 0.987974 is the multiple R2 of regressing SCHOOL on
the other two predictors FAM and PEER.

summary(lm(SCHOOL ~ FAM + PEER, data=EEO))$r.squared

[1] 0.987974
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Variance Inflation Due to Multicollinearity

Observe how much the Std. Error for SCHOOL is inflated when
the FAM and PEER are included

summary(lm(ACHV ~ SCHOOL, data=EEO))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.01043 0.2487 -0.04194 0.9666696

SCHOOL 0.92834 0.2446 3.79540 0.0003163

summary(lm(ACHV ~ FAM + PEER + SCHOOL, data=EEO))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.06996 0.2506 -0.2791 0.7810

FAM 1.10126 1.4106 0.7807 0.4378

PEER 2.32206 1.4813 1.5676 0.1218

SCHOOL -2.28100 2.2204 -1.0273 0.3080

The ratio of two s.e.’s of SCHOOL in the two models is
2.2204481/0.244597 ≈ 9.08, close to

√
VIFS CHOOL =

√
83.33.
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VIF for Sales Data

S t = β0 + β1At + β2Pt + β3Et + β4At−1 + β5Pt−1 + εt

vif(lm(S_t ~ E_t + A_t + P_t + A_.t.1. + P_.t.1., data = p248))

E_t A_t P_t A_.t.1. P_.t.1.

1.076 36.942 33.474 25.916 43.521

When At is excluded

vif(lm(S_t ~ E_t + P_t + A_.t.1. + P_.t.1., data = p248))

E_t P_t A_.t.1. P_.t.1.

1.066 1.427 1.481 1.512
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Effects of MultiCollinearity on
Prediction



Example: EEO Data

Recall in the EEO data, all data points lie in around the line

FAM ≈ PEER ≈ SCHOOL

FAM

−
2

0
1

2

0.960

−2 0 1 2 3

0.986

−2 0 1 2

PEER

0.982

−
2

0
2

−2 0 1 2

−
2

0
2

SCHOOL

37



Effects of MultiCollinearity on Prediction

Consider the two models below, where the first one suffers from
multicollinearity, while the second one doesn’t.

lmFPS = lm(ACHV ~ FAM+PEER+SCHOOL, data=EEO)

lmP = lm(ACHV ~ PEER, data=EEO)

The confidence intervals for prediction along the line where all data
points lies based on the two models are similar.

predict(lmFPS, data.frame(FAM=1, PEER=1, SCHOOL=1),

interval="confidence")

fit lwr upr

1 1.072 0.3321 1.813

predict(lmP, data.frame(PEER=1), interval="confidence")

fit lwr upr

1 1.05 0.343 1.757
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predict(lmFPS, data.frame(FAM=2, PEER=2, SCHOOL=2),

interval="confidence")

fit lwr upr

1 2.215 0.9783 3.451

predict(lmP, data.frame(PEER=2), interval="confidence")

fit lwr upr

1 2.131 0.9781 3.284
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Effects of MultiCollinearity on Prediction

However, predictions off the space/line/hyperplane whether the
data points lie based on the two models can be very different

predict(lmFPS, data.frame(FAM=1, PEER=1, SCHOOL=0), interval="confidence")

fit lwr upr

1 3.353 -1.166 7.873

predict(lmP, data.frame(PEER=1), interval="confidence")

fit lwr upr

1 1.05 0.343 1.757

predict(lmFPS, data.frame(FAM=0, PEER=1, SCHOOL=2), interval="confidence")

fit lwr upr

1 -2.31 -9.291 4.671

predict(lmP, data.frame(PEER=1), interval="confidence")

fit lwr upr

1 1.05 0.343 1.757
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Example: Prediction of Sales Data

Same thing occurs for the Sales Data. The model sales1 below
suffers from MC while the model sales2 doesn’t.

sales1 = lm(S_t ~ E_t +A_t+P_t+A_.t.1.+ P_.t.1., data = p248)

sales2 = lm(S_t ~ E_t + P_t + A_.t.1. + P_.t.1., data = p248)

Two models give similar confidence intervals for prediction around
the hyperplane At + Pt + At−1 + Pt−1 ≈ 5 where all data points lie
around.

predict(sales1, data.frame(E_t=0.6, A_t=2, P_t=0, A_.t.1.=2,

P_.t.1.=1), interval="confidence")

fit lwr upr

1 21.87 20.56 23.19

predict(sales2, data.frame(E_t=0.6, P_t=0, A_.t.1.=2,

P_.t.1.=1), interval="confidence")

fit lwr upr

1 21.68 20.38 22.98 41



However, for predictions off the space/line/hyperplane of existing
data points, the two models give very different confidence intervals
for prediction.

predict(sales1, data.frame(E_t=0.6, A_t=2, P_t=0, A_.t.1.=2,

P_.t.1.=0), interval="confidence")

fit lwr upr

1 17.75 9.692 25.81

predict(sales2, data.frame(E_t=0.6, P_t=0, A_.t.1.=2,

P_.t.1.=0), interval="confidence")

fit lwr upr

1 22.65 20.6 24.7

predict(sales1, data.frame(E_t=0.6, A_t=2, P_t=1, A_.t.1.=1,

P_.t.1.=0), interval="confidence")

fit lwr upr

1 22.27 14.24 30.29

predict(sales2, data.frame(E_t=0.6, P_t=1, A_.t.1.=1,

P_.t.1.=0), interval="confidence")

fit lwr upr

1 27.12 24.91 29.33
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Forecasting with Multicollinearity (French Import Data)

• If we wish to infer about the importance of the predictors, we
are in trouble.

• Our goal is to use the model to forecast IMPORT, so we can
get meaningful statements.

• Fitted Model:

IMPORT = −10.13 − 0.051 · DOPROD

+0.587 · STOCK + 0.287 · CONSUM.

• Given accurate forecasts for DOPROD, STOCK, and CONSUM, we
can still use this equation to predict IMPORT.
• Assumption: The relationship stays consistent for the YEAR of

prediction.
• Note: This assumption is required of all forecasting models.
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Forecasting with Multicollinearity (2)

Suppose we forecast an increased DOPROD of 10 units (1 unit = 1
billion of French francs) between 1959 (last year of data) and 1960.

Naive Forecast: IMPORT1960 = IMPORT1959 − 0.051(10).

• This assumes STOCK and CONSUM stayed unchanged
• In reality, we believe CONSUM = 6.259 +0.686· DOPROD,

therefore CONSUM would also be expected to increase by
0.686(10) = 6.86 units.

Smart Forecast:

IMPORT1960 = IMPORT1959 − 0.051(10) + 0.287(6.86)

= IMPORT1959 + 1.46

• Taking the multicollinearity into account, we predict an
increased IMPORT of 1.46 units.
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The smart forecast would be nearly the same as the model using
only DOPROD and STOCK but no CONSUM.

summary(lm(IMPORT ~ DOPROD + STOCK,data=p241, subset=YEAR<60))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -8.4401 1.43518 -5.881 0.00036962781

DOPROD 0.1453 0.00703 20.672 0.00000003142

STOCK 0.6225 0.12787 4.868 0.00124285218
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