STAT 224 Lecture 10 Chapter 4 Model Diagnostics, Part 1

Yibi Huang

Assumptions of Multiple Regression Models

We assume that the relationship between the response (*Y*) and the predictors (X_1, \ldots, X_p) is linear.

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \varepsilon$$

- For SLR, one can check linearity just by plotting Y against X
- For MLR, it's harder check the linearity assumption
- Sometimes a non-linear relation can be turned linear by transforming variables.

The errors $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ are

- independent Chapter 8
- with mean 0 and
- common variance σ^2 , and Chapter 6 & 7
- (optional) normally distributed

Assumptions about the Predictors

- 1. The predictors X_1, X_2, \ldots, X_p are **nonrandom fixed values**
- The assumption more closely fits designed experiments, where *X_i*'s are conditions, dose levels, etc, which can be manipulated and controlled
- Otherwise, the inferences are conditional on the observed data. This subtle distinction will not be of further concern to us from now.
- 2. The predictors X_1, X_2, \ldots, X_p are **measured without error**.
 - Never completely satisfied in real life.
 - Prediction intervals are less accurate.

- 3. The predictors are **linearly independent**, i.e., no predictor can be expressed as a linear combination of others
 - Ex: if X_1 = #undergrads, X_2 =#grads, X_3 = #students, then $X_1 + X_2 = X_3$
 - no unique LS estimates for coefficients if there exist exact col-linearity between predictors
 - fine if there is no strong collinearity
 - Violation of this assumption is called <u>multicollinearity</u>, will discuss in Ch 9-10.

One hallmark of Multiple Linear Regression Model is that small deviations from these assumptions do not invalidate our conclusions in a major way.

Leverage

Recall the MLR model

$$y_j = \beta_0 + \beta_1 x_{1j} + \beta_2 x_{2j} + \dots + \beta_p x_{pj} + \varepsilon_j.$$

The matrix representation is

$$\overbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}^{\mathbf{Y}} = \overbrace{\begin{pmatrix} 1 \ x_{11} \ x_{12} \ \cdots \ x_{1p} \\ 1 \ x_{21} \ x_{22} \ \cdots \ x_{2p} \\ \vdots \ \vdots \ \vdots \ \vdots \ \vdots \ \vdots \ \vdots \\ 1 \ x_{n1} \ x_{n2} \ \cdots \ x_{np} \end{pmatrix}}^{\beta} \overbrace{\begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}}^{\varepsilon} + \overbrace{\begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}}^{\varepsilon}$$

dimensions: $[n \times 1]$ $[n \times (p+1)]$ $[(p+1) \times 1]$ $[n \times 1]$

This is often written as

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

for short, and ${\bf X}$ is often called the **model matrix** or the **design matrix**.

The Hat Matrix H

The sum of squares $\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip})^2$ can be written as

$$(\mathbf{Y} - \mathbf{X}\widehat{\boldsymbol{\beta}})^T (\mathbf{Y} - \mathbf{X}\widehat{\boldsymbol{\beta}})$$

• The normal equations can be written as:

 $\mathbf{X}^T \mathbf{X} \widehat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{Y}$

Least squares estimate for β:

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

• Predicted Value $\widehat{\mathbf{Y}}$:

$$\widehat{\mathbf{Y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = \mathbf{H}Y$$

where $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$, is called the *hat matrix* or the projection matrix

Leverage

$$\begin{array}{c}
\widehat{\mathbf{Y}} \\
\widehat{\left(\begin{array}{c} \widehat{y}_{1} \\ \widehat{y}_{2} \\ \vdots \\ \widehat{y}_{n} \end{array}\right)} = \begin{pmatrix}
\mathbf{H} & \mathbf{Y} \\
h_{11} & h_{12} & \cdots & h_{1n} \\
h_{21} & h_{22} & \cdots & h_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
h_{n1} & h_{n2} & \cdots & h_{nn} \end{pmatrix} \begin{pmatrix}
y_{1} \\
y_{2} \\
\vdots \\
y_{n} \end{pmatrix}$$

 $\widehat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$ means every predicted value \widehat{y}_i is a linear combination of y_1, \dots, y_n

$$\widehat{y_i} = h_{i1}y_1 + h_{i2}y_2 + \ldots + h_{in}y_n,$$

and h_{ij} is the (i, j)th element of the matrix **H**, and is completely determined by the predictors **X** as $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$

- h_{ij} = the weight given to y_j in predicting \hat{y}_i .
- *h_{ii}* = the weight given to *y_i* in predicting *ŷ_i*, is called the *leverage* of *i*th observation, *i* = 1, 2, ..., *n*.

Leverage (2)

• If the leverage of *i*th observation, h_{ii} , is large (close to 1), then this *i*th observation is called a **leverage point**. It means the prediction of \hat{y}_i depends a lot on the observation y_i itself and relatively less on other observations. It further means that the *i*th observation is an outlier in the *X* space.

Leverage (2)

- If the leverage of *i*th observation, h_{ii} , is large (close to 1), then this *i*th observation is called a **leverage point**. It means the prediction of \hat{y}_i depends a lot on the observation y_i itself and relatively less on other observations. It further means that the *i*th observation is an outlier in the *X* space.
- When there is only a single predictor in the model (SLR) we have

$$h_{ij} = \frac{1}{n} + \frac{(x_i - \bar{x})(x_j - \bar{x})}{\sum_{k=1}^n (x_k - \bar{x})^2}.$$

And the leverage in SLR is given by

$$h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{k=1}^n (x_k - \bar{x})^2}.$$

Observe that h_{ii} is large when x_i is far from \bar{x} relative to the SD of *X*, which means x_i is an outlier in *X*.

- **1.** $\frac{1}{n} \le h_{ii} \le 1$
- **2.** $\sum h_{ii} = p + 1$
- 3. Thus, on average, $h_{ii} \approx (p+1)/n$.

We can look for values far from this as rough screen for high leverage points.

Types of Residuals

Recall the (raw) residual of the ith observation is defined to be

 $e_i = y_i - \hat{y}_i$ = observed y_i – predicted y_i

Recall the errors ε 's have 0 mean and constant variance σ^2 .

- Residuals e_i also have 0 mean, $E(e_i) = 0$, but
- *unequal* variance $Var(e_i) = \sigma^2(1 h_{ii})$, where h_{ii} = leverage

Recall we proved on page 25 of the slides L02.pdf that

- $\sum_i e_i = 0$ Residuals add up to 0
- $Cor(X_k, e) = 0$.. Residuals are uncorrelated w/ each predictor

Hence residuals have 0 correlation with fitted values:

 $\operatorname{Cor}(\widehat{Y},e)=0$

Recall we proved on page 25 of the slides L02.pdf that

- $\sum_i e_i = 0$ Residuals add up to 0
- $Cor(X_k, e) = 0$.. Residuals are uncorrelated w/ each predictor

Hence residuals have 0 correlation with fitted values:

 $\operatorname{Cor}(\widehat{Y},e)=0$

About Independence:

- We assume the errors ε 's to be independent of each other
- *Residuals are NOT independent* of each other as they must add up to 0

Standardized Residuals = Internally Studentized Residuals

- As residuals have different variances $Var(e_i) = \sigma^2(1 h_{ii})$, we cannot identify outliers by comparing the magnitude of raw residuals.
- We standardize the *i*th residual *e_i* as

$$z_i = \frac{e_i}{\sigma \sqrt{1 - h_{ii}}}.$$

 When the unknown σ is estimated by √MSE, we get the standardized residual or internally studentized residuals

$$r_i = \frac{e_i}{\widehat{\sigma} \sqrt{1 - h_{ii}}}.$$

- *r_i* has mean zero and standard deviation 1, but *r_i*'s no longer add up to 0
- Observations w/ large |r_i| (over 2 or 3 or 4) are potential outliers

When there exists an outlier, it will

- distort the LS line,
- enlarge the residuals of other points and $\widehat{\sigma}^2$ = MSE,
- underestimate the internally studentized residuals of the outlier.

Hence, it's better estimate σ^2 excluding the outlier.

This is the idea behind externally studentized residuals

Studentized Residuals = Externally Studentized Residuals

Externally studentized residuals or **studentized residuals** are defined as:

$$r_i^{\star} = \frac{e_i}{\widehat{\sigma}_{(i)} \sqrt{1 - h_{ii}}}$$

- e_i is still computed using all the data but $\hat{\sigma}_{(i)}$ is computed from the MSE of the model that uses all the data *EXCEPT the ith* observation
 - The subscript "(i)" means "all but the *i*th observation".
- Externally studentized residuals r_i^{*} can be calculated from internally studentized residuals r_i via

$$r_i^{\star} = r_i \sqrt{\frac{n-p-2}{n-p-1-r_i^2}}$$

If an observation is not an outlier, $r_i^{\star} \approx r_i$. It makes little difference which one we used.

Under assumptions of MLR models

- e_i 's add up to 0, r_i 's and r_i^* 's do not add up to 0
- e_i 's have unequal variance, but r_i 's and r_i^* 's have variance 1
- r_i^{\star} has a *t*-distribution with n p 2 d.f. but r_i does not have a *t*-distribution.
- With a large enough sample, r_i and r_i^{\star} are approx. N(0, 1)
- None of the 3 types of residuals are strictly independent, but the dependence can be ignored with large enough samples.

• The (raw) residuals e_i can be obtained like modelname\$res

lm1 = lm(Y~X)
lm1\$res

 The internally and externally studentized residuals can be obtained using rstandard() and rstudent() command

```
lm1 = lm(Y~X)
rstandard(lm1)
rstudent(lm1)
```

For the data in the plot below

$lm1 = lm(Y \sim X)$										
<pre>Raw.Res = round(lm1\$res,2)</pre>										
<pre>Int.Res = round(rstandard(lm1),2)</pre>										
<pre>Ext.Res = round(rstudent(lm1),2)</pre>										
<pre>data.frame(X,Y,Raw.Res,Int.Res,Ext.Res)</pre>										
	Х	Y	Raw.Res	<pre>Int.Res</pre>	Ext.Res					
1	9.0	0.2	-5.02	-3.65	-6.96					
2	5.9	6.0	1.38	0.84	0.84					
3	4.9	6.4	1.98	1.19	1.20					
4	3.9	4.7	0.47	0.28	0.27					
5	6 9	5 9	1 09	0 69	0 67					

	Х	Y	Raw.Res	<pre>Int.Res</pre>	Ext.Res
1	9.0	0.2	-5.02	-3.65	-6.96
2	5.9	6.0	1.38	0.84	0.84
3	4.9	6.4	1.98	1.19	1.20
4	3.9	4.7	0.47	0.28	0.27
5	6.9	5.9	1.09	0.69	0.67
6	4.1	3.7	-0.57	-0.34	-0.33
7	3.7	4.8	0.61	0.37	0.36
8	1.5	3.2	-0.56	-0.35	-0.35
9	5.5	4.6	0.06	0.04	0.03
10	2.1	3.0	-0.88	-0.54	-0.53
11	1.7	3.8	0.00	0.00	0.00
12	2.3	3.5	-0.42	-0.26	-0.25
13	0.7	1.1	-2.50	-1.65	-1.74
14	3.8	5.0	0.79	0.47	0.46
15	4.9	4.6	0.18	0.11	0.10
16	5.3	4.2	-0.30	-0.18	-0.18
17	3.8	3.7	-0.51	-0.30	-0.30
18	5.4	6.9	2.38	1.44	1.48
19	4.2	3.8	-0.49	-0.29	-0.28
20	5.2	6.8	2.32	1.40	1.44

Various Kinds of Residual Plots

- Residuals v.s. fitted values
- Residuals v.s. each predictor
- · Residuals v.s. potential predictors not yet included in the model
- Residuals v.s. several predictors using ggplot()
- · Residuals v.s. time if the data are collected over time
- Residuals v.s. ... (be creative)

In all the plots above, points should scatter evenly above and below the zero line in a band of constant width.

For the FEV lung capacity data,

```
fevdata = read.table("fevdata.txt", header = TRUE)
fevdata$sex = factor(fevdata$sex, labels=c("Female","Male"))
fevdata$smoke = factor(fevdata$smoke, labels=c("Nonsmoker","Smoker"))
```

recall we considered the model below with age*smoke and age*sex interactions.

lm1 = lm(fev ~ age*smoke + age*sex, data=fevdata)

Residuals v.s. Fitted Values

- The residuals can be raw, standardized, or studentized
- Usually, the look of residual plots doesn't depend much on the type of residuals used, if all leverages $h_{ii} \ll 1$ or all are of similar magnitude.

Variance increases with fitted values in all 3 plots

```
ggplot(fevdata, aes(x=lm1$fit, y=lm1$res)) + geom_point() +
xlab("Fitted Values") + ylab("(Raw) Residuals") +
geom_hline(yintercept = 0, col=2)
ggplot(fevdata, aes(x=lm1$fit, y=rstandard(lm1))) +
geom_point() + xlab("Fitted Values") +
ylab("Standardized Residuals") +
geom_hline(yintercept = 0, col=2)
ggplot(fevdata, aes(x=lm1$fit, y=rstudent(lm1))) +
geom_point() + xlab("Fitted Values") +
ylab("Studentized Residuals") +
geom_hline(yintercept = 0, col=2)
```

Residuals v.s. Each Predictor

ggplot(fevdata, aes(x=age, y=rstudent(lm1))) + geom_point() +
 xlab("Age (years)") + ylab("Studentized Residuals") +
 geom_hline(yintercept = 0, col=2)
ggplot(fevdata, aes(x=sex, y=rstudent(lm1))) + geom_point() +
 ylab("Studentized Residuals") +
 geom_hline(yintercept = 0, col=2)
ggplot(fevdata, aes(x=smoke, y=rstudent(lm1))) + geom_point() +
 ylab("Studentized Residuals") +
 geom_hline(yintercept = 0, col=2)

ggplot(fevdata, aes(x=age, y=rstudent(lm1))) + geom_point() +
facet_grid(smoke~sex) + geom_smooth(method='loess') +
labs(x = "Age (years)", y= "Studentized Residuals") +
geom_hline(yintercept = 0, col=2)

- The blue line is the loess smoother
- Slight nonlinearity among M & F nonsmokers

Residuals v.s. Potential Predictors

Recall the model 1m1 doesn't not include ht (Height) as a predictor. Let's plot the residuals of 1m1 against ht and see.

```
ggplot(fevdata, aes(x=ht, y=rstudent(lm1))) +
geom_point()+geom_smooth(method='loess') +
labs(x="Height (inches)", y="Studentized Residuals") +
geom_hline(yintercept = 0, col=2)
`geom_smooth()` using formula 'y ~ x'
```

The residuals clearly have a positive nonlinear relation with height, meaning ht should be included in the model.

Residuals v.s. Potential Predictors (2)

ggplot(fevdata, aes(x=ht, y=rstudent(lm1))) + geom_point() +
facet_grid(smoke~sex,scale='free_y') + geom_smooth(method='loess') +
labs(x = "Height (inches)", y = "Studentized Residuals") +
geom_hline(yintercept = 0, col=2)

For the model below

lm1 = lm(fev ~ age*smoke + age*sex, data=fevdata)

we found the following problems based on the residual plots

- nonlinearity between age and fev
- · variance of noise increases with fitted value
- ht or its transformation should be included