# STAT 224 Lecture 5 <br> Qualitatitive Variables as Predictors (Ch5) 

Yibi Huang
Department of Statistics
University of Chicago

## MLR Model w/ Qualitative/Categorical Predictors

- In a linear regression model $Y=\beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}+\varepsilon$ what if some predictor $X_{j}$ is categorical?
- e.g., $X_{1}=$ blood type ( $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{AB}$ )?

It makes NO sense to write a model like

$$
Y=\beta_{0}+\beta_{1}(\text { blood type })+\varepsilon .
$$

since blood type is not a number

## MLR Model w/ Qualitative/Categorical Predictors

- In a linear regression model $Y=\beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}+\varepsilon$ what if some predictor $X_{j}$ is categorical?
- e.g., $X_{1}=$ blood type ( $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{AB}$ )?

It makes NO sense to write a model like

$$
Y=\beta_{0}+\beta_{1}(\text { blood type })+\varepsilon .
$$

since blood type is not a number

- However, many demographics (Gender, marital status, etc) are categorical and can provide useful info for predicting/understanding the response variable $Y$.


## MLR Model w/ Qualitative/Categorical Predictors

- In a linear regression model $Y=\beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}+\varepsilon$ what if some predictor $X_{j}$ is categorical?
- e.g., $X_{1}=$ blood type ( $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{AB}$ )?

It makes NO sense to write a model like

$$
Y=\beta_{0}+\beta_{1}(\text { blood type })+\varepsilon .
$$

since blood type is not a number

- However, many demographics (Gender, marital status, etc) are categorical and can provide useful info for predicting/understanding the response variable $Y$.
- How to represent categorical variables "numerically" in a model?


## MLR Model w/ Qualitative/Categorical Predictors

- In a linear regression model $Y=\beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}+\varepsilon$ what if some predictor $X_{j}$ is categorical?
- e.g., $X_{1}=$ blood type ( $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{AB}$ )?

It makes NO sense to write a model like

$$
Y=\beta_{0}+\beta_{1}(\text { blood type })+\varepsilon .
$$

since blood type is not a number

- However, many demographics (Gender, marital status, etc) are categorical and can provide useful info for predicting/understanding the response variable $Y$.
- How to represent categorical variables "numerically" in a model?
- Solution: Create an indicator or dummy variable for each category of the categorical variable


## Example: Salary Survey Data (p.130, Textbook)



```
library(ggplot2)
ggplot(p130, aes(x = X, y = S, color=E)) +
    geom_point() + facet_grid(~M) +
    geom_smooth(method="lm", formula='y~x') +
    xlab("Experience (years)") +
    ylab("Salary (dollars)")
```



Oops! R regards $E=1,2,3$ as numerical rather than categorical!

```
ggplot(p130, aes(x = X, y = S, color=as.factor(E))) +
    geom_point() + facet_grid(~M) +
    geom_smooth(method="lm", formula='y~x') +
    xlab("Experience (years)") +
    ylab("Salary (dollars)")
```



The command as.factor ( E ) let R know that E is categorical. It'd be better changing the labels of $E$ and $M$

```
p130$Edu = factor(p130$E, labels=c("High School","College","Advanced"))
p130$Mgr = factor(p130$M, labels=c("Other","Manager"))
ggplot(p130, aes(x = X, y = S, color=Edu)) +
    geom_point() + facet_grid(~Mgr) +
    geom_smooth(method="lm", formula='y~x') +
    xlab("Experience (years)") + ylab("Salary (dollars)")
```



Edu

- High School

College
Advanced

Observe that Salary $(S)$ and Experience $(X)$ are linearly related for each level of Education $(E)$ and Management Status ( $M$ ).

How to express this as a MLR model?

## Indicator Variables (aka. Dummy Variables)

Let's first ignore $M$ and focus on $S, X$, and $E$.

- Salary $(S)$ : response
- Experience $(X)$ : numerical
- Education $(E)$ : categorical
- 3 categories, needs 3 indicator variables

$$
\begin{aligned}
& E_{i 1}= \begin{cases}1 & \text { if } i^{\text {th }} \text { subject has a high school diploma only } \\
0 & \text { otherwise }\end{cases} \\
& E_{i 2}= \begin{cases}1 & \text { if } i^{\text {th }} \text { subject has a B.A. or B.S. only } \\
0 & \text { otherwise }\end{cases} \\
& E_{i 3}= \begin{cases}1 & \text { if } i^{\text {th }} \text { subject has an advanced degree } \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Can one fit the model?

$$
S=\beta_{0}+\beta_{1} X+\delta_{1} E_{1}+\delta_{2} E_{2}+\delta_{3} E_{3}+\varepsilon ?
$$

## One of the Indicator Variables is Redudant

- Education $(E)$ only has 3 categories


## One of the Indicator Variables is Redudant

- Education $(E)$ only has 3 categories
- Each subject must fall in exactly one of the 3 categories. For each subject only one of $E_{1}, E_{2}$, and $E_{3}$ can be 1 and the other 2 must be 0 .


## One of the Indicator Variables is Redudant

- Education $(E)$ only has 3 categories
- Each subject must fall in exactly one of the 3 categories. For each subject only one of $E_{1}, E_{2}$, and $E_{3}$ can be 1 and the other 2 must be 0 .
- So, the following identity always holds

$$
E_{1}+E_{2}+E_{3}=1
$$

## One of the Indicator Variables is Redudant

- Education $(E)$ only has 3 categories
- Each subject must fall in exactly one of the 3 categories. For each subject only one of $E_{1}, E_{2}$, and $E_{3}$ can be 1 and the other 2 must be 0 .
- So, the following identity always holds

$$
E_{1}+E_{2}+E_{3}=1
$$

- One of $E_{1}, E_{2}$, and $E_{3}$ is redundant. The last one is known once the remaining are known


## One of the Indicator Variables is Redudant

- Education $(E)$ only has 3 categories
- Each subject must fall in exactly one of the 3 categories. For each subject only one of $E_{1}, E_{2}$, and $E_{3}$ can be 1 and the other 2 must be 0 .
- So, the following identity always holds

$$
E_{1}+E_{2}+E_{3}=1
$$

- One of $E_{1}, E_{2}$, and $E_{3}$ is redundant. The last one is known once the remaining are known
- In general, a categorical predictor with $c$ categories needs only $c-1$ indicator variables


## One of the Indicator Variables Must Be Removed

If we keep all indicator variables in the model

$$
S=\beta_{0}+\beta_{1} X+\delta_{1} E_{1}+\delta_{2} E_{2}+\delta_{3} E_{3}+\varepsilon
$$

the least square estimate for $\beta_{j}$ and $\delta_{j}$ 's cannot be uniquely determined since

$$
\begin{aligned}
S & =\beta_{0}-c+\beta_{1} X+\left(\delta_{1}+c\right) E_{1}+\left(\delta_{2}+c\right) E_{2}+\left(\delta_{3}+c\right) E_{3}+\varepsilon \\
& =\beta_{0}+\beta_{1} X+\delta_{1} E_{1}+\delta_{2} E_{2}+\delta_{3} E_{3}+c(\underbrace{E_{1}+E_{2}+E_{3}-1}_{=0})+\varepsilon
\end{aligned}
$$

Regardless of the value of $c$, the coefficients

$$
\left(\beta_{0}, \beta_{1}, \delta_{1}, \delta_{2}, \delta_{3}\right) \quad \text { and } \quad\left(\beta_{0}-c, \beta_{1}, \delta_{1}+c, \delta_{2}+c, \delta_{3}+c\right)
$$

give identical means for the response.
We thus cannot keep all of $E_{1}, E_{2}$, and $E_{3}$ in the model

## When $E_{1}$ is Removed From the Model. . .

When $E_{1}$ is removed from the model ..., the model becomes

$$
S=\beta_{0}+\beta_{1} X+\delta_{2} E_{2}+\delta_{3} E_{3}+\varepsilon,
$$

and the mean response $\mathrm{E}[S]$ for the 3 education levels are

| Education $(E)$ | Indicator | $\mathrm{E}(S)$ |
| :--- | :---: | :--- | ---: |
| 1 (HS diploma) | $E_{2}=E_{3}=0$ | $\beta_{0}+\beta_{1} X$ |
| 2 (Bachelor's degree) | $E_{2}=1, E_{3}=0$ | $\beta_{0}+\delta_{2}+\beta_{1} X$ |
| 3 (Advanced degree) | $E_{2}=0, E_{3}=1$ | $\beta_{0}+\delta_{3}+\beta_{1} X$ |

Based on the model above, for people w/ the same years of experience $(X)$, the diff in their mean salary are

$$
\begin{aligned}
(\text { Bachelor's }-\mathrm{HS}) & =\delta_{2} \\
(\text { advanced }-\mathrm{HS}) & =\delta_{3} \\
(\text { advanced }- \text { Bachelor's }) & =\delta_{3}-\delta_{2}
\end{aligned}
$$

## Interpretation of Parameters

- To test whether those w/ a Bachelor's degree had a higher mean salary than those w/ only a HS diploma, after accounting for experience, which parameter should we test?
- To test whether a Bachelor's + an advanced degree increases mean salary one should test ...
- To test whether an advanced degree increases mean salary than a Bachelor's degree after accounting for experience, one should test...


## Interpretation of Parameters

- To test whether those w/ a Bachelor's degree had a higher mean salary than those w/ only a HS diploma, after accounting for experience, which parameter should we test?
$\mathrm{H}_{0}: \delta_{2}=0$ v.s. $\mathrm{H}_{1}: \delta_{2}>0$
- To test whether a Bachelor's + an advanced degree increases mean salary one should test ...
- To test whether an advanced degree increases mean salary than a Bachelor's degree after accounting for experience, one should test...


## Interpretation of Parameters

- To test whether those w/ a Bachelor's degree had a higher mean salary than those w/ only a HS diploma, after accounting for experience, which parameter should we test?
$\mathrm{H}_{0}: \delta_{2}=0$ v.s. $\mathrm{H}_{1}: \delta_{2}>0$
- To test whether a Bachelor's + an advanced degree increases mean salary one should test ...
$\mathrm{H}_{0}: \delta_{3}=0$ v.s. $\mathrm{H}_{1}: \delta_{3}>0$
- To test whether an advanced degree increases mean salary than a Bachelor's degree after accounting for experience, one should test...


## Interpretation of Parameters

- To test whether those w/ a Bachelor's degree had a higher mean salary than those w/ only a HS diploma, after accounting for experience, which parameter should we test?
$\mathrm{H}_{0}: \delta_{2}=0$ v.s. $\mathrm{H}_{1}: \delta_{2}>0$
- To test whether a Bachelor's + an advanced degree increases mean salary one should test ...
$\mathrm{H}_{0}: \delta_{3}=0$ v.s. $\mathrm{H}_{1}: \delta_{3}>0$
- To test whether an advanced degree increases mean salary than a Bachelor's degree after accounting for experience, one should test...
$\mathrm{H}_{0}: \delta_{3}=\delta_{2}$ v.s. $\mathrm{H}_{1}: \delta_{3}>\delta_{2}$

```
lm0 = lm(S ~ X + E, data=p130)
summary (lm0)$coef
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 8279.9 1814.6 4.563 0.000041758
X 560.8 105.8 5.299 0.000003781
E 2418.4 706.9 3.421 0.001377546
```

- Something wrong?

```
lm0 = lm(S ~ X + E, data=p130)
summary (lm0)$coef
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 8279.9 1814.6 4.563 0.000041758
X 560.8 105.8 5.299 0.000003781
E 2418.4 706.9 3.421 0.001377546
```

- Something wrong?
- R treats $E$ (education) as numerical taking values 1, 2, and 3, not a categorical one


## Numerical or Categorical?

If one treats $E$ (education) as numerical taking values 1,2 , and 3 , the model then becomes

$$
S=\beta_{0}+\beta X+\delta E+\varepsilon
$$

The mean response $\mathrm{E}[S]$ for the 3 education levels would be

| Education $(E)$ | Value of $E$ | $\mathrm{E}(S)$ |
| :--- | :---: | :---: |
| 1 (HS diploma) | 1 | $\beta_{0}+\beta_{1} X+\delta$ |
| 2 (Bachelor's degree) | 2 | $\beta_{0}+\beta_{1} X+2 \delta$ |
| 3 (Advanced degree) | 3 | $\beta_{0}+\beta_{1} X+3 \delta$ |

The diff in mean salary controlling for experience $X$ would be

$$
\begin{aligned}
(\text { Bachelor's }-\mathrm{HS}) & =\delta \\
(\text { advanced }- \text { Bachelor's }) & =\delta
\end{aligned}
$$

That is, the salary bonus for completing college is as much as the bonus for completing an advanced degree ......... unrealistic and too restrictive.

```
lm1 = lm(S ~ X + as.factor(E), data=p130)
summary(lm1)$coef
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 10474.3 1305.4 8.024 0.0000000005186
X 548.6 107.6 5.100 0.0000076946014
as.factor(E)2 3221.1 1275.8 2.525 0.0154427258510
as.factor(E)3 4780.1 1422.7 3.360 0.0016690499444
```

- The command as.factor() tells R that $E$ is categorical and the indicator variables E1, E2, E3 are created automatically

```
lm1 = lm(S ~ X + as.factor(E), data=p130)
summary(lm1)$coef
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 10474.3 1305.4 8.024 0.0000000005186
X 548.6 107.6 5.100 0.0000076946014
as.factor(E)2 3221.1 1275.8 2.525 0.0154427258510
as.factor(E)3 4780.1 1422.7 3.360 0.0016690499444
```

- The command as.factor() tells R that $E$ is categorical and the indicator variables E1, E2, E3 are created automatically
- By default, R drops the indicator E1 for the lowest level

```
lm1 = lm(S ~ X + as.factor(E), data=p130)
summary(lm1)$coef
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 10474.3 1305.4 8.024 0.0000000005186
X 548.6 107.6 5.100 0.0000076946014
as.factor(E)2 3221.1 1275.8 2.525 0.0154427258510
as.factor(E)3 4780.1 1422.7 3.360 0.0016690499444
```

- The command as.factor() tells R that $E$ is categorical and the indicator variables E1, E2, E3 are created automatically
- By default, R drops the indicator E1 for the lowest level
- 95\% Confidence interval for coefficients:

```
confint(lm1, level=0.95)
    2.5 % 97.5 %
(Intercept) 7839.8 13108.7
X 331.5 765.7
as.factor(E)2 646.4 5795.8
as.factor(E)3 1908.9 7651.4
```

From the output of on th previous slide, the predicted salary is

$$
\widehat{S}=10474+548 X+3221 E_{2}+4780 E_{3} .
$$

- This model implies that on average:
- each extra year of experience worths $\widehat{\beta}_{1} \approx \$ 548$, with a $95 \% \mathrm{Cl}$ of $\$ 331.5$ to $\$ 765.1$.
- completing college increases salary by $\widehat{\delta}_{2}=\$ 3221$, with a $95 \%$ Cl of $\$ 646.4$ to $\$ 5795.8$.
- completing college + advanced degree increases salary by $\widehat{\delta}_{3}=\$ 4780$, with a $95 \% \mathrm{CI}$ of $\$ 1908.9$ to $\$ 7651.4$.
- All the 3 coefficients above are significantly different from 0 ( $P$-value $<5 \%$ )
- To compare college graduates with those with an advanced degree, need to test whether $\delta_{2}<\delta_{3}$. What to do?


## What if We Drop a Different Indicator Variable?

If we drop E2 (Bachelor's degree) instead if E1, the model becomes

$$
S=\beta_{0}^{\prime}+\beta_{1}^{\prime} X+\delta_{1}^{\prime} E_{1}+\delta_{3}^{\prime} E_{3}+\varepsilon,
$$

and the mean response $\mathrm{E}[S]$ for the 3 education levels are

| Education $(E)$ | Indicator | $\mathrm{E}(S)$ |
| :--- | :---: | :---: |
| 1 (HS diploma) | $E_{1}=1, E_{3}=0$ | $\beta_{0}^{\prime}+\delta_{1}^{\prime}+\beta_{1}^{\prime} X$ |
| 2 (Bachelor's degree) | $E_{1}=E_{3}=0$ | $\beta_{0}^{\prime}+\beta_{1}^{\prime} X$ |
| 3 (Advanced degree) | $E_{2}=0, E_{3}=1$ | $\beta_{0}^{\prime}+\delta_{3}^{\prime}+\beta_{1}^{\prime} X$ |

The model above means for people $\mathrm{w} /$ the same years of experience $(X)$, the diff in their mean salary are

$$
\begin{aligned}
(\mathrm{HS}-\text { Bachelor's }) & =\delta_{1}^{\prime} \\
(\text { advanced }- \text { Bachelor's }) & =\delta_{3}^{\prime} \\
(\text { advanced }-\mathrm{HS}) & =\delta_{3}^{\prime}-\delta_{1}^{\prime}
\end{aligned}
$$

Hence one can compare a advanced degree with a Bachelor's degree by testing whether $\delta_{3}^{\prime}=0$

## How to Drop a Different Indicator Variable in R?

If not happy with R's choice of which indicator to drop, one can manually create the indicator variables E1 and E3

```
p130$E1 = ifelse(p130$E==1, 1, 0)
p130$E3 = ifelse(p130$E==3, 1, 0)
```

and fit the model
$\operatorname{lm} 1 \mathrm{~b}=\operatorname{lm}(\mathrm{S} \sim \mathrm{X}+\mathrm{E} 1+\mathrm{E} 3$, data $=\mathrm{p} 130)$
summary (lm1b) \$coef

|  | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|\mathrm{t}\|)$ |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 13695.4 | 1225.0 | 11.180 | $3.626 \mathrm{e}-14$ |
| X | 548.6 | 107.6 | 5.100 | $7.695 \mathrm{e}-06$ |
| E1 | -3221.1 | 1275.8 | -2.525 | $1.544 \mathrm{e}-02$ |
| E3 | 1559.0 | 1338.6 | 1.165 | $2.507 \mathrm{e}-01$ |

The large $P$-value 0.251 for E3 $\left(\delta_{3}^{\prime}\right)$ indicate an advanced degree did not increase salary significantly

## It Doesn't Matter Which Indicator is Dropped

If $E_{1}$ is dropped,

| Education $(E)$ | $\mathrm{E}(S)$ |
| :--- | :--- |
| 1 (HS) | $\beta_{0}+\beta_{1} X$ |
| 2 (Bachelor's) | $\beta_{0}+\delta_{2}+\beta_{1} X$ |
| 3 (Advanced) | $\beta_{0}+\delta_{3}+\beta_{1} X$ |

If $E_{2}$ is dropped,

| Education $(E)$ | $\mathrm{E}(S)$ |
| :--- | :--- |
| $1(\mathrm{HS})$ | $\beta_{0}^{\prime}+\delta_{1}^{\prime}+\beta_{1}^{\prime} X$ |
| 2 (Bachelor's) | $\beta_{0}^{\prime}+\beta_{1}^{\prime} X$ |
| 3 (Advanced) | $\beta_{0}^{\prime}+\delta_{3}^{\prime}+\beta_{1}^{\prime} X$ |

The 2 models are equivalent in the sense that they give identical mean responses $\mathrm{E}(S)$ :

$$
\begin{aligned}
\beta_{0} & =\beta_{0}^{\prime}+\delta_{1}^{\prime} \\
\beta_{0}+\delta_{2} & =\beta_{0}^{\prime} \\
\beta_{0}+\delta_{3} & =\beta_{0}^{\prime}+\delta_{3}^{\prime} \\
\beta_{1} & =\beta_{1}^{\prime}
\end{aligned}
$$

The 2 models have identical fitted values $\widehat{y}_{i}$, residuals $e_{i}$, SSE, SSR and hence $\widehat{\sigma}^{2}=$ MSE, multiple and adjust $R^{2}$.

Observe the 2 models have identical fitted values $\widehat{y}_{i}$, residuals $e_{i}$, SSE, SSR and hence $\widehat{\sigma}^{2}=$ MSE, multiple and adjust $R^{2}$, and many others, despite they drop different indicators
> summary(lm1)
...(some output omitted)...
Residual standard error: 3620 on 42 degrees of freedom Multiple R-squared: 0.45, Adjusted R-squared: 0.41
F-statistic: 11.4 on 3 and 42 DF, p-value: 0.0000129
$>$ summary (lm1b)
...(some output omitted)...
Residual standard error: 3620 on 42 degrees of freedom Multiple R-squared: 0.45, Adjusted R-squared: 0.41
F-statistic: 11.4 on 3 and 42 DF, p-value: 0.0000129

# Model w/ Two Categorical Predictors \& Their Interactions 

## Model w/ 2 Categorical Predictors

Now let's take another categorical predictor, management status (M), into account.

$$
M= \begin{cases}1 & \text { if manager } \\ 0 & \text { if other }\end{cases}
$$

Since $M$ is categorical, just like $E$, we should create indicator variables $M_{0}$ and $M_{1}$ for the two categories, and consider the model

$$
S=\beta_{0}+\alpha_{0} M_{0}+\alpha_{1} M_{1}+\delta_{1} E_{1}+\delta_{2} E_{2}+\delta_{3} E_{3}+\beta X+\varepsilon
$$

However, we need to drop one of $M_{0}$ and $M_{1}$ and one of $E_{1}, E_{2}$ and $\mathrm{E}_{3}$.

Say we drop $M_{0}$ and $E_{1}$, and consider the model

$$
S=\beta_{0}+\alpha_{1} M_{1}+\delta_{2} E_{2}+\delta_{3} E_{3}+\beta X+\varepsilon .
$$

## Model w/ No Interactions

$$
S=\beta_{0}+\alpha_{1} M_{1}+\delta_{2} E_{2}+\delta_{3} E_{3}+\beta X+\varepsilon
$$

|  | $\mathrm{E}(S)$ |  |
| :--- | :---: | :--- |
| Education $(E)$ | Other $\left(M_{1}=0\right)$ | Manager $\left(M_{1}=1\right)$ |
| 1 (HS, $\left.E_{2}=E_{3}=0\right)$ | $\beta_{0}+\beta X$ | $\beta_{0}+\alpha_{1}+\beta X$ |
| 2 (Bachelor's, $\left.E_{2}=1, E_{3}=0\right)$ | $\beta_{0}+\delta_{2}+\beta X$ | $\beta_{0}+\alpha_{1}+\delta_{2}+\beta X$ |
| 3 (Advanced, $\left.E_{2}=0, E_{3}=1\right)$ | $\beta_{0}+\delta_{3}+\beta X$ | $\beta_{0}+\alpha_{1}+\delta_{3}+\beta X$ |

This model says, on average

- managers earn $\alpha_{1}$ more than non-managers, regardless of $E$ and $X$;
- completing college increases salary by $\delta_{2}$, regardless of $M$ and $X$;
- advanced degree earn $\delta_{3}$ more than HS, regardless of $M$ and $X$

The model $S=\beta_{0}+\alpha_{1} M_{1}+\delta_{2} E_{2}+\delta_{3} E_{3}+\beta X+\varepsilon$ assumes the effect of management status ( $M$ ) on salary $(S)$ does not change with education levels $E$. However, from the plot below ...

```
ggplot(p130, aes(x = X, y = S, color=Edu)) +
    geom_point() + facet_grid(~Mgr) +
    geom_smooth(method="lm", formula='y~x') +
    xlab("Experience (years)") + ylab("Salary (dollars)")
```



Edu


## Interpretation of Interactions (1)

We may consider the model below with $M * E$ interactions.

$$
S=\beta_{0}+\alpha_{1} M_{1}+\delta_{2} E_{2}+\delta_{3} E_{3}+\theta_{2}\left(M_{1} \cdot E_{2}\right)+\theta_{3}\left(M_{1} \cdot E_{3}\right)+\beta X+\varepsilon
$$

Here $\left(M_{1} \cdot E_{2}\right)$ means the product of the variables $M_{1}$ and $E_{2}$.

|  | $\mathrm{E}(S)$ |  |
| :--- | :---: | :---: |
| Education $(E)$ | Other $\left(M_{1}=0\right)$ | Manager $\left(M_{1}=1\right)$ |
| $1\left(\mathrm{HS}, E_{2}=E_{3}=0\right)$ | $\beta_{0}+\beta X$ | $\beta_{0}+\alpha_{1}$ |
| 2 (Bachelor's, $\left.E_{2}=1, E_{3}=0\right)$ | $\beta_{0}+\delta_{2}+\beta X$ | $\beta_{0}+\alpha_{1}+\delta_{2}+\theta_{2}+\beta X$ |
| 3 (Advanced, $\left.E_{2}=0, E_{3}=1\right)$ | $\beta_{0}+\delta_{3}+\beta X$ | $\beta_{0}+\alpha_{1}+\delta_{3}+\theta_{3}+\beta X$ |

- For HS, managers earns $\alpha_{1}$ more than others with the same $X$
- For B.A. or B.S, managers earns $\alpha_{1}+\theta_{2}$ more than others with the same $X$
- For advance degree, managers earns $\alpha_{1}+\theta_{3}$ more than others with the same $X$


## Interpretation of Interactions (2)

$$
S=\beta_{0}+\alpha_{1} M_{1}+\delta_{2} E_{2}+\delta_{3} E_{3}+\theta_{2}\left(M_{1} \cdot E_{2}\right)+\theta_{3}\left(M_{1} \cdot E_{3}\right)+\beta X+\varepsilon
$$

|  | $\mathrm{E}(S)$ |  |
| :--- | :---: | :---: |
| Education $(E)$ | Other $\left(M_{1}=0\right)$ | Manager $\left(M_{1}=1\right)$ |
| 1 (HS, $\left.E_{2}=E_{3}=0\right)$ | $\beta_{0}+\beta X$ | $\beta_{0}+\alpha_{1}$ |
| 2 (Bachelor's, $\left.E_{2}=1, E_{3}=0\right)$ | $\beta_{0}+\delta_{2}+\beta X$ | $\beta_{0}+\alpha_{1}+\delta_{2}+\theta_{2}+\beta X$ |
| 3 (Advanced, $\left.E_{2}=0, E_{3}=1\right)$ | $\beta_{0}+\delta_{3}+\beta X$ | $\beta_{0}+\alpha_{1}+\delta_{3}+\theta_{3}+\beta X$ |

- Non-managers with a B.A. or B.S. earns $\delta_{2}$ more than non-managers with H.S. diploma with the same $X$
- Managers with a B.A. or B.S. earns $\delta_{2}+\theta_{2}$ more than managers with H.S. diploma with the same $X$

Effects of $E$ on $S$ changes with $M$ as well.

## Model Without E*M Interactions

```
lm3 = lm(S ~ as.factor(E)+as.factor(M)+X, data = p130)
summary(lm3)$coef
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 8035.6 386.69 20.781 2.199e-23
as.factor(E)2 3144.0 361.97 8.686 7.733e-11
as.factor(E)3 2996.2 411.75 7.277 6.722e-09
as.factor(M)1 6883.5 313.92 21.928 2.901e-24
X 546.2 30.52 17.896 5.546e-21
summary(lm3)$sigma
[1] 1027
summary(lm3)$r.squared
[1] 0.9568
```


## Model With E*M Interactions

```
p130$E = as.factor(p130$E)
p130$M = as.factor(p130$M)
lm4 = lm(S ~ E+M+E*M+X, data = p130)
summary(lm4)$coef
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 9473 80.344 117.90 2.074e-51
E2 1382 77.319 17.87 2.211e-20
E3 1731 105.334 16.43 4.013e-19
M1 3981 101.175 39.35 5.253e-33
X 497 5.566 89.28 1.021e-46
E2:M1 4903 131.359 37.32 3.934e-32
E3:M1 3066 149.330 20.53 1.635e-22
summary(lm4)$sigma
[1] 173.8
summary(lm4)$r.squared
[1] 0.9988
```


## $F$-Test of $\mathrm{E}^{*} \mathrm{M}$ Interactions

```
anova(lm3, lm4)
Analysis of Variance Table
Model 1: S ~ as.factor(E) + as.factor(M) + X
Model 2: S ~ E + M + E * M + X
    Res.Df RSS Df Sum of Sq F Pr(>F)
1
    4 1 4 3 2 8 0 7 1 9
2 39 1178168 2 42102552 697 <2e-16
```

There are significant E * M interactions!

