STAT 224 Lecture 5 Qualitatitive Variables as Predictors (Ch5)

Yibi Huang Department of Statistics University of Chicago

- In a linear regression model $Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon$ what if some predictor X_i is **categorical**?
 - e.g., X₁ = blood type (O, A, B, AB)? It makes NO sense to write a model like

 $Y = \beta_0 + \beta_1$ (blood type) + ε .

since blood type is not a number

- In a linear regression model Y = β₀ + β₁X₁ + ... + β_pX_p + ε what if some predictor X_j is categorical?
 - e.g., X₁ = blood type (O, A, B, AB)? It makes NO sense to write a model like

 $Y = \beta_0 + \beta_1$ (blood type) + ε .

since blood type is not a number

• However, many demographics (Gender, marital status, etc) are categorical and can provide useful info for predicting/understanding the response variable *Y*.

- In a linear regression model $Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon$ what if some predictor X_j is **categorical**?
 - e.g., X₁ = blood type (O, A, B, AB)? It makes NO sense to write a model like

 $Y = \beta_0 + \beta_1 (\text{blood type}) + \varepsilon.$

since blood type is not a number

- However, many demographics (Gender, marital status, etc) are categorical and can provide useful info for predicting/understanding the response variable *Y*.
- How to represent categorical variables "numerically" in a model?

- In a linear regression model Y = β₀ + β₁X₁ + ... + β_pX_p + ε what if some predictor X_j is categorical?
 - e.g., X₁ = blood type (O, A, B, AB)? It makes NO sense to write a model like

 $Y = \beta_0 + \beta_1 (\text{blood type}) + \varepsilon.$

since blood type is not a number

- However, many demographics (Gender, marital status, etc) are categorical and can provide useful info for predicting/understanding the response variable *Y*.
- How to represent categorical variables "numerically" in a model?
 - Solution: Create an **indicator** or **dummy variable** for each category of the categorical variable

Example: Salary Survey Data (p.130, Textbook)

S	Х	Е	Μ			
13876	1	1	1	S	=	Salarv
11608	1	3	0	X	=	Experience in years
18701	1	3	1	F	_	Education
11283	1	2	0	L	_	
11767	1	3	0			(THTH.S. OHly,
20872	2	2	1			2 If Bachelor's only,
11772	2	2	0			3 if Advanced degree)
10535	2	1	0	М	=	Management Status
:	:	:	:			(1 if manager, 0 if non-manager
19346	20	1	0			-

You can download the data at

http://www.stat.uchicago.edu/~yibi/s224/data/P130.txt

change the working directory and load the data using the command

p130 = read.table("P130.txt", header=TRUE)

```
library(ggplot2)
ggplot(p130, aes(x = X, y = S, color=E)) +
geom_point() + facet_grid(~M) +
geom_smooth(method="lm", formula='y~x') +
xlab("Experience (years)") +
ylab("Salary (dollars)")
```


Oops! R regards E = 1, 2, 3 as numerical rather than categorical!

```
ggplot(p130, aes(x = X, y = S, color=as.factor(E))) +
geom_point() + facet_grid(~M) +
geom_smooth(method="lm", formula='y~x') +
xlab("Experience (years)") +
ylab("Salary (dollars)")
```


The command as.factor(E) let R know that E is categorical. It'd be better changing the labels of E and M

Observe that Salary (S) and Experience (X) are linearly related for each level of Education (E) and Management Status (M).

How to express this as a MLR model?

Indicator Variables (aka. Dummy Variables)

Let's first ignore M and focus on S, X, and E.

- Salary (S): response
- Experience (X): numerical
- Education (E): categorical
 - 3 categories, needs 3 indicator variables

 $E_{i1} = \begin{cases} 1 & \text{if } i^{th} \text{ subject has a high school diploma only} \\ 0 & \text{otherwise} \end{cases}$ $E_{i2} = \begin{cases} 1 & \text{if } i^{th} \text{ subject has a B.A. or B.S. only} \\ 0 & \text{otherwise} \end{cases}$ $E_{i3} = \begin{cases} 1 & \text{if } i^{th} \text{ subject has an advanced degree} \\ 0 & \text{otherwise.} \end{cases}$

Can one fit the model?

$$S = \beta_0 + \beta_1 X + \delta_1 E_1 + \delta_2 E_2 + \delta_3 E_3 + \varepsilon?$$

• Education (E) only has 3 categories

- Education (E) only has 3 categories
- Each subject must fall in exactly one of the 3 categories. For each subject only one of E_1 , E_2 , and E_3 can be 1 and the other 2 must be 0.

- Education (*E*) only has 3 categories
- Each subject must fall in exactly one of the 3 categories. For each subject only one of E_1 , E_2 , and E_3 can be 1 and the other 2 must be 0.
- So, the following identity always holds

 $E_1 + E_2 + E_3 = 1$

- Education (*E*) only has 3 categories
- Each subject must fall in exactly one of the 3 categories. For each subject only one of E_1 , E_2 , and E_3 can be 1 and the other 2 must be 0.
- So, the following identity always holds

$$E_1 + E_2 + E_3 = 1$$

• One of *E*₁, *E*₂, and *E*₃ is redundant. The last one is known once the remaining are known

- Education (E) only has 3 categories
- Each subject must fall in exactly one of the 3 categories. For each subject only one of E_1 , E_2 , and E_3 can be 1 and the other 2 must be 0.
- · So, the following identity always holds

$$E_1 + E_2 + E_3 = 1$$

- One of *E*₁, *E*₂, and *E*₃ is redundant. The last one is known once the remaining are known
- In general, a categorical predictor with *c* categories needs only *c* - 1 indicator variables

If we keep all indicator variables in the model

$$S = \beta_0 + \beta_1 X + \delta_1 E_1 + \delta_2 E_2 + \delta_3 E_3 + \varepsilon$$

the least square estimate for β_j and δ_j 's cannot be uniquely determined since

$$S = \beta_0 - c + \beta_1 X + (\delta_1 + c)E_1 + (\delta_2 + c)E_2 + (\delta_3 + c)E_3 + \varepsilon$$

= $\beta_0 + \beta_1 X + \delta_1 E_1 + \delta_2 E_2 + \delta_3 E_3 + c(\underbrace{E_1 + E_2 + E_3 - 1}_{=0}) + \varepsilon$

Regardless of the value of *c*, the coefficients

 $(\beta_0, \beta_1, \delta_1, \delta_2, \delta_3)$ and $(\beta_0 - c, \beta_1, \delta_1 + c, \delta_2 + c, \delta_3 + c)$ give identical means for the response.

We thus cannot keep all of E_1 , E_2 , and E_3 in the model

When E_1 is Removed From the Model...

When E_1 is removed from the model ..., the model becomes

$$S = \beta_0 + \beta_1 X + \delta_2 E_2 + \delta_3 E_3 + \varepsilon,$$

and the mean response E[S] for the 3 education levels are

Education (E)	Indicator	E(S)
1 (HS diploma)	$E_2 = E_3 = 0$	$\beta_0 + \beta_1 X$
2 (Bachelor's degree)	$E_2 = 1, E_3 = 0$	$\beta_0 + \delta_2 + \beta_1 X$
3 (Advanced degree)	$E_2 = 0, E_3 = 1$	$\beta_0 + \delta_3 + \beta_1 X$

Based on the model above, for people w/ the same years of experience (X), the diff in their mean salary are

 $(Bachelor's - HS) = \delta_2$ $(advanced - HS) = \delta_3$ $(advanced - Bachelor's) = \delta_3 - \delta_2$

 To test whether those w/ a Bachelor's degree had a higher mean salary than those w/ only a HS diploma, after accounting for experience, which parameter should we test?

• To test whether a Bachelor's + an advanced degree increases mean salary one should test . . .

• To test whether an advanced degree increases mean salary than a Bachelor's degree after accounting for experience, one should test ...

 To test whether those w/ a Bachelor's degree had a higher mean salary than those w/ only a HS diploma, after accounting for experience, which parameter should we test?

$H_0: \delta_2 = 0 \text{ v.s. } H_1: \delta_2 > 0$

• To test whether a Bachelor's + an advanced degree increases mean salary one should test . . .

• To test whether an advanced degree increases mean salary than a Bachelor's degree after accounting for experience, one should test ...

 To test whether those w/ a Bachelor's degree had a higher mean salary than those w/ only a HS diploma, after accounting for experience, which parameter should we test?

$H_0: \delta_2 = 0 \text{ v.s. } H_1: \delta_2 > 0$

• To test whether a Bachelor's + an advanced degree increases mean salary one should test . . .

$H_0: \delta_3 = 0 \text{ v.s. } H_1: \delta_3 > 0$

• To test whether an advanced degree increases mean salary than a Bachelor's degree after accounting for experience, one should test ...

 To test whether those w/ a Bachelor's degree had a higher mean salary than those w/ only a HS diploma, after accounting for experience, which parameter should we test?

 $H_0: \delta_2 = 0 \text{ v.s. } H_1: \delta_2 > 0$

• To test whether a Bachelor's + an advanced degree increases mean salary one should test . . .

 $H_0: \delta_3 = 0 \text{ v.s. } H_1: \delta_3 > 0$

• To test whether an advanced degree increases mean salary than a Bachelor's degree after accounting for experience, one should test ...

 $H_0: \delta_3 = \delta_2 \text{ v.s. } H_1: \delta_3 > \delta_2$

lm0 = lm(S ~ X + E, data=p130)						
<pre>summary(lm0)\$coef</pre>						
	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	8279.9	1814.6	4.563	0.000041758		
Х	560.8	105.8	5.299	0.00003781		
E	2418.4	706.9	3.421	0.001377546		

• Something wrong?

lm0 = lm(S ~ X + E, data=p130)						
<pre>summary(lm0)\$coef</pre>						
	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	8279.9	1814.6	4.563	0.000041758		
Х	560.8	105.8	5.299	0.000003781		
E	2418.4	706.9	3.421	0.001377546		

- Something wrong?
- R treats *E* (education) as numerical taking values 1, 2, and 3, not a categorical one

Numerical or Categorical?

If one treats E (education) as **numerical** taking values 1, 2, and 3, the model then becomes

$$S = \beta_0 + \beta X + \delta E + \varepsilon.$$

The mean response E[S] for the 3 education levels would be

Education (E)	Value of E	E(S)
1 (HS diploma)	1	$\beta_0 + \beta_1 X + \delta$
2 (Bachelor's degree)	2	$\beta_0 + \beta_1 X + 2\delta$
3 (Advanced degree)	3	$\beta_0 + \beta_1 X + 3\delta$

The diff in mean salary controlling for experience X would be

 $(Bachelor's - HS) = \delta$

 $(advanced - Bachelor's) = \delta$

That is, the salary bonus for completing college is as much as the bonus for completing an advanced degree unrealistic and too restrictive.

$lm1 = lm(S \sim X + as.factor(E), data=p130)$						
<pre>summary(lm1)\$coef</pre>						
	Estimate	Std. Error t	value	Pr(> t)		
(Intercept)	10474.3	1305.4	8.024	0.000000005186		
Х	548.6	107.6	5.100	0.0000076946014		
as.factor(E) <mark>2</mark>	3221.1	1275.8	2.525	0.0154427258510		
as.factor(E) <mark>3</mark>	4780.1	1422.7	3.360	0.0016690499444		

• The command as.factor() tells R that *E* is categorical and the indicator variables E1, E2, E3 are created automatically

$lm1 = lm(S \sim X + as.factor(E), data=p130)$						
<pre>summary(lm1)\$coef</pre>						
	Estimate	Std. Error t	value	Pr(> t)		
(Intercept)	10474.3	1305.4	8.024	0.000000005186		
Х	548.6	107.6	5.100	0.0000076946014		
as.factor(E) <mark>2</mark>	3221.1	1275.8	2.525	0.0154427258510		
as.factor(E) <mark>3</mark>	4780.1	1422.7	3.360	0.0016690499444		

- The command as.factor() tells R that *E* is categorical and the indicator variables E1, E2, E3 are created automatically
- By default, R drops the indicator E1 for the lowest level

$lm1 = lm(S \sim X + as.factor(E), data=p130)$						
<pre>summary(lm1)\$coef</pre>						
	Estimate	Std. Error t	value	Pr(> t)		
(Intercept)	10474.3	1305.4	8.024	0.000000005186		
Х	548.6	107.6	5.100	0.0000076946014		
as.factor(E) <mark>2</mark>	3221.1	1275.8	2.525	0.0154427258510		
as.factor(E)3	4780.1	1422.7	3.360	0.0016690499444		

- The command as.factor() tells R that *E* is categorical and the indicator variables E1, E2, E3 are created automatically
- By default, R drops the indicator E1 for the lowest level
- 95% Confidence interval for coefficients:

```
confint(lm1, level=0.95)
2.5 % 97.5 %
(Intercept) 7839.8 13108.7
X 331.5 765.7
as.factor(E)2 646.4 5795.8
as.factor(E)3 1908.9 7651.4
```

From the output of on th previous slide, the predicted salary is

$$\widehat{S} = 10474 + 548X + 3221E_2 + 4780E_3.$$

- This model implies that on average:
 - each extra year of experience worths β₁ ≈ \$548, with a 95% CI of \$331.5 to \$765.1.
 - completing college <u>increases</u> salary by $\hat{\delta}_2 = \$3221$, with a 95% CI of \$646.4 to \$5795.8.
 - completing college + advanced degree increases salary by $\hat{\delta}_3 = \$4780$, with a 95% Cl of \$1908.9 to \$7651.4.
- All the 3 coefficients above are significantly different from 0 (*P*-value < 5%)
- To compare college graduates with those with an advanced degree, need to test whether δ₂ < δ₃. What to do?

What if We Drop a Different Indicator Variable?

If we drop E2 (Bachelor's degree) instead if E1, the model becomes

$$S = \beta'_0 + \beta'_1 X + \delta'_1 E_1 + \delta'_3 E_3 + \varepsilon,$$

and the mean response E[S] for the 3 education levels are

Education (E)	Indicator	E(S)
1 (HS diploma)	$E_1 = 1, E_3 = 0$	$\beta_0' + \delta_1' + \beta_1' X$
2 (Bachelor's degree)	$E_1 = E_3 = 0$	$\beta'_0 + \beta'_1 X$
3 (Advanced degree)	$E_2 = 0, E_3 = 1$	$\beta'_0 + \delta'_3 + \beta'_1 X$

The model above means for people w/ the same years of experience (X), the diff in their mean salary are

```
(HS - Bachelor's) = \delta'_1(advanced - Bachelor's) = \delta'_3(advanced - HS) = \delta'_3 - \delta'_1
```

Hence one can compare a advanced degree with a Bachelor's degree by testing whether $\delta_3'=0$

16

If not happy with R's choice of which indicator to drop, one can manually create the indicator variables E1 and E3

```
p130$E1 = ifelse(p130$E==1, 1, 0)
p130$E3 = ifelse(p130$E==3, 1, 0)
```

```
and fit the model
```

The large *P*-value 0.251 for E3 (δ'_3) indicate an advanced degree did **not** increase salary significantly

It Doesn't Matter Which Indicator is Dropped

If E_1 is dropped,		If E_2 is dropped,	
Education (E)	E(<i>S</i>)	Education (E)	E(<i>S</i>)
1 (HS)	$\beta_0 + \beta_1 X$	1 (HS)	$\beta_0' + \delta_1' + \beta_1' X$
2 (Bachelor's)	$\beta_0 + \delta_2 + \beta_1 X$	2 (Bachelor's)	$\beta'_0 + \beta'_1 X$
3 (Advanced)	$\beta_0 + \delta_3 + \beta_1 X$	3 (Advanced)	$\beta_0' + \delta_3' + \beta_1' X$

The 2 models are equivalent in the sense that they give identical mean responses E(S):

$$\beta_0 = \beta'_0 + \delta'_1$$
$$\beta_0 + \delta_2 = \beta'_0$$
$$\beta_0 + \delta_3 = \beta'_0 + \delta'_3$$
$$\beta_1 = \beta'_1$$

The 2 models have identical fitted values \hat{y}_i , residuals e_i , SSE, SSR and hence $\hat{\sigma}^2 = MSE$, multiple and adjust R^2 .

Observe the 2 models have identical fitted values \hat{y}_i , residuals e_i , SSE, SSR and hence $\hat{\sigma}^2 = MSE$, multiple and adjust R^2 , and many others, despite they drop different indicators

```
> summary(lm1)
...(some output omitted)...
Residual standard error: 3620 on 42 degrees of freedom
Multiple R-squared: 0.45, Adjusted R-squared: 0.41
F-statistic: 11.4 on 3 and 42 DF, p-value: 0.0000129
```

```
> summary(lm1b)
...(some output omitted)...
Residual standard error: 3620 on 42 degrees of freedom
Multiple R-squared: 0.45, Adjusted R-squared: 0.41
F-statistic: 11.4 on 3 and 42 DF, p-value: 0.0000129
```

Model w/ Two Categorical Predictors & Their Interactions

Now let's take another categorical predictor, management status (M), into account.

$$M = \begin{cases} 1 & \text{if manager,} \\ 0 & \text{if other} \end{cases}$$

Since *M* is categorical, just like *E*, we should create indicator variables M_0 and M_1 for the two categories, and consider the model

$$S = \beta_0 + \alpha_0 M_0 + \alpha_1 M_1 + \delta_1 E_1 + \delta_2 E_2 + \delta_3 E_3 + \beta X + \varepsilon.$$

However, we need to drop one of M_0 and M_1 and one of E_1 , E_2 and E_3 .

Say we drop M_0 and E_1 , and consider the model

$$S = \beta_0 + \alpha_1 M_1 + \delta_2 E_2 + \delta_3 E_3 + \beta X + \varepsilon.$$

$$S = \beta_0 + \alpha_1 M_1 + \delta_2 E_2 + \delta_3 E_3 + \beta X + \varepsilon.$$

		E	$\mathcal{L}(S)$	
Education (E)	Other ($M_1 = 0)$	Manager	$(M_1 = 1)$
1 (HS, $E_2 = E_3 = 0$)	β_0	$+\beta X$	$\beta_0 + \frac{\alpha_1}{\alpha_1}$	$+\beta X$
2 (Bachelor's, $E_2 = 1, E_3 = 0$)	$\beta_0 + \delta$	$_2 + \beta X$	$\beta_0 + \alpha_1 + \alpha_1$	$\delta_2 + \beta X$
3 (Advanced, $E_2 = 0, E_3 = 1$)	$\beta_0 + \delta$	$_3 + \beta X$	$\beta_0 + \frac{\alpha_1}{\alpha_1} + $	$\delta_3 + \beta X$

This model says, on average

- managers earn α_1 more than non-managers, regardless of *E* and *X*;
- completing college increases salary by δ_2 , regardless of *M* and *X*;
- advanced degree earn δ_3 more than HS, regardless of M and X

The model $S = \beta_0 + \alpha_1 M_1 + \delta_2 E_2 + \delta_3 E_3 + \beta X + \varepsilon$ assumes the effect of management status (*M*) on salary (*S*) does not change with education levels *E*. However, from the plot below ...

```
ggplot(p130, aes(x = X, y = S, color=Edu)) +
geom_point() + facet_grid(~Mgr) +
geom_smooth(method="lm", formula='y~x') +
xlab("Experience (years)") + ylab("Salary (dollars)")
```


Interpretation of Interactions (1)

We may consider the model below with M * E interactions.

 $S = \beta_0 + \alpha_1 M_1 + \delta_2 E_2 + \delta_3 E_3 + \theta_2 (M_1 \cdot E_2) + \theta_3 (M_1 \cdot E_3) + \beta X + \varepsilon.$

Here $(M_1 \cdot E_2)$ means the **product** of the variables M_1 and E_2 .

		E(S)
Education (E)	Other $(M_1 = 0)$	Manager $(M_1 = 1)$
1 (HS, $E_2 = E_3 = 0$)	$\beta_0 + \beta X$	$\beta_0 + \alpha_1 + \beta X$
2 (Bachelor's, $E_2 = 1, E_3 = 0$)	$\beta_0 + \delta_2 + \beta X$	$\beta_0 + \alpha_1 + \delta_2 + \theta_2 + \beta X$
3 (Advanced, $E_2 = 0, E_3 = 1$)	$\beta_0 + \delta_3 + \beta X$	$\beta_0 + \alpha_1 + \delta_3 + \theta_3 + \beta X$

- For HS, managers earns α_1 more than others with the same X
- For B.A. or B.S, managers earns α₁ + θ₂ more than others with the same X
- For advance degree, managers earns α₁ + θ₃ more than others with the same X

 $S=\beta_0+\alpha_1M_1+\delta_2E_2+\delta_3E_3+\theta_2(M_1\cdot E_2)+\theta_3(M_1\cdot E_3)+\beta X+\varepsilon.$

	E(S)			
Education (E)	Other ($M_1=0)$	Manager	$(M_1 = 1)$
1 (HS, $E_2 = E_3 = 0$)	β_0	$+\beta X$	$\beta_0 + \alpha_1$	$+\beta X$
2 (Bachelor's, $E_2 = 1, E_3 = 0$)	$\beta_0 + \delta_2$	$_2 + \beta X$	$\beta_0 + \frac{\alpha_1}{\alpha_1} + \delta$	$\theta_2 + \theta_2 + \beta X$
3 (Advanced, $E_2 = 0, E_3 = 1$)	$\beta_0 + \delta_2$	$_3 + \beta X$	$\beta_0 + \frac{\alpha_1}{\alpha_1} + \delta$	$\theta_3 + \theta_3 + \beta X$

- Non-managers with a B.A. or B.S. earns δ₂ more than non-managers with H.S. diploma with the same X
- Managers with a B.A. or B.S. earns δ₂ + θ₂ more than managers with H.S. diploma with the same X

Effects of E on S changes with M as well.

lm3 = lm(S ~ as.factor(E)+as.factor(M)+X, data = p130)
summary(lm3)\$coef

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	8035.6	386.69	20.781	2.199e-23	
as.factor(E) <mark>2</mark>	3144.0	361.97	8.686	7.733e-11	
as.factor(E) <mark>3</mark>	2996.2	411.75	7.277	6.722e-09	
as.factor(M)1	6883.5	313.92	21.928	2.901e-24	
Х	546.2	30.52	17.896	5.546e-21	
<pre>summary(lm3)\$sigma</pre>					
[1] 1027					
(7 A) A					

```
summary(lm3)$r.squared
```

```
[1] 0.9568
```

```
p130 = as.factor(p130 E)
```

```
p130 = as.factor(p130 M)
```

```
lm4 = lm(S \sim E+M+E*M+X, data = p130)
```

summary(lm4)\$coef

	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	9473	80.344	117.90	2.074e-51		
E2	1382	77.319	17.87	2.211e-20		
E3	1731	105.334	16.43	4.013e-19		
M1	3981	101.175	39.35	5.253e-33		
Х	497	5.566	89.28	1.021e-46		
E2:M1	4903	131.359	37.32	3.934e-32		
E3:M1	3066	149.330	20.53	1.635e-22		
<pre>summary(lm4)\$sigma</pre>						
[1] 173.8						

summary(lm4)\$r.squared

[1] 0.9988

There are significant E*M interactions!