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Why Transform Variables?



Why Transform Variables?

We transform variables (including predictors and responses)
primarily for two reasons:

• to solve the non-linearity problem
• to solve the non-constant variability problem

• Variance-Stabilizing Transformation
• Box-Cox Method
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Linear and Nonlinear Models

Recall linear models are linear in the parameters, not predictors.

All of the following are linear models:

• Y = β0 + β1X + β2X2 + ε

• Y = β0 + β1 log(X) + ε
• Y = β0 + β1

√
X + ε

Whereas the following is not a linear model since it’s not linear in
β1.

Y = β0 + exp(β1X) + ε
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Linearizable Models

Some nonlinear models can be turn into linear model after
transforming variables

• Ex1: exponential growth or decay models

Y = αeβX .

Taking the log of both sides yields

log(Y) = log(α) + βX.

• Ex2: Learning theory in psychology states that the time to
perform a task (Ti) on the i occasion follows

Ti = αβ
i, α > 0, 0 < β < 1

Taking the log of both sides yields

log(Ti) = log(α) + log(β)i.
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Linearizable Models (Table 6.1 on p.165)

Function Transformation Linear Form
Y = αXβ Y ′ = log Y, X′ = log X Y ′ = logα + βX′

Y = αeβX Y ′ = log Y Y ′ = logα + βX
Y = α + β log X X′ = log X Y = α + βX′

Y = X
αX−β Y ′ = 1

Y , X
′ = 1

X Y ′ = α − βX′

Y = eα+βX
1+eα+βX Y ′ = log Y

1−Y Y ′ = α + βX

These nonlinear models can be turned linear after transformation
and the tools in MLR can still be applied.
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Some Nonlinear Models Cannot Be Linearized

Ex.

• Y = δ + αβX

• Y = α1eβ1X + α2eβ2X

The strictly nonlinear models (i.e., those not linearizable by
variable transformation) require very different methods. (not
covered in STAT 224)
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Transformations to Achieve
Linearity



Example: Bacteria Deaths Due to X-Ray Radiation (p.168)

Data: http://www.stat.uchicago.edu/~yibi/s224/data/P168.txt

bact = read.table("P168.txt", header=T)

• t = time (1 unit = 6 minutes)
• N_t = nt = the number of surviving bacteria (in 100s) following

exposure to 200-kilo-volt X-rays in after t units of time

If we blindly fit an SLR model lm1 = lm(N_t ~ t, data=bact)

library(ggplot2)

ggplot(bact, aes(x=t, y=N_t))+geom_point()+

geom_smooth(method='lm')+ xlab("time (1 unit = 6 minutes)")+

ylab("count of surviving bacteria\n(in 100s)")

lm1 = lm(N_t ~ t, data=bact)

ggplot(bact, aes(x=t, y=lm1$res))+geom_point() +

labs(x="time (1 unit = 6 minutes)", y="Residuals")+

geom_hline(yintercept=0) + geom_smooth()
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When not knowing what transformation to make, we would begin
by looking at the scatterplot.

• In this case, the scatterplot is obviously non-linear.

In some cases, non-linearity may not be obvious in the scatterplot.
Should always check the residual plot as well for this reason.

• For this example, we see that non-linearity is more obvious in
the residual plot than in the scatterplot.
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Example: Bacteria Deaths Due to X-Ray Radiation

According to theory, we expect a exponential decay in the count of
bacteria in time:

nt = n0eβ1t, where

n0 = initial population size
β1 = decay rate

Taking log of both sides, we get

log nt = log n0 + β1t = β0 + β1t,

which suggests that we regress log nt against t.

lm2 = lm(log(N_t) ~ t, data=bact)
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ggplot(bact, aes(x=t, y=log(N_t)))+geom_point()+

geom_smooth(method='lm', se=F)+xlab("time (1 unit = 6 minutes)")+

ylab("log of count of surviving\nbacteria (in 100s)")

ggplot(bact, aes(x=t, y=lm2$res))+geom_point() +

xlab("time (1 unit = 6 minutes)")+ ylab("Residuals")+

geom_hline(yintercept=0) + geom_smooth()
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• Scatterplot shows transformation achieves linearity
• Residual plot shows no clear violation of model assumptions
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Interpretation of the Exponential Decay Model

For the exponential decay model nt = n0eβ1t, for every extra unit of
time, the number of surviving bacteria becomes eβ1 times as large.

lm2 = lm(log(N_t) ~ t, data=bact)

summary(lm2)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.9732 0.059778 99.92 3.786e-20

t -0.2184 0.006575 -33.22 5.860e-14

confint(lm2, "t")

2.5 % 97.5 %

t -0.2326 -0.2042

1-exp(confint(lm2, "t"))

2.5 % 97.5 %

t 0.2076 0.1847

Every 6 minutes, the number of surviving bacteria is estimated to
decrease by 1 − e−0.2184 ≈ 1 − 0.804 = 19.6%
(95% CI is 1 − e−0.2326 ≈ 18.5% to 1 − e−0.2042 ≈ 20.8%). 11



Back to the Original Scale

pred.log = predict(lm2, data.frame(t = 1:15), interval="prediction")

pred.orig = exp(pred.log)

ggplot(bact, aes(x=t, y=N_t))+

geom_ribbon(aes(ymin=pred.orig[,2],ymax=pred.orig[,3]),fill="grey70")+

geom_point()+geom_line(aes(y=pred.orig[,1]), col=2)+

xlab("time (1 unit = 6 minutes)")+

ylab("count of surviving bacteria\n(in 100s)")
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About the Log-Transformation



Logarithm is the Most Commonly Used Transformation

• When the size of error is proportional to the mean, take log

Y = f (X1, . . . , Xp)(1+ε) ⇒ log(Y) = log f (X1, . . . , Xp)+ log(1+ε)

• Rule of thumb #1: if a variable is about amount of money, take log

• Ex1: Education Expenditure data in HW4
Both y = Per capita expenditure on public education,
and x1 = Per capita personal income,
are log-transformed in HW4

• Ex2: Income2005 in the NLSY data
• Ex3: price in the diamonds data in L09.pdf

• Rule of thumb #2: if a variable represents the concentration of
something, take log

• e.g., concentration of chemical in the blood, etc

• When the values of a variable varies by several order of magnitude,
(e.g. some are 10 or 100 times larger than others), take log
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Interpretation of Log-Transformed Variables

• log(Y) = β0 + β1X ⇒ Y = eβ0eβ1X

When X is increased by 1, Y becomes eβ1 times as large

• log(Y) = β0 + β1 log(X) ⇒ Y = eβ0 Xβ1

• When X is doubled (X → 2X), Y becomes 2β1 times as large
• In Economics, β1 in the log-log model log(Y) = β0 + β1 log(X) is

called Elasticity since

Y = eβ0 Xβ1 ⇒
dY
dX
= β1eβ0 Xβ1−1 = β1

Y
X
⇒

dY
Y
= β1

dX
X

This means a 1% increase in X (dX/X = 1% = 0.01) would
lead to a β1% increase in Y ( dY/Y = β1 × 0.01)
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Transformations to Reduce
Skewness



Why Worry About Skewness?

• If the response is skewed, the normality assumption of the
noise ε is probably violated
• non-normality is not a big problem if it’s the only issue (no

non-linearity or non-constant variability issues), may leave it
alone.

• e.g., in the NLSY data, log(Income2005) is left-skewed

• If a predictor is highly-skewed, there might be extreme outliers
or influential points. Transforming the predictor might make
the extreme outliers less extreme and reduce the impact of
influential points.
• i.e., when there exist outliers, try transforming variables
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Example: Brain and Body Weight of Mammals

Data: http://www.stat.uchicago.edu/~yibi/s224/data/mammals.txt



HippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippoHippo
0

1000

2000

3000

4000

0 1000 2000
Body Weight (kg)

B
ra

in
 W

ei
gh

t (
gr

am
s)

0

2

4

6

8

0 5
log of Body Weight (kg)

lo
g 

of
 B

ra
in

 W
ei

gh
t (

gr
am

s)

Before transformation, both Brain weight and Body weight are
highly right-skewed.
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Transformations to Reduce Skewness

Skewness can often be ameliorated by a power transformation.

fλ(y) =

y
λ, if λ , 0

log(y), if λ = 0.

• If right-skewned, try taking square root, logarithm, or other
powers λ < 1

y −→ 1/y, log(y),
√

y, or yλ with λ < 1

• If left-skewned, try squaring, cubing, or other powers λ > 1

y −→ y2, y3, or yλ with λ > 1
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Square-Root Transformation Can Reduce Right-Skewness

The square-root transformation can shorten the upper tail and
extend the lower tail, of a distribution and hence can reduce
right-skewness.
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Log Transformation Reduces Right-Skewness Even More!

Logarithm can shorten the upper tail and extend the lower tail even
more
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Square Transformation Can Reduce Left-Skewness

The square transformation (y→ y2) can extend the upper tail and
shorten the lower tail, and hence can reduces left-skewness (and
increase right-skewness).
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Transformations to Stablize
Variance



Supervisor/Employee Data (p.176)

Data: http://www.stat.uchicago.edu/~yibi/s224/data/P176.txt

X = # of Supervised Workers
Y = # of Supervisors in 27 Industrial Establishments

supvis = read.table("P176.txt", h=T)

ggplot(supvis, aes(x=X, y=Y))+geom_point()+geom_smooth(method='lm')+

labs(x="# of Workers (X)", y="# of Supervisors (Y)")
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If we blindly fit an SLR model lm1 = lm(Y ~ X, data=supvis),
here is the residual plot.

lm1 = lm(Y ~ X, data=supvis)

ggplot(supvis, aes(x=X, y=lm1$res))+geom_point() +

xlab("# of Supervised Workers (X)")+

ylab("Residuals")+ geom_hline(yintercept=0)
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We see

• non-linearity

• heteroscedasticity
(non-constant
variance)
Specifically,
variance increases
with fitted values
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If we just deal with the non-linearity by adding a quadratic term X2

in the model, here is the residual plot

lm2 = lm(Y ~ X + I(Xˆ2), data=supvis)

ggplot(supvis, aes(x=X, y=lm2$res))+geom_point() +

xlab("# of Supervised Workers (X)")+

ylab("Residuals")+ geom_hline(yintercept=0)
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Why heteroscedasticity is a
problem?

Ans: Confidence intervals and
prediction intervals would be
too wide at small X
too narrow at large X
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Variance-Stabilizing Transformation

If the SD σ of noise (residuals) changes the mean µ of the
response (the fitted values), you can try a variance-stabilizing
transformation of the response to make the variance (closer to)
constant.

• if the SD is proportional to the fitted value, then

y→ log(y)

• if the SD is proportional to
√

the fitted value, i.e., the variance
is proportional to the fitted value, then

y→
√

y

• In general, if the SD σ is proportional to (the fitted values)α,
then the variance-stabilizing transformation is

y→

y1−α for α , 1
log(y) for α = 1 24



Box-Cox Method

Box-Cox method is an automatic procedure to select the “best”
power λ that make the residuals of the model

Yλ = β0 + β1X1 + . . . + βpXp + ε

closest to normal and constant variability.

• We usually round the optimal λ to a convenient power like
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1
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1
3
,

1
2
, 1, 2, . . .

since the practical difference of y0.5827 and y0.5 is usually small,
but the square-root transformation is much easier to interpret.

• A confidence interval for the optimal λ can also be obtained
(formula and details omitted).
We usually select a convenient power λ∗ in this C.I.
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Box-Cox Method for Supervisor/Employee Data

library(MASS)

boxcox(lm(Y ~ X + I(Xˆ2), data=supvis))
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Box-Cox says take log of Y.

lm3 = lm(log(Y) ~ X + I(Xˆ2), data=supvis)

summary(lm3)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.851600363 0.1566401294 18.205 1.496e-15

X 0.003112674 0.0003989301 7.803 4.898e-08

I(Xˆ2) -0.000001102 0.0000002238 -4.925 5.027e-05
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Left figure: scatterplot of X v.s. log(Y), overlay the fitted curve of
log(Y) ~ X + I(Xˆ2)

Right figure: residual plot for the model log(Y) ~ X + I(Xˆ2).
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• No clear nonlinearity or heteroscadasticity.
• The quadratic term X2 is significant

(R output on previous page)
• Relation between X and log(Y) is NOT monotone based on

the quadratic model log(Y) ~ X + I(Xˆ2)
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When X & Y are Both Log-Transformed

We can try taking log of both X and Y.

lm4 = lm(log(Y) ~ log(X), data=supvis)
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• Also an acceptable model based on the scatterplot and the
residual plot

• Better interpretation than the quadratic model log(Y) ~ X +
I(Xˆ2) since log(Y)~log(X) assumes a monotone relation
between X and Y
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summary(lm4)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.4846 0.43544 -3.409 2.215e-03

log(X) 0.9092 0.06673 13.625 4.508e-13
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The line/curves for the 3 models below

• Blue: lm(Y ~ X, data=supvis)
• Green: lm(log(Y) ~ X + I(Xˆ2), data=supvis)
• Red: lm(log(Y) ~ log(X), data=supvis)
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Blue region: 95% prediction intervals based on the model Y ~ X

Red region: 95% prediction intervals based on the model log(Y)
~ log(X)
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Though the model Y~X and log(Y)~log(X) have nearly identical
fitted line/curve, their prediction intervals are very different. The
former one is nearly constant in width, while the width of the latter
one increases with X. 32



Caution on Transforming Variables

• Transformations are useful tools – we transform (rescale,
generally) the variables in the model so that the linear
regression model becomes (more) appropriate.

• Transformations, however, cannot fix all problems
• a non-linear model may be needed,
• one may try using weighted least square in Chapter 7 to

solve the nonconstant variability problem if no appropriate
transformation can be found.
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Caution on Transforming Variables

• Transformed variables might be difficult to interpret

• There are often many ways of transforming the variables in a
model, and there is seldom “the right one”. You might try more
than one, and choose that which provides the right balance of
model fit and ease of interpretation.

• Remember – whenever you transform your variables, all your
estimates and confidence intervals are expressed in that
scale. To report your results, you need to convert BACK to the
original scale.
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