STAT 224 Lecture 13 Chapter 6 Transformation of Variables

Yibi Huang

Why Transform Variables?

We transform variables (including predictors and responses) primarily for two reasons:

- to solve the non-linearity problem
- to solve the non-constant variability problem
 - Variance-Stabilizing Transformation
 - Box-Cox Method

Recall linear models are linear in the parameters, not predictors.

All of the following are linear models:

• $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \varepsilon$

•
$$Y = \beta_0 + \beta_1 \log(X) + \varepsilon$$

•
$$Y = \beta_0 + \beta_1 \sqrt{X} + \varepsilon$$

Whereas the following is not a linear model since it's not linear in β_1 .

$$Y = \beta_0 + \exp(\beta_1 X) + \varepsilon$$

Linearizable Models

Some nonlinear models can be turn into linear model after transforming variables

• Ex1: exponential growth or decay models

$$Y = \alpha e^{\beta X}.$$

Taking the log of both sides yields

$$\log(Y) = \log(\alpha) + \beta X.$$

• Ex2: Learning theory in psychology states that the time to perform a task (*T_i*) on the *i* occasion follows

$$T_i = \alpha \beta^i, \quad \alpha > 0, \quad 0 < \beta < 1$$

Taking the log of both sides yields

$$\log(T_i) = \log(\alpha) + \log(\beta)i.$$

Function	Transformation	Linear Form
$Y = \alpha X^{\beta}$	$Y' = \log Y, X' = \log X$	$Y' = \log \alpha + \beta X'$
$Y = \alpha e^{\beta X}$	$Y' = \log Y$	$Y' = \log \alpha + \beta X$
$Y = \alpha + \beta \log X$	$X' = \log X$	$Y = \alpha + \beta X'$
$Y = \frac{X}{\alpha X - \beta}$ $Y = \frac{e^{\alpha + \beta X}}{1 + e^{\alpha + \beta X}}$	$Y' = \frac{1}{Y}, X' = \frac{1}{X}$	$Y'=\alpha-\beta X'$
$Y = \frac{e^{\alpha + \beta X}}{1 + e^{\alpha + \beta X}}$	$Y' = \log \frac{Y}{1-Y}$	$Y' = \alpha + \beta X$

These nonlinear models can be turned linear after transformation and the tools in MLR can still be applied.

Ex.

- $Y = \delta + \alpha \beta^X$
- $Y = \alpha_1 e^{\beta_1 X} + \alpha_2 e^{\beta_2 X}$

The strictly nonlinear models (i.e., those not linearizable by variable transformation) require very different methods. (not covered in STAT 224)

Transformations to Achieve Linearity

Example: Bacteria Deaths Due to X-Ray Radiation (p.168)

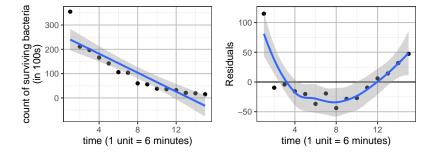
Data: http://www.stat.uchicago.edu/~yibi/s224/data/P168.txt

```
bact = read.table("P168.txt", header=T)
```

- t = time (1 unit = 6 minutes)
- N_t = n_t = the number of surviving bacteria (in 100s) following exposure to 200-kilo-volt X-rays in after t units of time

If we blindly fit an SLR model $lm1 = lm(N_t \sim t, data=bact)$

```
library(ggplot2)
ggplot(bact, aes(x=t, y=N_t))+geom_point()+
geom_smooth(method='lm')+ xlab("time (1 unit = 6 minutes)")+
ylab("count of surviving bacteria\n(in 100s)")
lm1 = lm(N_t ~ t, data=bact)
ggplot(bact, aes(x=t, y=lm1$res))+geom_point() +
labs(x="time (1 unit = 6 minutes)", y="Residuals")+
geom_hline(yintercept=0) + geom_smooth()
```



When not knowing what transformation to make, we would begin by looking at the scatterplot.

• In this case, the scatterplot is obviously non-linear.

In some cases, non-linearity may not be obvious in the scatterplot. Should always check the residual plot as well for this reason.

• For this example, we see that non-linearity is more obvious in the residual plot than in the scatterplot.

According to theory, we expect a exponential decay in the count of bacteria in time:

$$n_t = n_0 e^{\beta_1 t}$$
, where $\begin{cases} n_0 = \text{initial population size} \\ \beta_1 = \text{decay rate} \end{cases}$

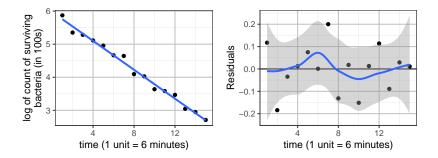
Taking log of both sides, we get

$$\log n_t = \log n_0 + \beta_1 t = \beta_0 + \beta_1 t,$$

which suggests that we regress $\log n_t$ against *t*.

 $lm2 = lm(log(N_t) \sim t, data=bact)$

ggplot(bact, aes(x=t, y=log(N_t)))+geom_point()+
 geom_smooth(method='lm', se=F)+xlab("time (1 unit = 6 minutes)")+
 ylab("log of count of surviving\nbacteria (in 100s)")
ggplot(bact, aes(x=t, y=lm2\$res))+geom_point() +
 xlab("time (1 unit = 6 minutes)")+ ylab("Residuals")+
 geom_hline(yintercept=0) + geom_smooth()



- Scatterplot shows transformation achieves linearity
- Residual plot shows no clear violation of model assumptions

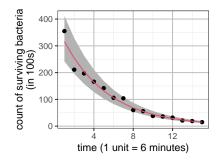
Interpretation of the Exponential Decay Model

For the exponential decay model $n_t = n_0 e^{\beta_1 t}$, for every extra unit of time, the number of surviving bacteria becomes e^{β_1} times as large.

Every 6 minutes, the number of surviving bacteria is estimated to decrease by $1 - e^{-0.2184} \approx 1 - 0.804 = 19.6\%$ (95% Cl is $1 - e^{-0.2326} \approx 18.5\%$ to $1 - e^{-0.2042} \approx 20.8\%$).

Back to the Original Scale

```
pred.log = predict(lm2, data.frame(t = 1:15), interval="prediction")
pred.orig = exp(pred.log)
ggplot(bact, aes(x=t, y=N_t))+
geom_ribbon(aes(ymin=pred.orig[,2],ymax=pred.orig[,3]),fill="grey70")+
geom_point()+geom_line(aes(y=pred.orig[,1]), col=2)+
xlab("time (1 unit = 6 minutes)")+
ylab("count of surviving bacteria\n(in 100s)")
```



About the Log-Transformation

Logarithm is the Most Commonly Used Transformation

• When the size of error is proportional to the mean, take log

 $Y = f(X_1, \dots, X_p)(1 + \varepsilon) \quad \Rightarrow \quad \log(Y) = \log f(X_1, \dots, X_p) + \log(1 + \varepsilon)$

- Rule of thumb #1: if a variable is about amount of money, take log
 - Ex1: Education Expenditure data in HW4 Both y = Per capita expenditure on public education, and x1 = Per capita personal income, are log-transformed in HW4
 - Ex2: Income2005 in the NLSY data
 - Ex3: price in the diamonds data in L09.pdf
- Rule of thumb #2: if a variable represents the **concentration** of something, take log
 - e.g., concentration of chemical in the blood, etc
- When the values of a variable varies by several order of magnitude, (e.g. some are 10 or 100 times larger than others), take log

Interpretation of Log-Transformed Variables

• $\log(Y) = \beta_0 + \beta_1 X \implies Y = e^{\beta_0} e^{\beta_1 X}$ When X is increased by 1, Y becomes e^{β_1} times as large

•
$$\log(Y) = \beta_0 + \beta_1 \log(X) \implies Y = e^{\beta_0} X^{\beta_1}$$

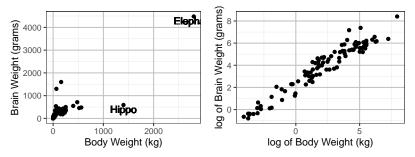
- When X is doubled $(X \rightarrow 2X)$, Y becomes 2^{β_1} times as large
- In Economics, β₁ in the log-log model log(Y) = β₀ + β₁ log(X) is called Elasticity since

$$Y = e^{\beta_0} X^{\beta_1} \implies \frac{dY}{dX} = \beta_1 e^{\beta_0} X^{\beta_1 - 1} = \beta_1 \frac{Y}{X} \implies \boxed{\frac{dY}{Y} = \beta_1 \frac{dX}{X}}$$

This means a 1% increase in *X* (dX/X = 1% = 0.01) would lead to a $\beta_1\%$ increase in *Y* ($dY/Y = \beta_1 \times 0.01$)

Transformations to Reduce Skewness

- If the response is skewed, the normality assumption of the noise ε is probably violated
 - non-normality is not a big problem if it's the only issue (no non-linearity or non-constant variability issues), may leave it alone.
 - e.g., in the NLSY data, log(Income2005) is left-skewed
- If a predictor is highly-skewed, there might be extreme outliers or influential points. Transforming the predictor might make the extreme outliers less extreme and reduce the impact of influential points.
 - i.e., when there exist outliers, try transforming variables



Before transformation, both Brain weight and Body weight are highly right-skewed.

Skewness can often be ameliorated by a power transformation.

$$f_{\lambda}(y) = \begin{cases} y^{\lambda}, & \text{if } \lambda \neq 0\\ \log(y), & \text{if } \lambda = 0. \end{cases}$$

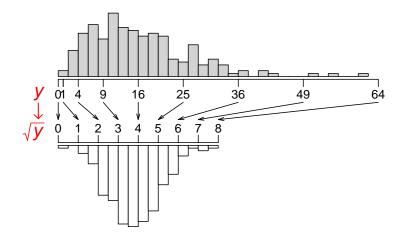
 If right-skewned, try taking square root, logarithm, or other powers λ < 1

$$y \longrightarrow 1/y, \log(y), \sqrt{y}, \text{ or } y^{\lambda} \text{ with } \lambda < 1$$

• If **left-skewned**, try squaring, cubing, or other powers $\lambda > 1$

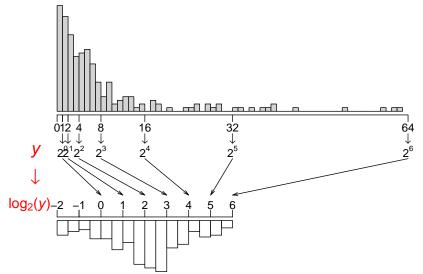
$$y \longrightarrow y^2, y^3, \text{ or } y^\lambda \text{ with } \lambda > 1$$

The square-root transformation can shorten the upper tail and extend the lower tail, of a distribution and hence can reduce right-skewness.



Log Transformation Reduces Right-Skewness Even More!

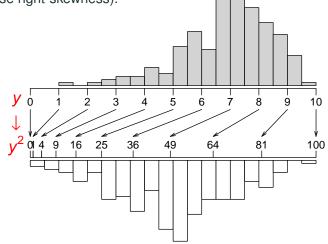
Logarithm can shorten the upper tail and extend the lower tail even more



19

Square Transformation Can Reduce Left-Skewness

The square transformation $(y \rightarrow y^2)$ can extend the upper tail and shorten the lower tail, and hence can reduces left-skewness (and increase right-skewness).

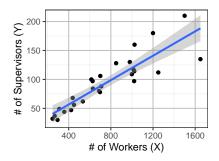


Transformations to Stablize Variance

Data: http://www.stat.uchicago.edu/~yibi/s224/data/P176.txt

- X = # of Supervised Workers
- Y = # of Supervisors in 27 Industrial Establishments

supvis = read.table("P176.txt", h=T)
ggplot(supvis, aes(x=X, y=Y))+geom_point()+geom_smooth(method='lm')+
labs(x="# of Workers (X)", y="# of Supervisors (Y)")

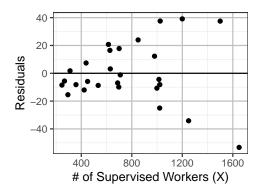


If we blindly fit an SLR model $lm1 = lm(Y \sim X, data=supvis)$, here is the residual plot.

```
lm1 = lm(Y ~ X, data=supvis)
ggplot(supvis, aes(x=X, y=lm1$res))+geom_point() +
xlab("# of Supervised Workers (X)")+
ylab("Residuals")+ geom_hline(yintercept=0)
```

We see

- non-linearity
- heteroscedasticity (non-constant variance)
 Specifically, variance increases with fitted values



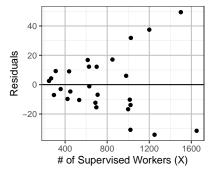
If we just deal with the non-linearity by adding a quadratic term X^2 in the model, here is the residual plot

```
lm2 = lm(Y \sim X + I(X^2), data=supvis)
```

```
ggplot(supvis, aes(x=X, y=lm2$res))+geom_point() +
xlab("# of Supervised Workers (X)")+
ylab("Residuals")+ geom_hline(yintercept=0)
```

Why heteroscedasticity is a problem?

Ans: Confidence intervals and prediction intervals would be too wide at small *X* too narrow at large *X*



If the SD σ of noise (residuals) changes the mean μ of the response (the fitted values), you can try a **variance-stabilizing transformation** of the response to make the variance (closer to) constant.

• if the SD is proportional to the fitted value, then

 $y \rightarrow \log(y)$

 if the SD is proportional to √the fitted value, i.e., the variance is proportional to the fitted value, then

$$y \rightarrow \sqrt{y}$$

 In general, if the SD *σ* is proportional to (the fitted values)^α, then the variance-stabilizing transformation is

$$y \to \begin{cases} y^{1-\alpha} & \text{for } \alpha \neq 1\\ \log(y) & \text{for } \alpha = 1 \end{cases}$$
 24

Box-Cox Method

Box-Cox method is an automatic procedure to select the "best" power λ that make the residuals of the model

$$Y^{\lambda} = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon$$

closest to normal and constant variability.

• We usually round the optimal λ to a *convenient power* like

$$-1, -\frac{1}{2}, -\frac{1}{3}, 0, \frac{1}{3}, \frac{1}{2}, 1, 2, \dots$$

since the practical difference of $y^{0.5827}$ and $y^{0.5}$ is usually small, but the square-root transformation is much easier to interpret.

Box-Cox Method

Box-Cox method is an automatic procedure to select the "best" power λ that make the residuals of the model

$$Y^{\lambda} = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon$$

closest to normal and constant variability.

• We usually round the optimal λ to a *convenient power* like

$$-1, -\frac{1}{2}, -\frac{1}{3}, 0, \frac{1}{3}, \frac{1}{2}, 1, 2, \dots$$

since the practical difference of $y^{0.5827}$ and $y^{0.5}$ is usually small, but the square-root transformation is much easier to interpret.

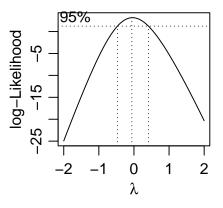
 A confidence interval for the optimal λ can also be obtained (formula and details omitted).

We usually select a convenient power λ^* in this C.I.

library(MASS)
boxcox(lm(Y ~ X + I(X²), data=supvis))

The middle dash line marks the optimal λ , the right and left dash line mark the 95% C.I. for the optimal λ .

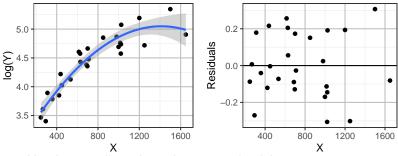
For the plot, we see the optimal λ is around 0.1, and the 95% C.I. contains 0. For simplicity, we pick $\lambda = 0$ and use log of fev as our response.



```
Box-Cox says take log of Y.
```

Left figure: scatterplot of X v.s. log(Y), overlay the fitted curve of $log(Y) \sim X + I(X^2)$

Right figure: residual plot for the model $log(Y) \sim X + I(X^2)$.

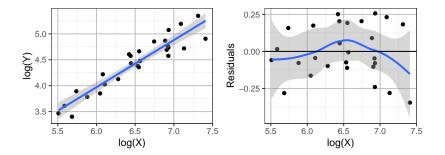


- No clear nonlinearity or heteroscadasticity.
- The quadratic term *X*² is significant (R output on previous page)
- Relation between X and log(Y) is NOT monotone based on the quadratic model log(Y) ~ X + I(X²)

When X & Y are Both Log-Transformed

We can try taking log of both X and Y.

lm4 = lm(log(Y) ~ log(X), data=supvis)

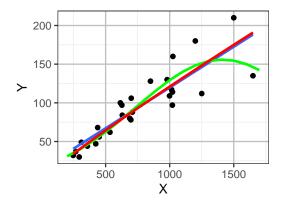


- Also an acceptable model based on the scatterplot and the residual plot
- Better interpretation than the quadratic model log(Y) ~ X + I(X^2) since log(Y)~log(X) assumes a monotone relation ²⁹

<pre>summary(lm4)\$coef</pre>						
	Estimate	Std.	Error	t value	Pr(> t)	
(Intercept)	-1.4846	0	.43544	-3.409	2.215e-03	
log(X)	0.9092	0	.06673	13.625	4.508e-13	

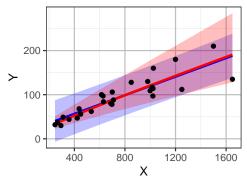
The line/curves for the 3 models below

- Blue: lm(Y ~ X, data=supvis)
- Green: lm(log(Y) ~ X + I(X²), data=supvis)
- Red: lm(log(Y) ~ log(X), data=supvis)



Blue region: 95% prediction intervals based on the model Y \sim X

Red region: 95% prediction intervals based on the model log(Y) ~ log(X)



Though the model $Y \sim X$ and $log(Y) \sim log(X)$ have nearly identical fitted line/curve, their prediction intervals are very different. The former one is nearly constant in width, while the width of the latter one increases with *X*.

- Transformations are useful tools we transform (rescale, generally) the variables in the model so that the linear regression model becomes (more) appropriate.
- Transformations, however, cannot fix all problems
 - a non-linear model may be needed,
 - one may try using **weighted least square** in Chapter 7 to solve the nonconstant variability problem if no appropriate transformation can be found.

Caution on Transforming Variables

- Transformed variables might be difficult to interpret
- There are often many ways of transforming the variables in a model, and there is seldom "the right one". You might try more than one, and choose that which provides the right balance of model fit and ease of interpretation.
- Remember whenever you transform your variables, all your estimates and confidence intervals are expressed in that scale. To report your results, you need to convert BACK to the original scale.