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Assumptions of Multiple
Regression Models



Assumptions about the Model Form

We assume that the relationship between the response (Y) and the
predictors (X1, . . . , Xp) is linear.

Y = β0 + β1X1 + · · · + βpXp + ε

• For SLR, one can check linearity just by plotting Y against X
• For MLR, it’s harder check the linearity assumption
• Sometimes a non-linear relation can be turned linear by

transforming variables.
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Assumptions about the Errors

The errors ε1, ε2, . . . , εn are

• independent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Chapter 8
• with mean 0 and
• common variance σ2, and . . . . . . . . . . . . . . . . . . . . . Chapter 6 & 7
• (optional) normally distributed
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Assumptions about the Predictors

1. The predictors X1, X2, . . . , Xp are nonrandom fixed values

• The assumption more closely fits designed experiments,
where Xi’s are conditions, dose levels, etc, which can be
manipulated and controlled

• Otherwise, the inferences are conditional on the observed
data. This subtle distinction will not be of further concern to us
from now.

2. The predictors X1, X2, . . . , Xp are measured without error.

• Never completely satisfied in real life.
• Prediction intervals are less accurate.
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Assumptions about the Predictors (2)

3. The predictors are linearly independent, i.e., no predictor
can be expressed as a linear combination of others
• Ex: if X1 = #undergrads, X2 =#grads, X3 = #students,

then X1 + X2 = X3

• no unique LS estimates for coefficients if there exist exact
col-linearity between predictors

• fine if there is no strong collinearity
• Violation of this assumption is called multicollinearity, will

discuss in Ch 9-10.
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One hallmark of Multiple Linear Regression Model is that small
deviations from these assumptions do not invalidate our
conclusions in a major way.
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Leverage



MLR Models in Matrix Notation

Recall the MLR model

y j = β0 + β1x1 j + β2x2 j + · · · + βpxp j + ε j.

The matrix representation is
Y︷︸︸︷
y1

y2
...

yn

 =
X︷                  ︸︸                  ︷

1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
...
...
...
...
...

1 xn1 xn2 · · · xnp



β︷︸︸︷
β0

β1
...

βp

 +

ε︷︸︸︷
ε1

ε2
...

εn


dimensions: [n × 1] [n × (p + 1)] [(p+1)×1] [n × 1]

This is often written as
Y = Xβ + ε

for short, and X is often called the model matrix or the design
matrix. 7



The Hat Matrix H

The sum of squares
∑n

i=1(yi − β0 − β1xi1 − · · · − βpxip)2 can be
written as

(Y − Xβ̂)T (Y − Xβ̂)

• The normal equations can be written as:

XT Xβ̂ = XT Y

• Least squares estimate for β:

β̂ = (XT X)−1XT Y

• Predicted Value Ŷ:

Ŷ = Xβ̂ = X(XT X)−1XT Y = HY

where H = X(XT X)−1XT , is called the hat matrix or the
projection matrix
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Leverage

Ŷ︷︸︸︷
ŷ1

ŷ2
...

ŷn

 =
H︷                     ︸︸                     ︷

h11 h12 · · · h1n

h21 h22 · · · h2n
...

...
. . .

...

hn1 hn2 · · · hnn



Y︷︸︸︷
y1

y2
...

yn


Ŷ = HY means every predicted value ŷi is a linear combination of
y1, . . . , yn

ŷi = hi1y1 + hi2y2 + . . . + hinyn,

and hi j is the (i, j)th element of the matrix H, and is completely
determined by the predictors X as H = X(XT X)−1XT

• hi j = the weight given to y j in predicting ŷi.
• hii = the weight given to yi in predicting ŷi, is called the

leverage of ith observation, i = 1, 2, . . . , n. 9



Leverage (2)

• If the leverage of ith observation, hii, is large (close to 1), then
this ith observation is called a leverage point. It means the
prediction of ŷi depends a lot on the observation yi itself and
relatively less on other observations. It further means that the
ith observation is an outlier in the X space.

• When there is only a single predictor in the model (SLR) we
have

hi j =
1
n
+

(xi − x̄)(x j − x̄)∑n
k=1(xk − x̄)2 .

And the leverage in SLR is given by

hii =
1
n
+

(xi − x̄)2∑n
k=1(xk − x̄)2 .

Observe that hii is large when xi is far from x̄ relative to the
SD of X, which means xi is an outlier in X.
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Properties of the leverage hii (in MLR with intercept)

1. 1
n ≤ hii ≤ 1

2.
∑

hii = p + 1
3. Thus, on average, hii ≈ (p + 1)/n.

We can look for values far from this as rough screen for high
leverage points.
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Types of Residuals



Properties of (Raw) Residuals

Recall the (raw) residual of the ith observation is defined to be

ei = yi − ŷi = observed yi − predicted yi

Recall the errors ε’s have 0 mean and constant variance σ2.

• Residuals ei also have 0 mean, E(ei) = 0, but
• unequal variance Var(ei) = σ2(1 − hii), where hii = leverage
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Properties of (Raw) Residuals

Recall we proved on page 25 of the slides L02.pdf that

•
∑

i ei = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Residuals add up to 0
• Cor(Xk, e) = 0 . . Residuals are uncorrelated w/ each predictor

Hence residuals have 0 correlation with fitted values:

Cor(Ŷ , e) = 0

About Independence:

• We assume the errors ε’s to be independent of each other
• Residuals are NOT independent of each other as they must

add up to 0
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Standardized Residuals = Internally Studentized Residuals

• As residuals have different variances Var(ei) = σ2(1 − hii), we
cannot identify outliers by comparing the magnitude of raw
residuals.

• We standardize the ith residual ei as

zi =
ei

σ
√

1 − hii
.

• When the unknown σ is estimated by
√

MSE, we get the
standardized residual or internally studentized residuals

ri =
ei

σ̂
√

1 − hii
.

• ri has mean zero and standard deviation 1, but ri’s no longer
add up to 0

• Observations w/ large |ri| (over 2 or 3 or 4) are potential
outliers
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A Drawback of Internally Studentized Residuals

When there exists an outlier, it will

• distort the LS line,
• enlarge the residuals of other

points and σ̂2 = MSE,
• underestimate the internally

studentized residuals of the
outlier.

Hence, it’s better estimate σ2

excluding the outlier.

This is the idea behind
externally studentized residuals
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Studentized Residuals = Externally Studentized Residuals

Externally studentized residuals or studentized residuals are
defined as:

r⋆i =
ei

σ̂(i)
√

1 − hii

• ei is still computed using all the data but σ̂(i) is computed from
the MSE of the model that uses all the data EXCEPT the ith
observation
• The subscript “(i)” means “all but the ith observation”.

• Externally studentized residuals r⋆i can be calculated from
internally studentized residuals ri via

r⋆i = ri

√
n − p − 2

n − p − 1 − r2
i

If an observation is not an outlier, r⋆i ≈ ri. It makes little
difference which one we used. 16



Comparisons of 3 Types of Residuals

Under assumptions of MLR models

• ei’s add up to 0, ri’s and r⋆i ’s do not add up to 0
• ei’s have unequal variance, but ri’s and r⋆i ’s have variance 1
• r⋆i has a t-distribution with n − p − 2 d.f. but ri does not have a

t-distribution.
• With a large enough sample, ri and r⋆i are approx. N(0, 1)
• None of the 3 types of residuals are strictly independent, but

the dependence can be ignored with large enough samples.
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3 Kinds of Residuals in R

• The (raw) residuals ei can be obtained like modelname$res

lm1 = lm(Y~X)

lm1$res

• The internally and externally studentized residuals can be
obtained using rstandard() and rstudent() command

lm1 = lm(Y~X)

rstandard(lm1)

rstudent(lm1)
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For the data in the plot below
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lm1 = lm(Y~X)

Raw.Res = round(lm1$res,2)

Int.Res = round(rstandard(lm1),2)

Ext.Res = round(rstudent(lm1),2)

data.frame(X,Y,Raw.Res,Int.Res,Ext.Res)

X Y Raw.Res Int.Res Ext.Res

1 9.0 0.2 -5.02 -3.65 -6.96

2 5.9 6.0 1.38 0.84 0.84

3 4.9 6.4 1.98 1.19 1.20

4 3.9 4.7 0.47 0.28 0.27

5 6.9 5.9 1.09 0.69 0.67

6 4.1 3.7 -0.57 -0.34 -0.33

7 3.7 4.8 0.61 0.37 0.36

8 1.5 3.2 -0.56 -0.35 -0.35

9 5.5 4.6 0.06 0.04 0.03

10 2.1 3.0 -0.88 -0.54 -0.53

11 1.7 3.8 0.00 0.00 0.00

12 2.3 3.5 -0.42 -0.26 -0.25

13 0.7 1.1 -2.50 -1.65 -1.74

14 3.8 5.0 0.79 0.47 0.46

15 4.9 4.6 0.18 0.11 0.10

16 5.3 4.2 -0.30 -0.18 -0.18

17 3.8 3.7 -0.51 -0.30 -0.30

18 5.4 6.9 2.38 1.44 1.48

19 4.2 3.8 -0.49 -0.29 -0.28

20 5.2 6.8 2.32 1.40 1.44
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Various Kinds of Residual Plots

• Residuals v.s. fitted values
• Residuals v.s. each predictor
• Residuals v.s. potential predictors not yet included in the model
• Residuals v.s. several predictors using ggplot()
• Residuals v.s. time if the data are collected over time
• Residuals v.s. . . . (be creative)

In all the plots above, points should scatter evenly above and below the
zero line in a band of constant width.
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FEV Lung Capacity Data Revisit

For the FEV lung capacity data,

fevdata = read.table("fevdata.txt", header = TRUE)

fevdata$sex = factor(fevdata$sex, labels=c("Female","Male"))

fevdata$smoke = factor(fevdata$smoke, labels=c("Nonsmoker","Smoker"))

recall we considered the model below with age*smoke and
age*sex interactions.

lm1 = lm(fev ~ age*smoke + age*sex, data=fevdata)

22



Residuals v.s. Fitted Values
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• Usually, the look of residual
plots doesn’t depend much
on the type of residuals
used, if all leverages hii ≪ 1
or all are of similar magnitude.

• Variance increases with fitted values in all 3 plots 23



R Codes for The Plots on the Previous Page

ggplot(fevdata, aes(x=lm1$fit, y=lm1$res)) + geom_point() +

xlab("Fitted Values") + ylab("(Raw) Residuals") +

geom_hline(yintercept = 0, col=2)

ggplot(fevdata, aes(x=lm1$fit, y=rstandard(lm1))) +

geom_point() + xlab("Fitted Values") +

ylab("Standardized Residuals") +

geom_hline(yintercept = 0, col=2)

ggplot(fevdata, aes(x=lm1$fit, y=rstudent(lm1))) +

geom_point() + xlab("Fitted Values") +

ylab("Studentized Residuals") +

geom_hline(yintercept = 0, col=2)
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Residuals v.s. Each Predictor

ggplot(fevdata, aes(x=age, y=rstudent(lm1))) + geom_point() +

xlab("Age (years)") + ylab("Studentized Residuals") +

geom_hline(yintercept = 0, col=2)

ggplot(fevdata, aes(x=sex, y=rstudent(lm1))) + geom_point() +

ylab("Studentized Residuals") +

geom_hline(yintercept = 0, col=2)

ggplot(fevdata, aes(x=smoke, y=rstudent(lm1))) + geom_point() +

ylab("Studentized Residuals") +

geom_hline(yintercept = 0, col=2)
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Residuals v.s. Several Predictors

ggplot(fevdata, aes(x=age, y=rstudent(lm1))) + geom_point() +

facet_grid(smoke~sex) + geom_smooth(method='loess') +

labs(x = "Age (years)", y= "Studentized Residuals") +

geom_hline(yintercept = 0, col=2)
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• The blue line is
the loess
smoother

• Slight nonlinearity
among M & F
nonsmokers
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Residuals v.s. Potential Predictors

Recall the model lm1 doesn’t not include ht (Height) as a
predictor. Let’s plot the residuals of lm1 against ht and see.

ggplot(fevdata, aes(x=ht, y=rstudent(lm1))) +

geom_point()+geom_smooth(method='loess') +

labs(x="Height (inches)", y="Studentized Residuals") +

geom_hline(yintercept = 0, col=2)

`geom_smooth()` using formula 'y ~ x'
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The residuals clearly have
a positive nonlinear rela-
tion with height, meaning
ht should be included in
the model.
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Residuals v.s. Potential Predictors (2)

ggplot(fevdata, aes(x=ht, y=rstudent(lm1))) + geom_point() +

facet_grid(smoke~sex,scale='free_y') + geom_smooth(method='loess') +

labs(x = "Height (inches)", y = "Studentized Residuals") +

geom_hline(yintercept = 0, col=2)

Female Male

N
onsm

oker
S

m
oker

45 50 55 60 65 70 7545 50 55 60 65 70 75

−2

0

2

−8

−4

0

Height (inches)

S
tu

de
nt

iz
ed

 R
es

id
ua

ls

28



Problems Identified So Far

For the model below

lm1 = lm(fev ~ age*smoke + age*sex, data=fevdata)

we found the following problems based on the residual plots

• nonlinearity between age and fev
• variance of noise increases with fitted value
• ht or its transformation should be included
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