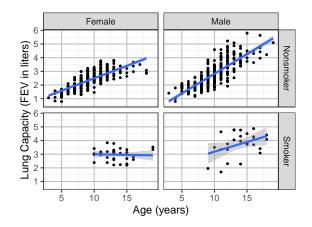
STAT 224 Lecture 8 Polynomial Models

Yibi Huang Department of Statistics University of Chicago Children stop growing after they turn adults. FEV might not grow linearly with age, at least for **female nonsmokers** in the plots below.



Test of non-linearity (Female Nonsmokers)

Let's focus on female nonsmokers first.

f.nonsmokers = subset(fevdata, sex == "Female" & smoke == "Nonsmoker")

To test non-linearity, ane can add some nonlinear function of age, e.g. age² and see if the nonlinear term is significant.

<pre>summary(lm(fev ~ age + I(age^2), data=f.nonsmokers))\$coef</pre>					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-0.50746	0.21039	-2.412	1.652e-02	
age	0.43979	0.04297	10.235	4.715e-21	
I(age ²)	-0.01298	0.00212	-6.121	3.176e-09	

 The tiny p-value for the age² is strong evidence of non-linearity. • Fitting the polynomial model

fev =
$$\beta_0 + \beta_1 age + \beta_2 (age)^2 + \varepsilon$$

doesn't means we believe it's correct. It might just be a decent approximation to the true underlying nonlinear model

fev =
$$f(age) + \varepsilon$$

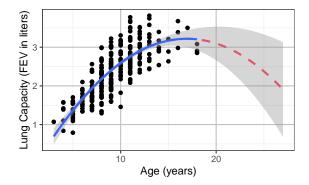
• One can try higher-order polymials

fev =
$$\beta_0 + \beta_1 age + \beta_2 (age)^2 + \dots + \beta_k (age)^k + \varepsilon$$

if lower-order ones don't capture the nonlinear pattern well.

Extrapolation is Dangerous!

Lung capacity decreases after children turn aduts?



We are not sure whether the nonlinear relations is a polynomial (it's just an approximation!). Extrapolating the model beyond the range of data is dangerous.

Test of Non-linearity (Male Nonsmokers)

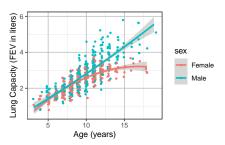
m.nonsmoker	s = subset	(fevdata, s	ex == "1	Male" & smoke ==	"Nonsmoker")
<pre>summary(lm(fev ~ age + I(age^2), data=m.nonsmokers))\$coef</pre>					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	0.143622	0.298683	0.4809	0.63096439	
age	0.245875	0.059137	4.1577	0.00004175	
I(age ²)	0.002058	0.002821	0.7296	0.46619995	

- The large *P*-value 0.466 for the age² means little evidence non-linearity
- This just means fev is approx. linear in age in the range of data for male smokers. Extrapolating the line beyond of the range of data remain dangerous
- The discrepancy in the significance of age² between boys and girls is an evidence of age: sex interaction — lung capacities of girls stop growing earlier than boys.

Age:Sex Interactions — Nonsmokers Only

<pre>nonsmokers = subset(fevdata, smoke == "Nonsmoker")</pre>				
<pre>summary(lm(fev ~ (age + I(age^2))*sex, data=nonsmokers))\$coef</pre>				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.50746	0.263274	-1.927	5.440e-02
age	0.43979	0.053770	8.179	1.796e-15
I(age ²)	-0.01298	0.002653	-4.892	1.295e-06
sexMale	0.65108	0.369659	1.761	7.871e-02
age:sexMale	-0.19392	0.074369	-2.607	9.355e-03
<pre>I(age²):sexMale</pre>	0.01504	0.003612	4.163	3.611e-05

Not surprisingly, the tiny *P*-value 3.61×10^{-5} for the term I(age^2):sexMale indicates that boys and girls differ significantly in the curvatures of the growth curves of lung capacities.



$$\widehat{\text{fev}} \approx -0.507 + 0.44 \text{Age} - 0.013 (\text{Age})^2 + 0.651 \text{Sex}_M$$

- 0.194(Sex_M · Age) + 0.015(Sex_M · Age²)

The estimated growth curve for girls (Sex_M = 0) is

fev
$$\approx -0.507 + 0.44$$
Age $- 0.013$ (Age)²,

The estimated growth curve for boys (Sex_M = 1) is $\widehat{\text{fev}} \approx (-0.507 + 0.651) + (0.44 - 0.194)\text{Age} + (-0.013 + 0.015)(\text{Age})^2$ = 0.144 + 0.246Age + 0.002(Age)²

Observe the coefficients are identical to the coefficients for the model including female nonsmokers only and the one for male nonsmokers only.

Interpretation of Coefficients in a Polynomial Model

Recall in Lecture 3 we said β_j = the regression coefficient for X_j , is the mean change in the response *Y* when X_j is increased by one unit **holding other** X_i 's constant.

However in a model that involves polynomial terms like

$$Y = \beta_0 + \underbrace{\beta_1 X_1 + \beta_2 X_1^2}_{\text{a polynomial of } X_1} + \beta_3 X_3 + \dots + \beta_p X_p + +\varepsilon$$

it makes no sense to interpret a single coefficient for a polynomial like β_1 or β_2 since it's impossible to change X_1 while holding X_1^2 constant. We should interpret the entire polynomial altogether like,

the mean of *Y* change with X_1 following the curve $\beta_1 X_1 + \beta_2 X_1^2$ holding other X_i 's constant.

Interpretation of Coefficients of Indicator Variables.

Ex: for the salary survey data, it's **incorrect** to interpret δ_2 in the model below

$$S = \beta_0 + \alpha M_1 + \delta_2 E_2 + \delta_3 E_3 + \beta X + \varepsilon$$

as

the mean change in salary *S* when E_2 is increased by 1 holding M_1 , E_3 and *X* constant

What's wrong?

- When E₂ increases from 0 to 1, E₃ might decrease from 1 to 0 or stay at 0, and hence we might not be able to hold E₃ constant.
- There is only one way E₂ can increase by 1 from a HS diploma to a college degree. One should always interpret in context whenever possible.

The better interpretation for δ_2 would be:

the mean difference in salary *S* between HS graduates and those w/ a Bachelor's degree if they were at the same management status and had the same years of experience.

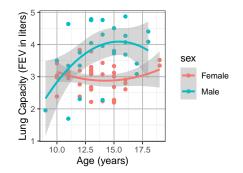
Test of Non-linearity (Smokers)

```
m.smokers = subset(fevdata, sex == "Male" & smoke == "Smoker")
summary(lm(fev ~ age + I(age<sup>2</sup>), data=m.smokers))$coef
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.05764 4.7793 -1.267 0.21767
     1.31395 0.7056 1.862 0.07539
age
I(age<sup>2</sup>) -0.04253 0.0255 -1.668 0.10889
f.smokers = subset(fevdata, sex == "Female" & smoke == "Smoker")
summary(lm(fev ~ age + I(age<sup>2</sup>), data=f.smokers))$coef
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.98970 1.95968 3.056 0.004204
    -0.43746 0.28431 -1.539 0.132627
age
I(age<sup>2</sup>) 0.01536 0.01013 1.516 0.138246
```

 age² is insignificant for male smokers or female smokers, might be just due to the small sample size that makes it difficult to detect the non-linearity.

<pre>smokers = subset(fevdata, smoke == "Smoker")</pre>					
<pre>summary(lm(fev ~</pre>	(age + I(a	age [^] 2))*sex,	data=sr	nokers))\$cc	bef
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	5.98970	2.79719	2.141	0.03639	
age	-0.43746	0.40582	-1.078	0.28543	
I(age ²)	0.01536	0.01447	1.062	0.29252	
sexMale	-12.04734	4.53162	-2.659	0.01009	
age:sexMale	1.75141	0.66463	2.635	0.01073	
<pre>I(age^2):sexMale</pre>	-0.05790	0.02390	-2.423	0.01850	

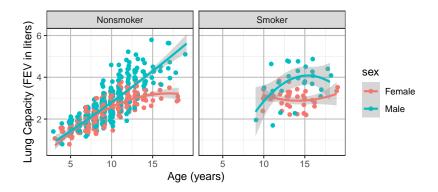
Male smokers still have significantly larger lung capacities than female nonsmokers, though neither show significant non-linearity



Can we remove the square term age² for smokers?

The P-value 0.054 is at the borderline of significance, some moderate but not compelling evidence of non-linearity.

<pre>summary(lm(log(fev) ~ (age +</pre>	<pre>I(age²))*sex*smoke,</pre>		<pre>data=fevdata))\$coef</pre>	
	Estimate	Std. Error	<pre>t value Pr(> t)</pre>	
(Intercept)	-0.665172	0.101526	-6.552 1.167e-10	
age	0.238379	0.020735	11.496 6.048e-28	
I(age ²)	-0.007802	0.001023	-7.625 8.822e-14	
sexMale	0.308447	0.142551	2.164 3.085e-02	
smokeSmoker	2.831422	0.873835	3.240 1.256e-03	
age:sexMale	-0.073525	0.028679	-2.564 1.058e-02	
<pre>I(age²):sexMale</pre>	0.004883	0.001393	3.506 4.864e-04	
age:smokeSmoker	-0.395307	0.127614	-3.098 2.036e-03	
I(age ²):smokeSmoker	0.013287	0.004604	2.886 4.031e-03	
<pre>sexMale:smokeSmoker</pre>	-4.350760	1.413287	-3.078 2.169e-03	
<pre>age:sexMale:smokeSmoker</pre>	0.651102	0.208206	3.127 1.845e-03	
<pre>I(age^2):sexMale:smokeSmoker</pre>	-0.023863	0.007545	-3.163 1.637e-03	



Can you explain from the plot why the 3-way interaction term I(age²):sexMale:smokeSmoker is significant?