STAT 224 Lecture 6 Interactions of Categorical \& Numerical Predictors

Yibi Huang
Department of Statistics
University of Chicago

Example: Salary Survey Data (p.130, Textbook)


```
p130$Edu = factor(p130$E, labels=c("High School","College","Advanced"))
p130$Mgr = factor(p130$M, labels=c("Other","Manager"))
library(ggplot2)
ggplot(p130, aes(x = X, y = S, color=Edu)) +
    geom_point() + facet_grid(~Mgr) +
    geom_smooth(method="lm", formula='y~x') +
    xlab("Experience (years)") + ylab("Salary (dollars)")
```


Manager

High School
College
Advanced

Indicator Variables (aka. Dummy Variables)

- Salary (S): response
- Experience (X) : numerical
- Education (E) : categorical
- 3 categories, needs 3 indicator variables

$$
\begin{aligned}
& E_{i 1}= \begin{cases}1 & \text { if } i^{\text {th }} \text { subject has a high school diploma only } \\
0 & \text { otherwise }\end{cases} \\
& E_{i 2}= \begin{cases}1 & \text { if } i^{\text {th }} \text { subject has a B.A. or B.S. only } \\
0 & \text { otherwise }\end{cases} \\
& E_{i 3}= \begin{cases}1 & \text { if } i^{t h} \text { subject has an advanced degree } \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

- Cannot include all of E_{1}, E_{2}, and E_{3} in the model since $E_{1}+E_{2}+E_{3}=1$. Must drop one of them.
- In general, a categorical predictor with c categories needs only $c-1$ indicator variables

Models w/ Same or Different Intercept/Slopes

If we ignore M and consider models w / X and E as predictors only, there are 4 possible models

- $S=\beta_{0 E}+\beta_{1 E} X+\varepsilon \ldots$... different intercepts, different slopes
- both the intercept $\beta_{0 E}$ and the slope $\beta_{1 E}$ change with E (Edu)
- $S=\beta_{0 E}+\beta_{1} X+\varepsilon \ldots \ldots$. different intercepts, same slope
- only the intercept $\beta_{0 E}$ changes with E but the slope β_{1} doesn't
- $S=\beta_{0}+\beta_{1 E} X+\varepsilon \ldots \ldots$. same intercept, different slopes
- only the slope $\beta_{1 E}$ changes with E but the intercept β_{0} doesn't
- $S=\beta_{0}+\beta_{1} X+\varepsilon \ldots \ldots$. . same intercept, same slope
- neither the intercept β_{0} nor the slope β_{1} changes with E. Education (E) has no effect

Diff. Intercepts, Diff. Slopes

Edu $=$ High School \rightleftharpoons College $=$ Adv
Same Intercept, Diff. Slopes

Diff. Intercepts, Same Slope

Edu $=$ High School \simeq College \sim Adv
Same Intercept, Same Slope

Models w/ Different Intercepts but Same Slope

$$
\begin{aligned}
S & =\beta_{0}+\delta_{1} E_{1}+\delta_{2} E_{2}+\delta_{3} E_{3}+\beta X+\varepsilon \\
& = \begin{cases}\beta_{0}+\delta_{1}+\beta X+\varepsilon & \text { if HS only } \\
\beta_{0}+\delta_{2}+\beta X+\varepsilon & \text { if B.A. or B.S. only } \\
\beta_{0}+\delta_{3}+\beta X+\varepsilon & \text { if advanced deg. }\end{cases}
\end{aligned}
$$

Regardless of which indicator E_{1}, E_{2}, E_{3} is dropped,

- Same slope β of X across all education levels.
- For all Education levels, people are paid β more on average if having 1 more years of experience.
- The effect of X on S doesn't change w/ E
- Likewise, the effect of E on S doesn't change on X
- People w/ a B.A. or B.S. earn $\delta_{2}-\delta_{1}$ more on average than HS graduates $\mathrm{w} /$ same years of experience (X). The change $\delta_{2}-\delta_{1}$ doesn't depend on X
- Ditto for (Advanced - Bachelor's) $=\delta_{3}-\delta_{2}$ and (Advanced - HS $)=\delta_{3}-\delta_{1}$

Interactions \& Additive Models

- If the effect of a predictor on response changes with the level of another predictor, we say there exists interaction(s) between the 2 predictors
Otherwise, we say their effects are additive.
- e.g., the model below assumes the effects of education (E) and experience (X) on salary are additive

$$
\begin{aligned}
S= & \beta_{0}+\delta_{1} E_{1}+\delta_{2} E_{2}+\delta_{3} E_{3}+\beta X+\varepsilon \\
& = \begin{cases}\beta_{0}+\delta_{1}+\beta X+\varepsilon & \text { if HS only } \\
\beta_{0}+\delta_{2}+\beta X+\varepsilon & \text { if B.A. or B.S. only } \\
\beta_{0}+\delta_{3}+\beta X+\varepsilon & \text { if advanced deg. }\end{cases}
\end{aligned}
$$

- in R:

$$
\operatorname{lm} 1=\operatorname{lm}(S \sim \text { as.factor }(E)+X, \text { data=p130) }
$$

Model w/ Different Intercepts \& Different Slopes

Consider the model

$$
\begin{aligned}
S= & \beta_{0}+\delta_{2} E_{2}+\delta_{3} E_{3} \\
& +\beta X+\gamma_{2}\left(E_{2} \cdot X\right)+\gamma_{3}\left(E_{3} \cdot X\right)+\varepsilon
\end{aligned}
$$

Here $\left(E_{2} \cdot X\right)$ means the product of the indicator E_{2} and X. Then

$$
S= \begin{cases}\beta_{0}+(\beta \quad) X+\varepsilon & \text { if HS only } \\ \beta_{0}+\delta_{2}+\left(\beta+\gamma_{2}\right) X+\varepsilon & \text { if BA or BS only } \\ \beta_{0}+\delta_{3}+\left(\beta+\gamma_{3}\right) X+\varepsilon & \text { if advanced }\end{cases}
$$

Here $\left(E_{1} \cdot X\right)$ is not included since E_{1} is dropped

- The model has the same property if a different indicator E_{i} is dropped

This model has different intercepts and different slopes!

Fitting Models with Interactions (Different Slopes) In R

In R, the term $\mathrm{E}: \mathrm{X}$ and $\mathrm{E} * \mathrm{X}$ both means interactions of E and X.

```
p130$E = as.factor(p130$E)
lm2 = lm(S ~ E+X+E*X, data = p130)
lm2$coef
\begin{tabular}{rrrrr} 
(Intercept) & E2 & E3 & X & E2:X \\
12299.0 & 1461.2 & 898.2 & 324.5 & 216.3
\end{tabular}
```

Again, R drops the indicator E1 for the lowest level.

12299.0
1461.2
898.2
324.5
216.3
$\widehat{S}=12299+1461.2 E_{2}+898.2 E_{3}+324.5 X+216.3\left(E_{2} \cdot X\right)+595.5\left(E_{3} \cdot X\right)$
$= \begin{cases}12299+324.5 X & \text { if HS only } \\ 12299+1461.2+(324.5+216.3) X & \text { if BA or BS only } \\ 12299+898.2+(324.5+595.5) X & \text { if advanced }\end{cases}$

On average, every extra year of experience worth

- \$324.5 if HS only
- \$324.5+\$216.3 if BA or BS only
- \$324.5+\$595.5 if Adv. deg.

The effect of X on S changes w/ $E \Rightarrow$ Interactions!

$$
\begin{aligned}
\widehat{S} & =12299+1461.2 E_{2}+898.2 E_{3}+324.5 X+216.3\left(E_{2} \cdot X\right)+595.5\left(E_{3} \cdot X\right) \\
& = \begin{cases}12299 \quad+324.5 X & \text { if HS only } \\
12299+1461.2+(324.5+216.3) X & \text { if BA or BS only } \\
12299+898.2+(324.5+595.5) X & \text { if advanced }\end{cases}
\end{aligned}
$$

The effect of E on S also changes w/ X.
e.g., people with a Bachelor's deg and X years of experience earn on average
$\underbrace{12299+1461.2+(324.5+216.3) X}_{\text {Bachelor's deg }}-\underbrace{(12299+324.5 X)}_{\text {HS }}=1461.2+216.3 \mathrm{X}$
more than people w/ HS diploma only and same years of experience

The difference $1461.2+216.3 X$ change w / X

```
ggplot(p130, aes(x = X, y = S, color=Edu)) + geom_point() +
geom_smooth(method="lm", formula='y~x') +
xlab("Experience (years)") +
ylab("Salary (dollars)")
```


Edu

- High School

College
Advanced

Are the slopes of the 3 lines significantly different?

Test Whether the Slopes Are Different

$$
S=\beta_{0}+\delta_{2} E_{2}+\delta_{3} E_{3}+\beta X+\gamma_{2}\left(E_{2} \cdot X\right)+\gamma_{3}\left(E_{3} \cdot X\right)+\varepsilon
$$

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	12299.0	1740.4	7.0669	0.00000001514
E2	1461.2	2326.4	0.6281	0.53351638090
E3	898.2	2357.1	0.3811	0.70516764730
X	324.5	179.6	1.8065	0.07837469825
E2:X	216.3	238.6	0.9066	0.37004974108
E3:X	595.5	288.9	2.0615	0.04579092275

- X : $\mathrm{E} 2\left(\gamma_{2}\right)$ is not significant (P-value 0.37)
- No significant diff btw the slopes of the lines for HS \& College
- X: E3 $\left(\gamma_{3}\right)$ is slightly significant (P-value 0.045).
- slightly significant diff btw the slopes of the lines for HS v.s. advanced deg.

Test of Interactions

To know whether the effect of experience X on salary S changes with education level, one can test

$$
H_{0}: \gamma_{2}=\gamma_{3}=0
$$

by comparing the full model and the reduced model below

$$
\begin{align*}
& S=\beta_{0}+\delta_{2} E_{2}+\delta_{3} E_{3}+\beta X+\gamma_{2}\left(E_{2} \cdot X\right)+\gamma_{3}\left(E_{3} \cdot X\right)+\varepsilon \tag{full}\\
& S=\beta_{0}+\delta_{2} E_{2}+\delta_{3} E_{3}+\beta X+\varepsilon
\end{align*}
$$

(reduced)

```
lm1 = lm(S ~ X+E, data = p130)
lm2 = lm(S ~ X+E+X*E, data = p130)
anova(lm1,lm2)
Analysis of Variance Table
Model 1: S ~ X + E
Model 2: S ~ X + E + X * E
    Res.Df RSS Df Sum of Sq F Pr(>F)
142550853135
```


Models w/ Same Intercept but Different Slopes — Less Common

$$
\begin{aligned}
S & =\beta_{0}+\beta X+\gamma_{2}\left(E_{2} \cdot X\right)+\gamma_{3}\left(E_{3} \cdot X\right)+\varepsilon \\
& = \begin{cases}\beta_{0}+\beta X+\varepsilon & \text { if HS diploma only } \\
\beta_{0}+\left(\beta+\gamma_{2}\right) X+\varepsilon & \text { if college only } \\
\beta_{0}+\left(\beta+\gamma_{3}\right) X+\varepsilon & \text { if advanced degree }\end{cases}
\end{aligned}
$$

- Need to include X and $E * X$ but not E in the model
- R will automatically include E and X if $\mathrm{E} * \mathrm{X}$ is included in the model. R would fit identical models for the 3 commands below.
- $\operatorname{lm}(S \sim X+E * X, ~ d a t a=p 130)$
- $\operatorname{lm}(S \sim E+X+E * X$, data=p130)
- $\operatorname{lm}(S \sim E * X$, data=p130)
- Use $\operatorname{lm}(S \sim X+E: X$, data=p130) to include only the product but not the E. Unlike E*X, E:M would not automatically include E and M.
- Does the effect of X on S depend on E ? Does the effect of E on S depend on S ?

	Estimate	Std. Error t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	12299.0	1740.47 .0669	0.00000001514
X	324.5	179.61 .8065	0.07837469825
E2	1461.2	2326.40 .6281	0.53351638090
E3	898.2	2357.10 .3811	0.70516764730
X:E2	216.3	238.60 .9066	0.37004974108
X:E3	595.5	288.92 .0615	0.04579092275
summary (lm(S \sim X $+\mathrm{E}+\mathrm{E}$ (X, data=p130)) \$coef			
	Estimate	Std. Error t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	12299.0	1740.47 .0669	0.00000001514
X	324.5	179.61 .8065	0.07837469825
E2	1461.2	2326.4 0.6281	0.53351638090
E3	898.2	2357.10 .3811	0.70516764730
X:E2	216.3	238.60 .9066	0.37004974108
X:E3	595.5	288.92 .0615	0.04579092275

summary $(\operatorname{lm}(S \sim E * X$, data=p130)) \$coef

Fitting a Model w/ Same Intercept \& Diff Slopes in R

	Estimate Std. Error t value			$\operatorname{Pr}(>\|t\|)$
(Intercept)	13144.6	916.3	14.345	8.699e-18
X	251.2	124.2	2.022	$4.960 \mathrm{e}-02$
X:E2	343.0	125.0	2.743	8.901e-03
X:E3	674.8	168.2	4.011	$2.431 \mathrm{e}-04$

$$
\widehat{S}= \begin{cases}13144.6+251.2 X & \text { if HS diploma only } \\ 13144.6+(251.2+343) X & \text { if college only } \\ 13144.6+(251.2+674.8) X & \text { if advanced degree }\end{cases}
$$

Answer Questions w/ Appropriate Hypothesis Tests

Q1. Does salary grow faster w/ experience if one has higher education?

Q2. If equally educated, do those $\mathrm{w} /$ more experience get paid more on average?

Q3. If equally experienced, do people w/ higher education get paid more on average?

Need to translate questions in context into tests of models or model parameters.

Q1. Does salary grow faster w/ experience if one has higher education?

Q1. Does salary grow faster w/ experience if one has higher education?

Ans: This asks whether the effect of experience (X) on salary (S) changes w/ Education (E), i.e., whether there are $\mathrm{E}^{*} \mathrm{X}$ interactions.

```
lm1 = lm(S ~ E + X + E*X, data=p130)
lm2 = lm(S ~ E + X, data=p130)
anova(lm2, lm1)
Analysis of Variance Table
Model 1: S ~ E + X
Model 2: S ~ E + X + E * X
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 42 550853135
240497897342 2 52955792 2.13 0.13
```

As the P-value 0.13 is not small, the value of an extra year of experience does not change with significantly w/ education levels.

```
anova(lm2, lm1)
Analysis of Variance Table
```

```
Model 1: S ~ E + X
Model 2: S ~ E + X + E * X
    Res.Df RSS Df Sum of Sq F \(\operatorname{Pr}(>F)\)
142550853135
\(2 \quad 40497897342 \quad 2 \quad 52955792 \quad 2.130 .13\)
```

How is the F-statistic 2.13 computed from the SSE's (RSS)?

```
anova(lm2, lm1)
Analysis of Variance Table
```

```
Model 1: S ~ E + X
Model 2: S ~ E + X + E * X
    Res.Df RSS Df Sum of \(\mathrm{Sq} \quad \mathrm{F} \operatorname{Pr}(>F)\)
142550853135
\(2 \quad 40497897342 \quad 2 \quad 52955792 \quad 2.13 \quad 0.13\)
```

How is the F-statistic 2.13 computed from the SSE's (RSS)?

$$
\begin{aligned}
F & =\frac{\left(\mathrm{SSE}_{\text {reduced }}-\mathrm{SSE}_{\text {full }}\right) /\left(\mathrm{dfE}_{\text {reduced }}-\mathrm{dfE}_{\text {full }}\right)}{\mathrm{MSE}_{\text {full }}} \\
& =\frac{(550853134.6991-497897342.452) /(42-40)}{497897342.452 / 40}=2.1272
\end{aligned}
$$

```
anova(lm2, lm1)
Analysis of Variance Table
```

```
Model 1: S ~ E + X
Model 2: S ~ E + X + E * X
    Res.Df RSS Df Sum of \(\mathrm{Sq} \quad \mathrm{F} \operatorname{Pr}(>F)\)
142550853135
\(2 \quad 40497897342 \quad 2 \quad 52955792 \quad 2.13 \quad 0.13\)
```

How is the F-statistic 2.13 computed from the SSE's (RSS)?

$$
\begin{aligned}
F & =\frac{\left(\mathrm{SSE}_{\text {reduced }}-\mathrm{SSE}_{\text {full }}\right) /\left(\mathrm{dfE}_{\text {reduced }}-\mathrm{dfE}_{\text {full }}\right)}{\mathrm{MSE}_{\text {full }}} \\
& =\frac{(550853134.6991-497897342.452) /(42-40)}{497897342.452 / 40}=2.1272
\end{aligned}
$$

```
anova(lm2, lm1)
```

Analysis of Variance Table

```
Model 1: S ~ E + X
Model 2: S ~ E + X + E * X
    Res.Df RSS Df Sum of \(\mathrm{Sq} \quad \mathrm{F} \operatorname{Pr}(>\mathrm{F})\)
1
    42550853135
\(2 \quad 40497897342 \quad 2 \quad 52955792 \quad 2.13 \quad 0.13\)
```

What are the degrees of freedom of the F statistic?
a. 42 and 40
b. 40 and 42
c. 2 and 40
d. 2 and 42
anova(lm2, lm1)
Analysis of Variance Table

What are the degrees of freedom of the F statistic?
a. 42 and 40
b. 40 and 42
c. 2 and 40
d. 2 and 42

```
pf(2.13, 2, 40, lower.tail=FALSE)
```

[1] 0.1321

Q2. If equally educated, do those w/ more experience earn more on average?

Ans: This means whether experience X has any effect on salary after accounting for education E.

```
lm3 = lm(S ~ E, data=p130)
anova(lm3, lm2) # if one believes no E*X interactions
Model 1: S ~ E
Model 2: S ~ E + X
    Res.Df RSS Df Sum of Sq F Pr(>F)
143 891962932
242550853135 1 341109797 26 0.0000077
Or
anova(lm3, lm1) # if there might be E*X interactions
Model 1: S ~ E
Model 2: S ~ E + X + E * X
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 43 891962932
2 40 497897342 3 394065589 10.6 0.00003
```

Q3. If equally experienced, do people w/ higher education get paid more on average?

Ans: This means whether education E has any effect on salary after accounting for experience X.

```
lm4 = lm(S ~ X, data=p130)
anova(lm4, lm2) # if one believes no E*X interactions
Model 1: S ~ X
Model 2: S ~ E + X
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 44710380856
242 550853135 2 159527722 6.08 0.0048
Or
anova(lm4, lm1) # if there might be E*X interactions
Model 1: S ~ X
Model 2: S ~ E + X + E * X
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 44 710380856
240497897342 4 212483514 4.27 0.0057
```

