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Chapter 8 Outline

• What Are Correlated Errors and Why Worry About Them?
• Detection of Correlated Errors

• Time plot of residuals
• Runs test
• Durbin-Watson test
• Lag plots
• Autocorrelation function and autocrrelation plot

• Remedies to Correct for Autocorrelated Errors
• Autocorrelation Due to Missing Predictors
• Autocorrelation and Seasonality
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What Are Correlated Errors and
Why Worry About Them?



Correlated Errors

• Recall in MLR Models:

yi = β0 + β1xi1 + · · · + βpxip + εi,

the errors εi are assumed to be independent.
• In Ch8, we introduce the diagnosis and remedies for models

with correlated errors.
• Correlated errors can arise when observations have a spatial

or temporal order, e.g.,
• Temporal: In sports, a player may exhibit hot or cold streaks in

which he performs above or below expectation for several
games.

• Spatial: In agriculture studies, adjacent plots of land tend to be
similar (soil, humidity, sun exposure)
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Effects of Correlated Errors

• Least squares estimates, while still unbiased, no longer have
minimal variance among unbiased estimators.

• σ2 and the s.e. of β’s would be seriously underestimated (if
errors are positively correlated)

• Confidence intervals and significance tests are no longer
accurate.
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Causes of Autocorrelation

When the observations have a natural sequential order, the
correlation is referred to as autocorrelation, which may occur for
several reasons.

• Autocorrelation may occur due to an unmeasured predictor is
associated with time or space.
• Ex1: Athletes competing against exceptionally good or bad

teams.
This is especially evident in baseball because teams play each
other 3-4 times in a row.

• Ex2: Certain pests which inhibit plant growth may be more
prevalent in some areas.

• In this case, we can remove autocorrelation by accounting for
these variables.

• Pure autocorrelation is not due to missing variables.
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Ex: Consumer Expenditure & Money Stock Data (p.211)

Data: http://www.stat.uchicago.edu/~yibi/s224/data/P211.txt

Quarterly data from 1952 to 1956 on consumer expenditure (Y =
Expenditure) and the stock of money (X = Stock), both in
millions of current US dollars.

p211 = read.table("P211.txt", h=T)

library(ggplot2)

ggplot(p211, aes(x=Stock, y=Expenditure)) +

geom_point() + geom_smooth(method='lm')
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If we fit the naive model,

yt = β0 + β1xt + εt

the residual plots looks like . . .
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Since the observations are ordered in time, we should also plot
the residuals against time (index).

lmp211 = lm(Expenditure ~ Stock, data=p211)

ggplot(p211, aes(x=Stock, y=lmp211$res)) +

geom_point() + geom_line() +

ylab("Residuals")+ geom_hline(yintercept=0)

ggplot(p211, aes(x=1:20, y=lmp211$res)) +

geom_point() + geom_line() + xlab("Index") +

ylab("Residuals")+ geom_hline(yintercept=0)
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Diagnostic for Autocorrelation



Time Plot/Index Plot of Residuals



Time Plot/Index Plot of Residuals

A time plot or an index plot of the residuals is a plot of residuals
v.s. the (time) order they are recorded. Points in a time-plot are
connected by a line.

• Better keeping track of the time order observations are
recorded so we can make a time-plot

• A smooth time-plot is a sign of positive autocorrelation, since
a smooth time plot means successive residuals are close
together
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If no autocorrelation, the time plot has more up-and-downs.
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For the Stock Data, the time plot is “smooth” which is a sign of
positive autocorrelation.

lmp211 = lm(Expenditure ~ Stock, data=p211)

ggplot(p211, aes(x=1:20, y=lmp211$res)) + geom_point() + geom_line() +

labs(x="Index", y="Residuals")+ geom_hline(yintercept=0)
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Runs Test



Analysis of Runs

Positive autocorrelation re-
sults in longer-than-usual
runs of consecutive positive
or negative residuals.

−4

0

4

5 10 15 20
Index

R
es

id
ua

ls

• For the Stocks Data, there are 5 separate runs:

+ + − + + + + − − − − − − + + + + + +

• How many runs are expected when the residuals are
independent?
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Analysis of Runs

Positive autocorrelation re-
sults in longer-than-usual
runs of consecutive positive
or negative residuals.
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• For the Stocks Data, there are 5 separate runs:

++︸︷︷︸
1st run

2nd run︷︸︸︷
− + + ++︸  ︷︷  ︸

3rd run

4th run︷        ︸︸        ︷
− − − − −−+ + + + ++︸        ︷︷        ︸

5th run

• How many runs are expected when the residuals are
independent?
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Distribution of Runs

Assuming independence, with n1 positive and n2 negative
residuals, the expected number µ and variance σ2 of runs are

µ =
2n1n2

n1 + n2
+ 1, and σ2 =

2n1n2(2n1n2 − n1 − n2)
(n1 + n1)2(n1 + n2 − 1)

.

In the Stock Data example, n1 = 12 and n2 = 8 (text incorrectly says

n1 = 13, n2 = 7), and

µ =
2n1n2

n1 + n2
+ 1 =

2 · 12 · 8
12 + 8

+ 1 = 10.6,

σ2 =
2n1n2(2n1n2 − n1 − n2)
(n1 + n2)2(n1 + n2 − 1)

=
2 · 12 · 8(2 · 12 · 8 − 12 − 8)

(12 + 8)2(12 + 8 − 1)
≈ 4.345

We hence expect to see 10.6 runs w/ the SD ≈
√

4.345 ≈ 2.0845.

• We observed only 5 runs, is this unusual under the null
hypothesis of no autocorrelation?
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Normal Approx for the Runs Test

If n1 and n2 are large (say ≥ 10),

Number of Runs is approx. ∼ N(µ, σ2)

then we can use an approximate z-statistic

z =
Number of Runs − µ

σ
∼ approx. N(0, 1)

For our example,

z =
5 − 10.6
2.0845

≈ −2.6865

The two-sided P-value is 2*pnorm(-2.686) =0.0072
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Runs Test in R

The command runs.test() in the tseries library can perform
the runs test. You need to first install the tseries.

install.packages("tseries") # Only Install ONCE!

library(tseries)

runs.test(factor(lmp211$res > 0)) # two-sided by default

Runs Test

data: factor(lmp211$res > 0)

Standard Normal = -2.686, p-value = 0.00722

alternative hypothesis: two.sided
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For testing positive autocorrelation, use alternative = "less" as
positive autocorrelation leads to fewer runs.

runs.test(factor(lmp211$res > 0), alternative = "less")

Runs Test

data: factor(lmp211$res > 0)

Standard Normal = -2.686, p-value = 0.00361

alternative hypothesis: less

For testing negative autocorrelation, use alternative = "greater" as
negative autocorrelation leads to more runs.

runs.test(factor(lmp211$res > 0), alternative = "greater")

Runs Test

data: factor(lmp211$res > 0)

Standard Normal = -2.686, p-value = 0.996

alternative hypothesis: greater 15



Pros and Cons of the Runs Test

• Pros: Simple, intuitive
• Cons: It ignores the magnitude of the residuals |ei|.
• In the Stock Data, the 3rd residual is just barely below 0.

If it was above 0, we’d have 3 runs only, not 5 runs.
Evidence of correlated errors could be stronger.
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Durbin-Watson Test



Durbin-Watson Statistic

• Proceeds from the assumption that successive errors are
correlated:

εt = ρεt−1 + ωt, |ρ| < 1

• Note: In Time Series analysis, this is called a first-order
autoregressive model, abbreviated AR(1), or first-order
autocorrelation

• The actual autocorrelation structure may be more complex
(e.g. AR(2), AR(3), etc.) In this case, the first-order structure is
a simple approximation.

Theorem (Durbin-Watson statistic)

d =
∑n

t=2(et − et−1)2∑n
t=1 e2

t
,

where ei is the ordinary least square residual.
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Properties of d

• d ≈ 2(1 − ρ̂), where ρ̂ estimates the aurocorrelation ρ by

ρ̂ =

∑n
t=2 etet−1∑n

t=1 e2
t
.

• d is a test statistic for testing

H0 : ρ = 0 vs. Ha : ρ > 0.

• The null hypothesis indicates that successive residuals are
not correlated.

• Under the H0 of no autocorrelation, d should be close to 2.
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DW Test for Positive Autocorrelation

• Is d is significantly different than 2?
• We use two cut-off values, dL and dU , which depend on the

number of parameters p, the sample size n, and the desired
significance level α of the test.
• d < dL, reject H0

• d > dU , do not reject H0.
• dL < d < dU , the test is inconclusive.

• The values for dL and dU are given in Tables A.6 and A.7.
• For the Stock Data, p = 1, n = 20, d = 0.329.

• For an α = .05 test, we use Table A.6 to see (dL, dU) =
(1.20, 1.41). We reject H0 and infer positive autocorrelation.

• For an α = .01 test, we use Table A.7 to see (dL, dU) =
(0.95, 1.15). We also reject at the 1% significance level.
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Remarks about DW Test

• To test for negative autocorrelation, use the test statistic
(4 − d) then follow the test for positive autocorrelation.

• When dL < d < dU , the test is inconclusive.
A good strategy is to correct for autocorrelation and see if the
model changes in a major way.

• Unfortunately, the Durbin-Watson test can be fooled by
higher-order autocorrelation structure.

• As always, there is no substitute for diagnostic graphs!
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Durbin-Watson Test in R

In R, durbinWatsonTest() in library(car) can produce an
approximate P-value (by simulation) for the DW test.

library(car)

durbinWatsonTest(lmp211, alt="positive")

lag Autocorrelation D-W Statistic p-value

1 0.750612 0.328211 0

Alternative hypothesis: rho > 0

durbinWatsonTest(lmp211, alt="negative")

lag Autocorrelation D-W Statistic p-value

1 0.750612 0.328211 1

Alternative hypothesis: rho < 0

durbinWatsonTest(lmp211) # two-sided by default

lag Autocorrelation D-W Statistic p-value

1 0.750612 0.328211 0

Alternative hypothesis: rho != 0
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Lag Plots



Plotting Residuals Against Lag-k Residuals

If successive residuals are correlated, we would observe a positive
correlation when we plot the residuals (e1, . . . , en−1) against the
next ones (e2, . . . , en) (Lag 1).

• or (e1, . . . , en−k) against the lag-k residuals (e1+k, . . . , en)
• Any trend in the plot is a sign of autocorrelation.

Lag 1
(e1, e2)
(e2, e3)
(e3, e4)
...

(en−1, en)

Lag k
(e1, e1+k)
(e2, e2+k)
(e3, e3+k)
...

(en−k, en)
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res = lmp211$res

n = length(res)

plot(res[2:n], res[1:(n-1)], main="Lag-1")

plot(res[3:n], res[1:(n-2)], main="Lag-2")
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Lag Plots in R

The lag.plot() command can produce lag plots.

lag.plot(lmp211$res, lags=2, layout=c(1,2), do.lines=FALSE)

lag 1

lm
p2

11
$r

es
−

6
−

2
2

4
6

−5 0 5

lag 2

lm
p2

11
$r

es

−5 0 5

• lags = k would produce lag-1 to lag-k plots
• layout = c(1,2) arranges the plots in 1 row and 2 columns.
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If not specifying do.lines=FALSE, the plots would look like the
following

lag.plot(lmp211$res, lags=2, layout=c(1,2))
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Autocorrelation Functions



Autocorrelation

The lag-k autocorrelation of the residuals (e1, . . . , en) is defined as

ρ̂k =

∑n
t=k+1 etet−k∑n

t=1 e2
t
, k = 1, 2, 3, . . . .

which is slightly different from the “correlation” of (e1, . . . , en−k) v.s.
(e1+k, . . . , en), ∑n

t=k+1 etet−k√∑n−k
t=1 e2

t
∑n

t=k+1 e2
t

The R command acf() (autocorrelation function) in R can
calculate lag-k autocorrelation.

acf(lmp211$res, lag.max =5, plot=FALSE)

Autocorrelations of series 'lmp211$res', by lag

0 1 2 3 4 5

1.000 0.751 0.521 0.297 -0.007 -0.220 26



Autocorrelation Function and the Plot

In time-series analysis, one often plot the lag-k autocorrelations
against k to examine the autocorrelation structure of a variable.
The acf() command can produce such autocorrelation plot.

acf(lmp211$res)
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The horizontal dash lines marks the levels autocorrelations to be
significantly different from 0. 27



Remedies to Correct for
Autocorrelated Errors



Removal of Autocorrelation with Transformation

Assume the errors εt’s of the linear model yt = β0 + β1xt + εt have
the first order autocorrelation AR(1) structure

εt = ρεt−1 + ωt, where ωt are indep. ∼ N(0, θ2)

Then
εt︷           ︸︸           ︷

yt − β0 − β1xt = ρ(

εt−1︷                ︸︸                ︷
yt−1 − β0 − β1xt−1) + ωt

yt − ρyt−1︸     ︷︷     ︸
y∗t

= β0(1 − ρ) + β1(xt − ρxt−1︸     ︷︷     ︸
x∗t

) + ωt

Hence the transformed variables x∗t = xt − ρxt−1 and y∗t = yt − ρyt−1

satisfy the SLR model

y∗t = β
∗
0 + β

∗
1x∗t + ωt, where ωt are indep. ∼ N(0, θ2)
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The coefficients of the orignal and the transformed models are
related as follows

β∗0 = β0(1 − ρ), β∗1 = β1

However, we need to estimate ρ!

29



Cochrane-Orcutt Method

1. Fit the OLS model and obtain the residuals e1, . . . , en

2. Use the residuals e1, . . . , en to estimate ρ with

ρ̂ =

∑n
t=2 etet−1∑n

t=1 e2
t

3. Compute OLS estimates of β∗0 and β∗1 by regressing

y∗t = yt − ρ̂yt−1 on x∗t = xt − ρ̂xt−1

and use them to find coefficients for the original variables.

β̂0 =
β̂∗0

1 − ρ̂
and β̂1 = β̂

∗
1

4. Use the new β̂0 and β̂1 to calulate the new residuals e1, . . . , en

and then go back to Step 2.
5. Iterate until the estimates β̂0 and β̂1 converge.
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First Iteration

x = p211$Stock

y = p211$Expenditure

n = length(y)

fit1 = lm(y ~ x)

res = fit1$res

rho.hat = sum(res[1:(n-1)]*res[2:n]) / sum(resˆ2 )

rho.hat

[1] 0.7506

ystar = y[2:n] - rho.hat*y[1:(n-1)]

xstar = x[2:n] - rho.hat*x[1:(n-1)]

fit2 = lm(ystar ~ xstar)

b0.hat = fit2$coef[1]/(1-rho.hat)

b1.hat = fit2$coef[2]

c(b0.hat, b1.hat)

(Intercept) xstar

-215.311 2.643
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Second Iteration

res = y - b0.hat - b1.hat*x

rho.hat = sum(res[1:(n-1)]*res[2:n]) / sum(resˆ2 )

rho.hat

[1] 0.79

ystar = y[2:n] - rho.hat*y[1:(n-1)]

xstar = x[2:n] - rho.hat*x[1:(n-1)]

fit2 = lm(ystar ~ xstar)

b0.hat = fit2$coef[1]/(1-rho.hat)

b1.hat = fit2$coef[2]

c(b0.hat, b1.hat)

(Intercept) xstar

-225.6 2.7
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Complete R Codes of Cochrane-Orcutt Method

x = p211$Stock

y = p211$Expenditure

n = length(y)

n.iter = 15

rho.iter = vector("numeric", n.iter)

b0.iter = vector("numeric", n.iter)

b1.iter = vector("numeric", n.iter)

fit1 = lm(y ~ x)

res = fit1$res

rho.iter[1] = sum(res[1:(n-1)]*res[2:n]) / sum(resˆ2 )

for(i in 2:n.iter){

rho.iter[i] = sum(res[1:(n-1)]*res[2:n]) / sum(resˆ2 )

ystar = y[2:n] - rho.iter[i]*y[1:(n-1)]

xstar = x[2:n] - rho.iter[i]*x[1:(n-1)]

fit2 = lm(ystar ~ xstar)$coef

b0.iter[i] = fit2[1]/(1-rho.iter[i])

b1.iter[i] = fit2[2]

res = y - b0.iter[i] - b1.iter[i]*x

}
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data.frame(rho.iter,b0.iter,b1.iter)

rho.iter b0.iter b1.iter

1 0.7506 0.0 0.000

2 0.7506 -215.3 2.643

3 0.7900 -225.6 2.700

4 0.7977 -227.8 2.712

5 0.7996 -228.3 2.715

6 0.8000 -228.5 2.715

7 0.8001 -228.5 2.716

8 0.8002 -228.5 2.716

9 0.8002 -228.5 2.716

10 0.8002 -228.5 2.716

11 0.8002 -228.5 2.716

12 0.8002 -228.5 2.716

13 0.8002 -228.5 2.716

14 0.8002 -228.5 2.716

15 0.8002 -228.5 2.716

We can see that the estimates for ρ, β0, β1 converge quickly to

ρ̂ = 0.8002, β̂0 = −228.5212, β̂1 = 2.7157. 34



Checking the Independence Assumption After Transformation

Recall the transformed variables x∗t = xt − ρxt−1 and y∗t = yt − ρyt−1

satisfy the SLR model with indep. errors

y∗t = β
∗
0 + β

∗
1x∗t + ωt, where ωt are indep. ∼ N(0, θ2)

Let’s obtain the residuals for the model y∗t = β
∗
0 + β

∗
1x∗t + ωt and

check if they exhibit any autocorrelation.
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Time Plot of Residuals

Time plot of the residuals for the model y∗t = β
∗
0 + β

∗
1x∗t + ωt.

rho.hat = rho.iter[n.iter]

ystar = y[2:n] - rho.hat*y[1:(n-1)]

xstar = x[2:n] - rho.hat*x[1:(n-1)]

xystar = data.frame(xstar, ystar)

fit2 = lm (ystar ~ xstar)

ggplot(xystar, aes(x=1:(n-1), y = fit2$res)) +

geom_point() + geom_line() +

labs(x="Index", y="Residual") + geom_hline(yintercept=0)
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The time plot is no longer "smooth".
No longer-than-usual runs of con-
secutive positive or negative resid-
uals.
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Autocorrelation Plot of the Residuals

Below is the autocorrelation plot of the residuals for the model
y∗t = β

∗
0 + β

∗
1x∗t + ωt.

acf(fit2$res)
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None of the lag-k autocorrelations is significant. (All are between
the two horizontal dash lines), k = 1, 2, 3, . . . 37



Runs Test
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The signs of the 19 residuals are

+ − + + − + − − − − − − + + − + + + +

There are 9 runs, n1 = 10 positives and n2 = 9 negatives.
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The expected value and SD of the number of runs when n1 = 10
positives and n2 = 9 negatives are

µ =
2n1n2

n1 + n2
+ 1 =

2 · 10 · 9
10 + 9

+ 1 ≈ 10.474,

σ =

√
2n1n2(2n1n2 − n1 − n2)
(n1 + n1)2(n1 + n2 − 1)

=

√
2 · 10 · 9(2 · 10 · 9 − 10 − 9)

(10 + 9)2(10 + 9 − 1)
≈ 2.112

Then z-statistic is

z =
Number of Runs − µ

σ
=

9 − 10.474
2.112

≈ −0.698

The two-sided P-value is 2*pnorm(-0.698) =0.4852.
No significant evidence of autocorrelation.
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Durbin-Watson Test

library(car)

durbinWatsonTest(fit2, alt="positive")

lag Autocorrelation D-W Statistic p-value

1 0.1825 1.549 0.1

Alternative hypothesis: rho > 0

durbinWatsonTest(fit2) # default is two-sided

lag Autocorrelation D-W Statistic p-value

1 0.1825 1.549 0.174

Alternative hypothesis: rho != 0

The P-values are over 0.05.

No significant evidence of autocorrelation.
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Autocorrelation Due to Missing
Predictors



Missing Variables and Autocorrelation

• εt is variation that cannot be explained by covariates in the
model.

• This can be due to non-systematic random errors. . .
• . . . or possibly important predictors missing from the model!
• If the missing predictors are associated with t, then residual

analysis will exhibit autocorrelation.
• This type of autocorrelation can be considered “artificial”
• The autocorrelation may disappear when the predictor is

included
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Pure vs. Artificial Autocorrelation

• There is no foolproof analysis to differentiate pure
autocorrelation from missing predictors.

• In general, we should consider both.
• It is better if we can improve the model with new predictors

• We improve our understanding of the process.
• We understand what caused the autocorrelation.
• We avoid relying on structured residuals.
• It is more satisfying to have nice, independent random errors.

• Techniques to correct pure autocorrelation are a last resort.
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Example: Housing Starts (p. 219)

Data: http://www.stat.uchicago.edu/~yibi/s224/data/P219.txt

A construction industry association is interested in forecasting
housing construction activity. As a starting place, they gather
historical data on the population size of 22- 44-year olds as an
estimate of the number of potential buyers.

One can load the data by the command

p219 = read.table("P219.txt", h=T)

The variables are

• H: Housing Starts
• P: Population Size of 22- to 45-yr-olds in millions
• D: Availability for Mortgage Money Index
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Model 1 of Housing Starts

Ht = β0 + β1Pt + εt,

model1 = lm(H ~ P, data=p219)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.060884 0.010416 -5.845 5.89e-06 ***

P 0.071410 0.004234 16.867 1.91e-14 ***

---

Residual standard error: 0.00408 on 23 degrees of freedom

Multiple R-squared: 0.9252, Adjusted R-squared: 0.922

F-statistic: 284.5 on 1 and 23 DF, p-value: 1.911e-14

• Naively, the model fits well with R2 = .9252.
• Due to the temporal nature of the data, we must check for

autocorrelation.
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durbinWatsonTest(model1, alt="positive")

lag Autocorrelation D-W Statistic p-value

1 0.6511 0.6208 0

Alternative hypothesis: rho > 0

Warning: Use of ‘p219$H‘ is discouraged. Use ‘H‘ instead.

Warning: Use of ‘p219$H‘ is discouraged. Use ‘H‘ instead.
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The time plot and ACF plot of residuals exhibit clear
autocorrelation too.
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What’s Missing?

• Autocorrelation is suspected. . .
• But first, there are many reasonable variables we should

consider in this case.
• unemployment rate, social trends, government programs,

availability of construction funds. . .

• Our choice is an index that measures availability of mortgage
money, Dt and hence we consider the model

Ht = β0 + β1Pt + β2Dt + εt

model2 = lm(H ~ P + D, data=p219)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.010427 0.010291 -1.013 0.322

P 0.034656 0.006425 5.394 2.04e-05 ***

D 0.760464 0.121588 6.254 2.70e-06 ***

---

Residual standard error: 0.002503 on 22 degrees of freedom

Multiple R-squared: 0.9731, Adjusted R-squared: 0.9706

F-statistic: 397.6 on 2 and 22 DF, p-value: < 2.2e-16
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durbinWatsonTest(model2, alt="positive")

lag Autocorrelation D-W Statistic p-value

1 0.03957 1.852 0.25

Alternative hypothesis: rho > 0

• Durbin Watson’s test shows little sign of autocorrelation
(P-value 0.223)

Warning: Use of ‘p219$H‘ is discouraged. Use ‘H‘ instead.

Warning: Use of ‘p219$H‘ is discouraged. Use ‘H‘ instead.
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• Time plot of residuals is not “smooth”.
• None of the lag-k autocorrelations is siginficant (all are within

the two horizontal dash lines),
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Comparison of Model 1 and Model 2

• Model 2 has a better adjusted R2 and no obvious
autocorrelation.

• The Mortgage Index accounted for the autocorrelation.

Moral:

1. A high R2 does not necessarily indicate that the response
variation is adequately understood.

2. The Durbin-Watson statistics, residual plot, and ACF plot may
indicate autocorrelation when the real problem is one or more
important variables unaccounted for in the model.

3. Typically, any two variables measured over long stretches of
time seem highly-correlated.
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Autocorrelation and Seasonality



Limitation of Durbin-Watson Statistic

• d cannot distinguish between pure and artificial
autocorrelation.

• d only measures first-order autocorrelation (i.e. between
adjacent observations).

• Sometimes, εt is correlated with εt−2 (second-order
autocorrelation), or errors even further back (higher-order
autocorrelation).

• Time plot of residuals is less helpful when there are
higher-order autocorrelation but not first-order autocorrelation

• ACF plots are best for detecting higher-order dependence.
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Example: Ski Sales Data (p.149)

Data: http://www.stat.uchicago.edu/~yibi/s224/data/P149.txt

• Sales: Sales of skis and related equipment in millions
• PDI: personal disposable income

Both variables are measured quarterly for the years 1964-1973

ski = read.table("P149.txt", h=T)

ggplot(ski, aes(x=PDI, y=Sales)) + geom_point() +

geom_line() + geom_smooth(method='lm')
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Extracting “Quarter” From “Date”

ski$Date

[1] "Q1/64" "Q2/64" "Q3/64" "Q4/64" "Q1/65" "Q2/65" "Q3/65" "Q4/65" "Q1/66"

[10] "Q2/66" "Q3/66" "Q4/66" "Q1/67" "Q2/67" "Q3/67" "Q4/67" "Q1/68" "Q2/68"

[19] "Q3/68" "Q4/68" "Q1/69" "Q2/69" "Q3/69" "Q4/69" "Q1/70" "Q2/70" "Q3/70"

[28] "Q4/70" "Q1/71" "Q2/71" "Q3/71" "Q4/71" "Q1/72" "Q2/72" "Q3/72" "Q4/72"

[37] "Q1/73" "Q2/73" "Q3/73" "Q4/73"

ski$Qtr = substr(ski$Date, start=1, stop=2)

ski$Qtr

[1] "Q1" "Q2" "Q3" "Q4" "Q1" "Q2" "Q3" "Q4" "Q1" "Q2" "Q3" "Q4" "Q1" "Q2" "Q3"

[16] "Q4" "Q1" "Q2" "Q3" "Q4" "Q1" "Q2" "Q3" "Q4" "Q1" "Q2" "Q3" "Q4" "Q1" "Q2"

[31] "Q3" "Q4" "Q1" "Q2" "Q3" "Q4" "Q1" "Q2" "Q3" "Q4"
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Time Plot of Residuals

skifit1 = lm(Sales ~ PDI, data=ski)

ggplot(ski, aes(x=PDI, y=skifit1$res, col=Qtr, group=I(1))) +

geom_point() + geom_line() +

geom_hline(yintercept = 0)
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Autocorrelation Plot

acf(skifit1$res, lag.max=30)

acf(skifit1$res, lag.max=30, plot=F)
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Autocorrelations of series ’skifit1$res’, by lag

0 1 2 3 4 5 6 7 8 9 10

1.000 -0.001 -0.813 0.058 0.757 0.002 -0.712 0.026 0.734 -0.044 -0.696

11 12 13 14 15 16 17 18 19 20 21

0.002 0.577 -0.026 -0.553 -0.022 0.486 -0.031 -0.497 0.003 0.405 -0.006

22 23 24 25 26 27 28 29 30

-0.392 -0.021 0.377 -0.008 -0.322 0.052 0.252 -0.025 -0.179
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• ρ̂k ≈ 0 when k are odd numbers
• ρ̂k > 0 for k’s that are multiples of 4
• ρ̂k < 0 for k = 2, 6, 10, 14, . . .
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Durbin-Watson Test Failed!

durbinWatsonTest(skifit1, alt="positive")

lag Autocorrelation D-W Statistic p-value

1 -0.0008867 1.968 0.422

Alternative hypothesis: rho > 0

durbinWatsonTest(skifit1)

lag Autocorrelation D-W Statistic p-value

1 -0.0008867 1.968 0.842

Alternative hypothesis: rho != 0

Durbin-Watson test give large P-values even though there exist
significant lag-2 autocorrelation
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Treating Seasonal Autocorrelation

• We can account for seasonality using indicator variables.
• Wt = 1 for winter season, (Q1 and Q4).
• De-seasonality model:

Salest = β0 + β1PDIt + β2Wt + εt

ski$Winter = (ski$Qtr == "Q1") | ski$Qtr == "Q4"

ski$Winter

[1] TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE

[13] TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE

[25] TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE

[37] TRUE FALSE FALSE TRUE

skifit2 = lm(Sales ~ PDI + Winter, data=ski)
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Time Plot and ACF Plot After Accounting for Seasonality

ggplot(ski, aes(x=PDI, y=skifit1$res, col=Qtr, group=I(1))) +

geom_point() + geom_line() + geom_hline(yintercept = 0) +

theme(legend.position="top")

acf(skifit2$res, lag.max=30)
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summary(skifit2)

Call:

lm(formula = Sales ~ PDI + Winter, data = ski)

Residuals:

Min 1Q Median 3Q Max

-2.5112 -0.7864 0.0263 0.7284 2.6704

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.54020 0.97483 9.79 8.2e-12

PDI 0.19868 0.00604 32.91 < 2e-16

WinterTRUE 5.46434 0.35968 15.19 < 2e-16

Residual standard error: 1.14 on 37 degrees of freedom

Multiple R-squared: 0.972, Adjusted R-squared: 0.971

F-statistic: 653 on 2 and 37 DF, p-value: <2e-16
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