STAT 224 Lecture 4 Multiple Linear Regression, Part 3

Yibi Huang

Department of Statistics
University of Chicago

Outline

- Accuracy of Predictions
- Confidence Intervals for Predictions
- Prediction Intervals for Predictions
- Sum of Squares
- Model Comparison

Accuracy of Predictions for SLR

Two Kinds of Predictions

There are TWO kinds of predictions for the response Y given $X=x_{0}$ based on a SLR model $Y=\beta_{0}+\beta_{1} X+\varepsilon$:

- given $X=x_{0}$, estimation of the mean response

$$
\mathrm{E}\left[Y \mid X=x_{0}\right]=\beta_{0}+\beta_{1} x_{0}
$$

- given $X=x_{0}$, prediction of the response for one specific observation

$$
Y=\beta_{0}+\beta_{1} x_{0}+\varepsilon
$$

For the Fire Damage example in L03, one may want to

- estimate the average fire damage for all houses located 2 miles away from the nearest fire station, which is $\beta_{0}+2 \beta_{1}$
- predict the fire damage for a specific house located 2 miles away from the nearest fire station which is $\beta_{0}+2 \beta_{1}+\varepsilon$

Estimation v.s. Prediction

The first one is an estimation problem as $\beta_{0}+\beta_{1} x_{0}$ only involve fixed parameters β_{0}, β_{1}, and a known number x_{0}.

The second one is a prediction problem as $\beta_{0}+\beta_{1} x_{0}+\varepsilon$ involve a random number ε

Estimated Value and Predicted Value

Both

$$
\mathrm{E}\left[Y \mid X_{0}\right]=\beta_{0}+\beta_{1} x_{0} \quad \text { and } \quad Y=\beta_{0}+\beta_{1} x_{0}+\varepsilon
$$

are estimated/predicted by

$$
\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}
$$

The noise ε for a future observation is predicted to be its mean 0 . We cannot make a better prediction for ε from the observed $\left(x_{i}, y_{i}\right)$'s since ε independent of all observed $\left(x_{i}, y_{i}\right)$'s.

The Two Prediction Problems Differ in Uncertainty!

For estimating $\mathrm{E}\left[Y \mid X=x_{0}\right]=\beta_{0}+\beta_{1} x_{0}$, the variance for the estimate $\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}$ can be shown to be

$$
\operatorname{Var}\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}\right)=\sigma^{2}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)
$$

To predict $Y=\beta_{0}+\beta_{1} x_{0}+\varepsilon$, we need to include the extra variability from the noise ε.

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}+\varepsilon\right) & =\operatorname{Var}\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}\right)+\operatorname{Var}(\varepsilon) \\
& =\sigma^{2}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)+\sigma^{2}
\end{aligned}
$$

As n gets large,

- $\operatorname{Var}\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}\right)$ would go down to 0 , but
- $\operatorname{Var}\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}+\varepsilon\right)$ just goes down to σ^{2}.

What Affects the Accuracy of Prediction?

Recall the variances for the two prediction problems are

$$
\begin{cases}\sigma^{2}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right) & \text { for estimating } \mathrm{E}\left[Y \mid X=x_{0}\right]=\beta_{0}+\beta_{1} x_{0} \\ \sigma^{2}\left(1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\overline{x^{2}}\right.}\right) & \text { to predict } Y \text { when } X=x_{0}\end{cases}
$$

An accurate prediction (less variance) comes from

- small σ^{2} (i.e., small noise ε 's)
- large sample size n
- large $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ (more spread in predictors)
- small $\left(x_{0}-\bar{x}\right)^{2}$

Confidence Intervals and Prediction Intervals

The $100(1-\alpha) \%$ confidence interval for $\beta_{0}+\beta_{1} x_{0}$ is

$$
\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0} \pm t_{(n-2, \alpha / 2)} \widehat{\sigma} \sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}
$$

The $100(1-\alpha) \%$ prediction interval for $Y=\beta_{0}+\beta_{1} x_{0}+\varepsilon$ is

$$
\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0} \pm t_{(n-2, \alpha / 2)} \widehat{\sigma} \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}
$$

where $\widehat{\sigma}=\sqrt{\text { ME }}$.

Example: Fire Damage Data

Recall the fire damage data in L03. The variables are

- dist: distance to the nearest fire station in miles
- damage: amount of fire damage in $\$ 1000$

```
fire = data.frame(
    dist=c(0.7,1.1,1.8,2.1,2.3,2.6,3.0,3.1,3.4,3.8,4.3,4.6,4.8,5.5,6.1),
    damage=c(14.1,17.3,17.8,24.0,23.1,19.6,22.3,27.5,26.2,26.1,31.3,
    31.3,36.4,36.0,43.2)
    )
```


Confidence Intervals and Prediction Intervals in \mathbf{R}

```
lmfire = lm(damage ~ dist, data = fire)
predict(lmfire, data.frame(dist=2), interval="confidence")
    fit lwr upr
1 20.12 18.43 21.8
predict(lmfire, data.frame(dist=2), interval="prediction")
    fit lwr upr
1 20.12 14.84 25.4
```

- For houses located 2 miles away from the nearest fire station, the average fire damage is estimated to be $\$ 20,120$ with a 95% confidence interval from $\$ 18,430$ to $\$ 21.800$.
- When a house located 2 miles away from the nearest fire station, the fire damage is between $\$ 14,840$ to $\$ 25,400$ with 95\% confidence.
- The prediction interval for a single house is wider.

The plot below shows the 95\% confidence intervals and the 95\% prediction intervals at different values of x_{0}.

Both the confidence intervals and the prediction intervals are narrowest when $x_{0}=\bar{x}$.
geom_smooth(method='lm') in ggplot() by default includes the 95\% confidence intervals for estimating $\mathrm{E}\left(y \mid X=x_{0}\right)$.

```
library(ggplot2)
ggplot(fire, aes(x=dist, y=damage)) + geom_point() +
    geom_smooth(method='lm', formula='y~x') +
    xlab("Distance to Nearest Fire Station (miles)") +
    ylab("Fire Damage ($1000)")
```


Distance to Nearest Fire Station (miles)

Accuracy of Predictions for MLR

Accuracy of Predictions for MLR

An MLR model $Y=\beta_{0}+\beta_{1} X_{1}+\cdots \beta_{p} X_{p}+\varepsilon$ also has two kinds of conditional prediction problems of the response Y given the values of the predictors:

$$
X_{1}=x_{01}, \ldots, X_{p}=x_{0 p}
$$

- estimation of the mean response given $X_{1}=x_{01}, \ldots, X_{p}=x_{0 p}$

$$
\mathrm{E}\left[Y \mid X_{0}\right]=\beta_{0}+\beta_{1} x_{01}+\cdots+\beta_{p} x_{0 p}
$$

- prediction of the response for one specific observation given $X_{1}=x_{01}, \ldots X_{p}=x_{0 p}$

$$
Y=\beta_{0}+\beta_{1} x_{01}+\cdots+\beta_{p} x_{0 p}+\varepsilon
$$

Just like SLR, two problems have identical estimated/predicted values

$$
\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{01}+\cdots+\widehat{\beta}_{p} x_{0 p}
$$

but their standard errors are different

$$
\begin{aligned}
\text { s.e. }\left(\mathrm{E}\left(\widehat{Y \mid X_{0}}\right)\right) & =\widehat{\sigma} \sqrt{\mathbf{x}_{0}^{T}\left(X^{T} X\right)^{-1} \mathbf{x}_{0}} \\
\text { s.e. }\left(\widehat{Y} \mid X_{0}\right) & =\widehat{\sigma} \sqrt{1+\mathbf{x}_{0}^{T}\left(X^{T} X\right)^{-1} \mathbf{x}_{0}}
\end{aligned}
$$

where $\mathbf{x}_{0}^{T}=\left(1, x_{01}, \ldots, x_{0 p}\right)^{T}$.

Confidence Intervals and Prediction Intervals

The $100(1-\alpha) \%$ confidence interval for $\mathrm{E}\left[Y \mid X_{1}=x_{01}, \ldots X_{p}=x_{0 p}\right]=\beta_{0}+\beta_{1} x_{01}+\cdots+\beta_{p} x_{0 p}$ is

$$
\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{01}+\cdots+\widehat{\beta}_{p} x_{0 p} \pm t_{(n-p-1, \alpha / 2)} \text { s.e. }\left(\mathrm{E}\left(\widehat{\left(Y \mid X_{0}\right.}\right)\right)
$$

The $100(1-\alpha) \%$ prediction interval for
$Y=\beta_{0}+\beta_{1} x_{01}+\cdots+\beta_{p} x_{0 p}+\varepsilon$ is

$$
\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{01}+\cdots+\widehat{\beta}_{p} x_{0 p} \pm t_{(n-p-1, \alpha / 2)} \text { s.e. }\left(\widehat{Y} \mid X_{0}\right)
$$

For the trees data in L03

```
data(trees)
trees$Diameter = trees$Girth
lmtrees = lm(log(Volume) ~ log(Diameter) + log(Height), data=trees)
predict(lmtrees, data.frame(Diameter=10, Height = 70),
    interval = "confidence")
    fit lwr upr
12.68 2.633 2.726
predict(lmtrees, data.frame(Diameter=10, Height = 70),
    interval = "prediction")
    fit lwr upr
12.68 2.507 2.853
```

- The mean log(Volume) for all 70-ft-tall, 10 ft in diameter, cherry trees is estimated to between 2.633 to 2.726 , at 95% confidence level
- The log(Volume) for a randomly selected 70-ft-tall cherry tree with a diameter of 10 ft is predicted to be between 2.507 to 2.853.

One can exponentiate the intervals to get intervals for Volume rather than for \log (Volume).

```
predict(lmtrees, data.frame(Diameter=10, Height = 70),
    interval = "confidence")
    fit lwr upr
12.68 2.633 2.726
predict(lmtrees, data.frame(Diameter=10, Height = 70),
    interval = "prediction")
    fit lwr upr
12.68 2.507 2.853
```

- The mean Volume for all 70-ft-tall, 10 ft in diameter, cherry trees is estimated to between $e^{2.633} \approx 13.92$ to $e^{2.726} \approx 15.27$ cubic ft , at 95\% confidence level
- The Volume for a randomly selected 70 -ft-tall cherry tree with a diameter of 10 ft is predicted to be between $e^{2.507} \approx 12.26$ to $e^{2.853} \approx 17.34$ cubic ft .

Sum of Squares, Degrees of

Freedom, Mean Squares

Sum of Squares

Observe that

$$
y_{i}-\bar{y}=\underbrace{\left(\hat{y}_{i}-\bar{y}\right)}_{a}+\underbrace{\left(y_{i}-\widehat{y}_{i}\right)}_{b}
$$

Squaring up both sides using the identity $(a+b)^{2}=a^{2}+b^{2}+2 a b$, we get

$$
\left(y_{i}-\bar{y}\right)^{2}=\underbrace{\left(\widehat{y}_{i}-\bar{y}\right)^{2}}_{a^{2}}+\underbrace{\left(y_{i}-\widehat{y_{i}}\right)^{2}}_{b^{2}}+\underbrace{2\left(\widehat{y_{i}}-\bar{y}\right)\left(y_{i}-\widehat{y}_{i}\right)}_{2 a b}
$$

Summing up over all the cases $i=1,2, \ldots, n$, we get

$$
\overbrace{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}^{\text {SST }}=\overbrace{\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)^{2}}^{\text {SSR }}+\overbrace{\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}}^{\text {SSE }}+2 \underbrace{\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)\left(y_{i}-\widehat{y}_{i}\right)}_{=0, \text { see next page. }}
$$

Why $\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)\left(y_{i}-\widehat{y}_{i}\right)=0$?

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)(\underbrace{y_{i}-\widehat{y}_{i}}_{=e_{i}}) \\
= & \sum_{i=1}^{n} \widehat{y}_{i} e_{i}-\sum_{i=1}^{n} \bar{y} e_{i} \\
= & \sum_{i=1}^{n}\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\ldots+\widehat{\beta}_{p} x_{i p}\right) e_{i}-\sum_{i=1}^{n} \bar{y} e_{i} \\
= & \widehat{\beta}_{0} \underbrace{\sum_{i=1}^{n} e_{i}}_{=0}+\widehat{\beta}_{1} \underbrace{\sum_{i=1}^{n} x_{i 1} e_{i}}_{=0}+\ldots+\widehat{\beta}_{p} \underbrace{\sum_{i=1}^{n} x_{i p} e_{i}}_{=0}-\underbrace{\bar{y}}_{=0} \underbrace{\sum_{i=1}^{n} e_{i}}_{=1} \\
= & 0
\end{aligned}
$$

in which we used the properties of residuals that $\sum_{i=1}^{n} e_{i}=0$ and $\sum_{i=1}^{n} x_{i k} e_{i}=0$ for all $k=1, \ldots, p$.

Interpretation of Sum of Squares

$$
\underbrace{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}_{\text {SST }}=\underbrace{\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)^{2}}_{\text {SSR }}+\underbrace{\sum_{i=1}^{n}(\overbrace{y_{i}-\widehat{y_{i}}}^{=e_{i}})^{2}}_{\text {SSE }}
$$

- $\mathrm{SST}=$ total sum of squares
- total variability of Y
- depends on the response Y only, not on the form of the model
- $\mathrm{SSR}=$ regression sum of squares
- variability of Y explained by X_{1}, \ldots, X_{p}
- SSE = error (residual) sum of squares
- $=\min _{\beta_{0}, \beta_{1}, \ldots, \beta_{p}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i 1}-\cdots-\beta_{p} x_{i p}\right)^{2}$
- variability of Y not explained by the X 's

Degrees of Freedom

If the MLR model $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{p} x_{i p}+\varepsilon_{i}, \varepsilon_{i}$'s i.i.d.
$\sim N\left(0, \sigma^{2}\right)$ is true, it can be shown that

$$
\frac{\mathrm{SSE}}{\sigma^{2}} \sim \chi_{n-p-1}^{2}
$$

If we further assume that $\beta_{1}=\beta_{2}=\cdots=\beta_{p}=0$, then

$$
\frac{\mathrm{SST}}{\sigma^{2}} \sim \chi_{n-1}^{2}, \quad \frac{\mathrm{SSR}}{\sigma^{2}} \sim \chi_{p}^{2}
$$

and SSR is independent of SSE.
Note the degrees of freedom of the 3 chi-square distributions

$$
d f T=n-1, \quad d f R=p, \quad d f E=n-p-1
$$

break down similarly

$$
d f T=d f R+d f E
$$

just like SST = SSR + SSE.

Multiple R^{2} and Adjusted R^{2}

Multiple R-Squared

Multiple R^{2}, also called the coefficient of determination, is defined as

$$
\begin{aligned}
R^{2} & =\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}} \\
& =\text { proportion of variability in } Y \text { explained by } X_{1}, \ldots, X_{p}
\end{aligned}
$$

- $0 \leq R^{2} \leq 1$

Multiple R-Squared

Multiple R^{2}, also called the coefficient of determination, is defined as

$$
\begin{aligned}
R^{2} & =\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}} \\
& =\text { proportion of variability in } Y \text { explained by } X_{1}, \ldots, X_{p}
\end{aligned}
$$

- $0 \leq R^{2} \leq 1$
- For SLR, $R^{2}=r_{x y}^{2}$ is the square of the correlation between X and Y. So multiple R^{2} is a generalization of the correlation

Multiple R-Squared

Multiple R^{2}, also called the coefficient of determination, is defined as

$$
\begin{aligned}
R^{2} & =\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}} \\
& =\text { proportion of variability in } Y \text { explained by } X_{1}, \ldots, X_{p}
\end{aligned}
$$

- $0 \leq R^{2} \leq 1$
- For SLR, $R^{2}=r_{x y}^{2}$ is the square of the correlation between X and Y. So multiple R^{2} is a generalization of the correlation
- For MLR, R^{2} is the square of the correlation between Y and \widehat{Y}

Multiple R-Squared

Multiple R^{2}, also called the coefficient of determination, is defined as

$$
\begin{aligned}
R^{2} & =\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}} \\
& =\text { proportion of variability in } Y \text { explained by } X_{1}, \ldots, X_{p}
\end{aligned}
$$

- $0 \leq R^{2} \leq 1$
- For SLR, $R^{2}=r_{x y}^{2}$ is the square of the correlation between X and Y. So multiple R^{2} is a generalization of the correlation
- For MLR, R^{2} is the square of the correlation between Y and \widehat{Y}
- When more terms are added into a model, R^{2} may increase or stay the same but never decrease

Multiple R-Squared

Multiple R^{2}, also called the coefficient of determination, is defined as

$$
\begin{aligned}
R^{2} & =\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}} \\
& =\text { proportion of variability in } Y \text { explained by } X_{1}, \ldots, X_{p}
\end{aligned}
$$

- $0 \leq R^{2} \leq 1$
- For SLR, $R^{2}=r_{x y}^{2}$ is the square of the correlation between X and Y. So multiple R^{2} is a generalization of the correlation
- For MLR, R^{2} is the square of the correlation between Y and \widehat{Y}
- When more terms are added into a model, R^{2} may increase or stay the same but never decrease
- Is large R^{2} always preferable?

Adjusted R-Squared

Since R^{2} always increases as we add terms to the model, some people prefer to use an adjusted R^{2} defined as

$$
\begin{aligned}
& R_{a d j}^{2}=1-\frac{\mathrm{SSE} / \mathrm{dfE}}{\mathrm{SST} / \mathrm{dfT}}=1-\frac{\mathrm{SSE} /(n-p-1)}{\mathrm{SST} /(n-1)} \\
&=1-\frac{n-1}{n-p-1}\left(1-R^{2}\right) . \\
&--\frac{p}{n-p-1} \leq R_{a d j}^{2} \leq R^{2} \leq 1
\end{aligned}
$$

Adjusted R-Squared

Since R^{2} always increases as we add terms to the model, some people prefer to use an adjusted R^{2} defined as

$$
\begin{aligned}
R_{a d j}^{2}=1-\frac{\mathrm{SSE} / \mathrm{dfE}}{\mathrm{SST} / \mathrm{dfT}} & =1-\frac{\mathrm{SSE} /(n-p-1)}{\mathrm{SST} /(n-1)} \\
& =1-\frac{n-1}{n-p-1}\left(1-R^{2}\right) .
\end{aligned}
$$

- $-\frac{p}{n-p-1} \leq R_{a d j}^{2} \leq R^{2} \leq 1$
- Unlike $R^{2}, R_{a d j}^{2}$ can be negative

Adjusted R-Squared

Since R^{2} always increases as we add terms to the model, some people prefer to use an adjusted R^{2} defined as

$$
\begin{aligned}
R_{a d j}^{2}=1-\frac{\mathrm{SSE} / \mathrm{dfE}}{\mathrm{SST} / \mathrm{dfT}} & =1-\frac{\mathrm{SSE} /(n-p-1)}{\mathrm{SST} /(n-1)} \\
& =1-\frac{n-1}{n-p-1}\left(1-R^{2}\right) .
\end{aligned}
$$

- $-\frac{p}{n-p-1} \leq R_{a d j}^{2} \leq R^{2} \leq 1$
- Unlike $R^{2}, R_{a d j}^{2}$ can be negative
- $R_{a d j}^{2}$ does not always increase as more variables are added. In fact, if unnecessary terms are added, $R_{a d j}^{2}$ may decrease.

R^{2} and $R_{a d j}^{2}$ in \mathbf{R}

> lmtrees $=\operatorname{lm}(\log ($ Volume $) \sim \log ($ Diameter $)+\log ($ Height $)$, data $=$ trees $)$
> summary (lmtrees)
... (output omitted)
Residual standard error: 0.08139 on 28 degrees of freedom Multiple R-squared: 0.9777, Adjusted R-squared: 0.9761
F-statistic: 613.2 on 2 and 28 DF, p-value: < $2.2 \mathrm{e}-16$

The R output above shows that $R^{2}=0.9777$ and $R_{a d j}^{2}=0.9761$.
The predictors \log (Diameter) and \log (Height) can explain 97.77% of the variation in \log (Volume).

```
Model
\begin{tabular}{lll}
\(\log (\) Volume \() \sim \log\) (Height) & 0.4207 & 0.4008 \\
\(\log (\) Volume \() \sim \log\) (Diameter) & 0.9539 & 0.9523 \\
\(\log (\) Volume \() \sim \log\) (Diameter) \(+\log\) (Height) & 0.9777 & 0.9761
\end{tabular}
```


F-Tests on Multiple Regression

Coefficients

Nested Models

We say Model 1 is nested in Model 2 if Model 1 is a special case of Model 2 (and hence Model 2 is an extension of Model 1).
E.g., for the 4 models below,

Model A : $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\varepsilon$
Model B: $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon$
Model C: $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{3} X_{3}+\varepsilon$
Model D: $Y=\beta_{0}+\beta_{1}\left(X_{1}+X_{2}\right)+\varepsilon$

- B is nested in $\mathrm{A} \ldots \ldots \ldots$. . . since A reduces to B when $\beta_{3}=0$

Nested Models

We say Model 1 is nested in Model 2 if Model 1 is a special case of Model 2 (and hence Model 2 is an extension of Model 1).
E.g., for the 4 models below,

$$
\begin{aligned}
& \text { Model A: } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\varepsilon \\
& \text { Model B : } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon \\
& \text { Model C : } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{3} X_{3}+\varepsilon \\
& \text { Model D : } Y=\beta_{0}+\beta_{1}\left(X_{1}+X_{2}\right)+\varepsilon
\end{aligned}
$$

- \mathbf{B} is nested in $\mathbf{A} \ldots \ldots \ldots$........ since \mathbf{A} reduces to B when $\beta_{3}=0$
- C is also nested in $\mathrm{A} \ldots$. . . since A reduces to C when $\beta_{2}=0$

Nested Models

We say Model 1 is nested in Model 2 if Model 1 is a special case of Model 2 (and hence Model 2 is an extension of Model 1).
E.g., for the 4 models below,

$$
\begin{aligned}
& \text { Model A : } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\varepsilon \\
& \text { Model B : } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon \\
& \text { Model C : } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{3} X_{3}+\varepsilon \\
& \text { Model D : } Y=\beta_{0}+\beta_{1}\left(X_{1}+X_{2}\right)+\varepsilon
\end{aligned}
$$

- \mathbf{B} is nested in $\mathrm{A} \ldots \ldots \ldots$........ since A reduces to B when $\beta_{3}=0$
- C is also nested in $\mathrm{A} \ldots .$. . since A reduces to C when $\beta_{2}=0$
- \mathbf{D} is nested in $\mathrm{B} \ldots \ldots$.... since B reduces to D when $\beta_{1}=\beta_{2}$

Nested Models

We say Model 1 is nested in Model 2 if Model 1 is a special case of Model 2 (and hence Model 2 is an extension of Model 1).
E.g., for the 4 models below,

$$
\begin{aligned}
& \text { Model A : } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\varepsilon \\
& \text { Model B : } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon \\
& \text { Model C : } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{3} X_{3}+\varepsilon \\
& \text { Model D : } Y=\beta_{0}+\beta_{1}\left(X_{1}+X_{2}\right)+\varepsilon
\end{aligned}
$$

- \mathbf{B} is nested in $\mathbf{A} \ldots \ldots \ldots$........ since \mathbf{A} reduces to B when $\beta_{3}=0$
- C is also nested in $\mathrm{A} \ldots$. . . since A reduces to C when $\beta_{2}=0$
- \mathbf{D} is nested in $\mathrm{B} \ldots \ldots$.... since B reduces to D when $\beta_{1}=\beta_{2}$
- B and C are NOT nested in either way

Nested Models

We say Model 1 is nested in Model 2 if Model 1 is a special case of Model 2 (and hence Model 2 is an extension of Model 1).
E.g., for the 4 models below,

$$
\begin{aligned}
& \text { Model A : } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\varepsilon \\
& \text { Model B : } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon \\
& \text { Model C : } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{3} X_{3}+\varepsilon \\
& \text { Model D : } Y=\beta_{0}+\beta_{1}\left(X_{1}+X_{2}\right)+\varepsilon
\end{aligned}
$$

- \mathbf{B} is nested in $\mathbf{A} \ldots \ldots \ldots$........ since \mathbf{A} reduces to B when $\beta_{3}=0$
- C is also nested in $\mathrm{A} \ldots .$. . since A reduces to C when $\beta_{2}=0$
- D is nested in $\mathrm{B} \ldots \ldots$.... since B reduces to D when $\beta_{1}=\beta_{2}$
- B and C are NOT nested in either way
- D is NOT nested in C

Nesting Relationship is Transitive

If Model 1 is nested in Model 2, and Model 2 is nested in Model 3, then Model 1 is also nested in Model 3.

For example, for models in the previous slide,
D is nested in B, and B is nested in A,
implies D is also nested in A, which is clearly true because Model A reduces to Model D when

$$
\beta_{1}=\beta_{2}, \text { and } \beta_{3}=0
$$

Nesting Relationship is Transitive

If Model 1 is nested in Model 2, and Model 2 is nested in Model 3, then Model 1 is also nested in Model 3.

For example, for models in the previous slide,

$$
D \text { is nested in } B \text {, and } B \text { is nested in } A \text {, }
$$

implies D is also nested in A, which is clearly true because Model A reduces to Model D when

$$
\beta_{1}=\beta_{2}, \text { and } \beta_{3}=0
$$

When two models are nested (Model 1 is nested in Model 2),

- the simpler model (Model 1) is called the reduced model,
- the more general model (Model 2) is called the full model.

SST of Nested Models

Question: Compare the SST's for Model A, B, C, and D. Which one is the largest? Or are they equal?

SST of Nested Models

Question: Compare the SST's for Model A, B, C, and D. Which one is the largest? Or are they equal?

The 4 models have an identical SST.
SST $=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$ only depends on the response y but not on which predictors are included in the model.

SSE of Nested Models

When a reduced model is nested in a full model, then

$$
\text { (i) } \mathrm{SSE}_{\text {reduced }} \geq \mathrm{SSE}_{\text {full }} \text {, and (ii) } \mathrm{SSR}_{\text {reduced }} \leq \mathrm{SSR}_{\text {full }} \text {. }
$$

Proof.

- Observe that $\min \{a, b, c, d\} \leq \min \{a, b, c\}$ is always true for any numbers a, b, c, and d
- In general, $\min S_{1} \leq \min S_{2}$ if S_{2} is a subset of S_{1} where S_{1} and S_{2} are two sets of numbers
- We will prove (i) for

$$
\begin{aligned}
\text { full model } y_{i} & =\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i} \\
\text { reduced model } y_{i} & =\beta_{0}+\beta_{1} x_{i 1}+\beta_{3} x_{i 3}+\varepsilon_{i}
\end{aligned}
$$

The proofs for other nested models are similar.

$$
\begin{aligned}
\mathrm{SSE}_{\text {full }} & =\min _{\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}} \sum_{i=1}^{n}\left(y_{1}-\beta_{0}-\beta_{1} x_{i 1}-\beta_{2} x_{i 2}-\beta_{3} x_{i 3}\right)^{2} \\
& \leq \min _{\beta_{0}, \beta_{1}, \beta_{3}} \sum_{i=1}^{n}\left(y_{1}-\beta_{0}-\beta_{1} x_{i 1}-\beta_{3} x_{i 3}\right)^{2}=\mathrm{SSE}_{\text {reduced }}
\end{aligned}
$$

Part (ii) follows directly from (i), the identity SST = SSR + SSE, and the fact that all MLR models of the same data have a common SST

General Framework for Testing Nested Models

H_{0} : reduced model is true v.s. H_{1} : full model is true

- Since the reduced model is nested in the full model,

$$
\mathrm{SSE}_{\text {reduced }} \geq \mathrm{SSE}_{\text {full }}
$$

- Simplicity or Accuracy?
- The full model fits the data better (with a smaller SSE) but is more complicate
- The reduced model doesn't fit as well but is simpler.
- If $\mathrm{SSE}_{\text {reduced }} \approx \mathrm{SSE}_{\text {full }}$, one can sacrifice a bit of accuracy in exchange for simplicity
- If $\mathrm{SSE}_{\text {reduced }} \gg \mathrm{SSE}_{\text {full }}$, it would sacrifice too much in accuracy in exchange for simplicity. The full model is preferred.
- Hence, a larger difference $\mathrm{SSE}_{\text {reduced }}-\mathrm{SSE}_{\text {full }}$ is stronger evidence against the reduced model
- How large $\mathrm{SSE}_{\text {reduced }}-\mathrm{SSE}_{\text {full }}$ is considered large?
- It depends on the difference in the complexity of the two models, which can be reflected by the difference in the number of parameters of the two models,

$$
d f E_{\text {reduced }}-d f E_{\text {full }}
$$

- The larger the magnitude of the noise, σ^{2}, the larger $\mathrm{SSE}_{\text {reduced }}-\mathrm{SSE}_{\text {full }}$ is even if H_{0} is true
- Hence a reasonable test statistic is

$$
\frac{\left(\mathrm{SSE}_{\text {reduced }}-\mathrm{SSE}_{\text {full }}\right) /\left(\mathrm{dfE}_{\text {reduced }}-\mathrm{dfE}_{\text {full }}\right)}{\sigma^{2}}
$$

- Need to estimate the unknown σ^{2} with the MSE.
- Should estimate σ^{2} using $\mathrm{MSE}_{\text {full }}$ rather than $\mathrm{MSE}_{\text {reduced }}$ as the full model is always true since the reduced model is a special case of the full model

The F-Statistic

$$
F=\frac{\left(\mathrm{SSE}_{\text {reduced }}-\mathrm{SSE}_{\text {full }}\right) /\left(\mathrm{dfE}_{\text {reduced }}-\mathrm{dfE}_{\text {full }}\right)}{\mathrm{MSE}_{\text {full }}}
$$

- $\mathrm{dfE}_{\text {reduced }}$ is the df for SSE for the reduced model.
- $\mathrm{dfE}_{\text {full }}$ is the df for SSE for the full model.
- $F \geq 0$ since SSE $_{\text {reduced }} \geq$ SSE $_{\text {full }}$
- The smaller the F-statistic, the more the reduced model is favored
- Under H_{0}, the F-statistic has an F-distribution with $\mathrm{df} \mathrm{E}_{\text {reduced }}-\mathrm{df} \mathrm{E}_{\text {full }}$ and $\mathrm{df}_{\text {full }}$ degrees of freedom.

Testing All Coefficients Equal Zero

Testing the hypotheses

$$
\mathrm{H}_{0}: \beta_{1}=\cdots=\beta_{p}=0 \text { v.s. } \mathrm{H}_{a}: \text { not all } \beta_{1} \ldots, \beta_{p}=0
$$

is a test to evaluate the overall significance of a model.

$$
\text { Full : } y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}+\varepsilon_{i}
$$

$$
\text { Reduced : } y_{i}=\beta_{0}+\varepsilon_{i} \quad(\text { all predictors are unnecessary })
$$

- The LS estimate for β_{0} in the reduced model is $\widehat{\beta}_{0}=\bar{y}$, so

$$
\operatorname{SSE}_{\text {reduced }}=\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}\right)^{2}=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=\mathrm{SST}_{\text {full }}
$$

Testing All Coefficients Equal Zero

Testing the hypotheses

$$
\mathrm{H}_{0}: \beta_{1}=\cdots=\beta_{p}=0 \text { v.s. } \mathrm{H}_{a}: \text { not all } \beta_{1} \ldots, \beta_{p}=0
$$

is a test to evaluate the overall significance of a model.

$$
\text { Full : } y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}+\varepsilon_{i}
$$

Reduced: $y_{i}=\beta_{0}+\varepsilon_{i} \quad$ (all predictors are unnecessary)

- The LS estimate for β_{0} in the reduced model is $\widehat{\beta}_{0}=\bar{y}$, so

$$
\mathrm{SSE}_{\text {reduced }}=\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}\right)^{2}=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=\mathrm{SST}_{\text {full }}
$$

- $\mathrm{dfE}_{\text {full }}=n-p-1$.

Testing All Coefficients Equal Zero

Testing the hypotheses

$$
\mathrm{H}_{0}: \beta_{1}=\cdots=\beta_{p}=0 \text { v.s. } \mathrm{H}_{a}: \text { not all } \beta_{1} \ldots, \beta_{p}=0
$$

is a test to evaluate the overall significance of a model.

$$
\text { Full : } y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}+\varepsilon_{i}
$$

Reduced: $y_{i}=\beta_{0}+\varepsilon_{i} \quad$ (all predictors are unnecessary)

- The LS estimate for β_{0} in the reduced model is $\widehat{\beta}_{0}=\bar{y}$, so

$$
\mathrm{SSE}_{\text {reduced }}=\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}\right)^{2}=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=\mathrm{SST}_{\text {full }}
$$

- $\mathrm{dfE}_{\text {full }}=n-p-1$.
- $\mathrm{dfE}_{\text {reduced }}=n-1$ since the reduced model has 0 predictors.

Testing All Coefficients Equal Zero

Hence

$$
\begin{aligned}
F & =\frac{\left(\mathrm{SSE}_{\text {reduced }}-\mathrm{SSE}_{\text {full }}\right) /\left(\mathrm{dfE}_{\text {reduced }}-\mathrm{dfE}_{\text {full }}\right)}{\mathrm{MSE}_{\text {full }}} \\
& =\frac{\left(\mathrm{SST}_{\text {full }}-\mathrm{SSE}_{\text {full }} /[n-1-(n-p-1)]\right.}{\operatorname{SSE}_{\text {full }} /(n-p-1)} \\
& =\frac{\operatorname{SSR}_{\text {full }} / p}{\operatorname{SSE}_{\text {full }} /(n-p-1)}=\frac{\mathrm{MSR}_{\text {full }}}{\mathrm{MSE}_{\text {full }}} .
\end{aligned}
$$

Moreover, $F \sim F_{p, n-p-1}$ under $\mathrm{H}_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{p}=0$.
In R, the F statistic and p-value are displayed in the last line of the output of the summary () command.
> lmtrees $=\operatorname{lm}(\log ($ Volume $) \sim \log ($ Diameter $)+\log ($ Height $)$, data $=$ trees $)$
> summary (lmtrees)
... (part of output omitted)...
Residual standard error: 0.08139 on 28 degrees of freedom Multiple R-squared: 0.9777, Adjusted R-squared: 0.9761
F-statistic: 613.2 on 2 and 28 DF, p-value: < $2.2 \mathrm{e}-16$

ANOVA and the F-Test

The test of all coefficients equal zero is often summarized in an ANOVA table.

Source	df	Sum of Squares	Mean Squares	F
Regression	$d f R=p$	SSR	$\mathrm{MSR}=\frac{\mathrm{SSR}}{\mathrm{dfR}}$	$F=\frac{M S R}{M S E}$
Error	$d f E=n-p-1$	SSE	MSE $=\frac{\text { SSE }}{\text { dfE }}$	
Total	$d f T=n-1$	SST		

ANOVA is the shorthand for analysis of variance.
It decomposes the total variation in the response (SST) into separate pieces that correspond to different sources of variation, like SST = SSR + SSE in the regression setting.

Example Tree Data

```
lmfull = lm(log(Volume) ~ log(Diameter) + log(Height), data=trees)
lmreduced = lm(log(Volume) ~ 1, data=trees)
anova(lmreduced, lmfull)
Analysis of Variance Table
Model 1: log(Volume) ~ 1
Model 2: log(Volume) ~ log(Diameter) + log(Height)
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 30 8.31
2 28 0.19 2 8.12 613<2e-16
```


Testing Some Coefficients Equal to Zero

Ex. Testing $\mathrm{H}_{0}: \beta_{2}=\beta_{3}=0$ under the model $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\varepsilon$.

- full model: $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\varepsilon$
- reduced model: $Y=\beta_{0}+\beta_{1} X_{1}+\varepsilon$

```
lmfull = lm(Y ~ X1 + X2 + X3)
lmreduced = lm(Y ~ X1)
anova(lmreduced, lmfull)
```


Testing Some Coefficients Equal to Non-Zero Values

In the model for the trees data,

$$
\log (\text { Volume })=\beta_{0}+\beta_{1} \log (\text { Diameter })+\beta_{2} \log (\text { Height })+\varepsilon
$$

recall we think that $\beta_{1}=2$ and $\beta_{2}=1$.
We can test both coefficients in one test. Under $\mathrm{H}_{0}: \beta_{1}=2$ and $\beta_{2}=1$, the full model becomes the reduced model below

$$
\log (\text { Volume })=\beta_{0}+2 \log (\text { Diameter })+1 \log (\text { Height })+\varepsilon
$$

- Note in the reduced model, the coefficients of \log (Diameter) and \log (Height) are both known

```
lmreduced = lm(log(Volume) ~ 1, offset=2*log(Diameter)+log(Height),
```

 data=trees)

Testing Some Coefficients Equal to Non-Zero Values

In the model for the trees data,

$$
\log (\text { Volume })=\beta_{0}+\beta_{1} \log (\text { Diameter })+\beta_{2} \log (\text { Height })+\varepsilon
$$

recall we think that $\beta_{1}=2$ and $\beta_{2}=1$.
We can test both coefficients in one test. Under $\mathrm{H}_{0}: \beta_{1}=2$ and $\beta_{2}=1$, the full model becomes the reduced model below

$$
\log (\text { Volume })=\beta_{0}+2 \log (\text { Diameter })+1 \log (\text { Height })+\varepsilon
$$

- Note in the reduced model, the coefficients of \log (Diameter) and \log (Height) are both known
- Terms with known coefficients in an MLR model are called offsets. One can add an offset term in an $\operatorname{lm}()$ model like

```
lmreduced = lm(log(Volume) ~ 1, offset=2*log(Diameter)+log(Height),
```

 data=trees)
 One can then test $\mathrm{H}_{0}: \beta_{1}=2$ and $\beta_{2}=1$ simultaneously in one test as follows

```
lmfull = lm(log(Volume) ~ log(Diameter) + log(Height), data=trees)
lmreduced = lm(log(Volume) ~ 1, offset=2*log(Diameter)+log(Height),
    data=trees)
anova(lmreduced, lmfull)
Analysis of Variance Table
Model 1: log(Volume) ~ 1
Model 2: log(Volume) ~ log(Diameter) + log(Height)
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 30 0.188
2 28 0.185 2 0.00222 0.17 0.85
```


Testing Equality of Coefficients

Ex1. Testing $\mathrm{H}_{0}: \beta_{1}=\beta_{2}=\beta_{3}$ under the model
$Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\varepsilon$, the reduced model is

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{1} X_{1}+\beta_{1} X_{2}+\beta_{1} X_{3}+\beta_{4} X_{4}+\varepsilon \\
& =\beta_{0}+\beta_{1}\left(X_{1}+X_{2}+X_{3}\right)+\beta_{4} X_{4}+\varepsilon
\end{aligned}
$$

- Make a new variable $W=X_{1}+X_{2}+X_{3}$
- Fit the reduced model by regressing Y on W and X_{4}
- Find $\mathrm{SSE}_{\text {reduced }}$ and dfE $\mathrm{E}_{\text {reduced }}-\mathrm{dfE}_{\text {full }}=$ \qquad
lm full $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4)$
$\mathrm{W}=\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3$
lmreduced $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{W}+\mathrm{X} 4)$
\# or simply
lmreduced $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{I}(\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3)+\mathrm{X} 4)$

Testing Equality of Coefficients

Ex1. Testing $\mathrm{H}_{0}: \beta_{1}=\beta_{2}=\beta_{3}$ under the model
$Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\varepsilon$, the reduced model is

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{1} X_{1}+\beta_{1} X_{2}+\beta_{1} X_{3}+\beta_{4} X_{4}+\varepsilon \\
& =\beta_{0}+\beta_{1}\left(X_{1}+X_{2}+X_{3}\right)+\beta_{4} X_{4}+\varepsilon
\end{aligned}
$$

- Make a new variable $W=X_{1}+X_{2}+X_{3}$
- Fit the reduced model by regressing Y on W and X_{4}
- Find $\mathrm{SSE}_{\text {reduced }}$ and $\mathrm{dfE}_{\text {reduced }}-\mathrm{dfE}_{\text {full }}=\underline{2}$
lm full $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4)$
$\mathrm{W}=\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3$
lmreduced $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{W}+\mathrm{X} 4)$
\# or simply
lmreduced $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{I}(\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3)+\mathrm{X} 4)$

Testing Equality of Coefficients (2)

Ex2. Testing $\mathrm{H}_{0}: \beta_{1}=\beta_{2}$ and $\beta_{3}=\beta_{4}$ under the model $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\varepsilon$, the reduced model is

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{1} X_{1}+\beta_{1} X_{2}+\beta_{3} X_{3}+\beta_{3} X_{4}+\varepsilon \\
& =\beta_{0}+\beta_{1}\left(X_{1}+X_{2}\right)+\beta_{3}\left(X_{3}+X_{4}\right)+\varepsilon
\end{aligned}
$$

- Make new variables $W_{1}=X_{1}+X_{2}, W_{2}=X_{3}+X_{4}$
- Fit the reduced model by regressing Y on W_{1} and W_{2}
- Find $\mathrm{SSE}_{\text {reduced }}$ and dfE $\mathrm{E}_{\text {reduced }}-\mathrm{dfE}_{\text {full }}=$ \qquad
- In R

```
lmfull = lm(Y ~ X1 + X2 + X3 + X4)
lmreduced = lm(Y ~ I(X1 + X2) + I(X3 + X4))
anova(lmreduced, lmfull)
```


Testing Equality of Coefficients (2)

Ex2. Testing $\mathrm{H}_{0}: \beta_{1}=\beta_{2}$ and $\beta_{3}=\beta_{4}$ under the model $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\varepsilon$, the reduced model is

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{1} X_{1}+\beta_{1} X_{2}+\beta_{3} X_{3}+\beta_{3} X_{4}+\varepsilon \\
& =\beta_{0}+\beta_{1}\left(X_{1}+X_{2}\right)+\beta_{3}\left(X_{3}+X_{4}\right)+\varepsilon
\end{aligned}
$$

- Make new variables $W_{1}=X_{1}+X_{2}, W_{2}=X_{3}+X_{4}$
- Fit the reduced model by regressing Y on W_{1} and W_{2}
- Find SSE $_{\text {reduced }}$ and dfE $_{\text {reduced }}-\operatorname{dfE}_{\text {full }}=\underline{2}$
- In R

```
lmfull = lm(Y ~ X1 + X2 + X3 + X4)
lmreduced = lm(Y ~ I(X1 + X2) + I(X3 + X4))
anova(lmreduced, lmfull)
```


Testing Coefficients under Constraints (1)

Ex1 say the full model is
Full model : $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\epsilon$
If $\mathrm{H}_{0}: \beta_{2}=\beta_{3}+\beta_{4}$, then the reduced model is

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{1} X_{1}+\left(\beta_{3}+\beta_{4}\right) X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\varepsilon \\
& =\beta_{0}+\beta_{1} X_{1}+\beta_{3}\left(X_{2}+X_{3}\right)+\beta_{4}\left(X_{2}+X_{4}\right)+\varepsilon
\end{aligned}
$$

- Make new variables $W_{1}=X_{2}+X_{3}, W_{2}=X_{2}+X_{4}$
- Fit the reduced model by regressing Y on X_{1}, W_{1} and W_{2}
- Find SSE $_{\text {reduced }}$ and $\mathrm{dfE}_{\text {reduced }}-\mathrm{dfE}_{\text {full }}=$
lm full $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4)$
lm reduced $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{I}(\mathrm{X} 2+\mathrm{X} 3)+\mathrm{I}(\mathrm{X} 2+\mathrm{X} 4))$
anova(lmreduced, lmfull)

Testing Coefficients under Constraints (1)

Ex1 say the full model is
Full model : $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\epsilon$
If $\mathrm{H}_{0}: \beta_{2}=\beta_{3}+\beta_{4}$, then the reduced model is

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{1} X_{1}+\left(\beta_{3}+\beta_{4}\right) X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\varepsilon \\
& =\beta_{0}+\beta_{1} X_{1}+\beta_{3}\left(X_{2}+X_{3}\right)+\beta_{4}\left(X_{2}+X_{4}\right)+\varepsilon
\end{aligned}
$$

- Make new variables $W_{1}=X_{2}+X_{3}, W_{2}=X_{2}+X_{4}$
- Fit the reduced model by regressing Y on X_{1}, W_{1} and W_{2}
- Find SSE $_{\text {reduced }}$ and $\mathrm{dfE}_{\text {reduced }}-\mathrm{dfE}_{\text {full }}=\underline{1}$
lm full $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4)$
lm reduced $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{I}(\mathrm{X} 2+\mathrm{X} 3)+\mathrm{I}(\mathrm{X} 2+\mathrm{X} 4))$
anova(lmreduced, lmfull)

Testing Coefficients under Constraints (2)

Ex2: If we suspect $\beta_{2}=2 \beta_{1}$, then the reduced model is

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\varepsilon \\
& =\beta_{0}+\beta_{1} X_{1}+2 \beta_{1} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\varepsilon \\
& =\beta_{0}+\beta_{1}\left(X_{1}+2 X_{2}\right)+\beta_{3} X_{3}+\beta_{4} X_{4}+\varepsilon
\end{aligned}
$$

- Make a new variable $W=X_{1}+2 X_{2}$
- Fit the reduced model by regressing Y on W, X_{3} and X_{4}
- Find $\mathrm{SSE}_{\text {reduced }}$ and dfE reduced $-\mathrm{dfE}_{\text {full }}=$ \qquad
- Can be done in R as follows

```
lmfull = lm(Y ~ X1 + X2 + X3 + X4)
lmreduced = lm(Y ~ I (X1 + 2*X2) + X3 + X4)
anova(lmreduced, lmfull)
```


Testing Coefficients under Constraints (2)

Ex2: If we suspect $\beta_{2}=2 \beta_{1}$, then the reduced model is

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\varepsilon \\
& =\beta_{0}+\beta_{1} X_{1}+2 \beta_{1} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\varepsilon \\
& =\beta_{0}+\beta_{1}\left(X_{1}+2 X_{2}\right)+\beta_{3} X_{3}+\beta_{4} X_{4}+\varepsilon
\end{aligned}
$$

- Make a new variable $W=X_{1}+2 X_{2}$
- Fit the reduced model by regressing Y on W, X_{3} and X_{4}
- Find $\mathrm{SSE}_{\text {reduced }}$ and $\mathrm{dfE}_{\text {reduced }}-\mathrm{dfE}_{\text {full }}=\underline{1}$
- Can be done in R as follows
lm full $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4)$
lm reduced $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{I}(\mathrm{X} 1+2 * \mathrm{X} 2)+\mathrm{X} 3+\mathrm{X} 4)$
anova(lmreduced, lmfull)

Example (Tree Data)

In the model for the trees data,

$$
\log (\text { Volume })=\beta_{0}+\beta_{1} \log (\text { Diameter })+\beta_{2} \log (\text { Height })+\varepsilon
$$

to test whether $\mathrm{H}_{0}: \beta_{1}=2 \beta_{2}$ is true, we can conduct the test below

```
lmfull = lm(log(Volume) ~ log(Diameter) + log(Height), data=trees)
lmreduced = lm(log(Volume) ~ I(2*log(Diameter) + log(Height)), data=tre
anova(lmreduced, lmfull)
Analysis of Variance Table
Model 1: log(Volume) ~ I(2 * log(Diameter) + log(Height))
Model 2: log(Volume) ~ log(Diameter) + log(Height)
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 29 0.188
2 28 0.185 1 0.00204 0.31 0.58
```


Testing Coefficients under Constraints (3)

Ex3: To test $\mathrm{H}_{0}: \beta_{1}+\beta_{2}=1$ against $\mathrm{H}_{1}: \beta_{1}+\beta_{2} \neq 1$ for the model $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon$, then say, $\beta_{1}+\beta_{2}=1+\delta$.

$$
\begin{aligned}
& Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon \\
& Y=\beta_{0}+\beta_{1} X_{1}+\left(1-\beta_{1}+\delta\right) X_{2}+\varepsilon \\
& ==\beta_{0}+X_{2}+\beta_{1}\left(X_{1}-X_{2}\right)+\delta X_{2}+\varepsilon
\end{aligned}
$$

- Testing whether $\beta_{1}+\beta_{2}=1$ is equivalent to testing $\delta=0$.
- Note the term $+X_{2}$ has a known coefficient +1 and hence is an offset
lmfull $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2)$
lmreduced $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{I}(\mathrm{X} 1-\mathrm{X} 2)$, offset $=\mathrm{X} 2$)
anova(lmreduced, lmfull)

Testing Coefficients under Constraints (3)

Ex3: To test $\mathrm{H}_{0}: \beta_{1}+\beta_{2}=1$ against $\mathrm{H}_{1}: \beta_{1}+\beta_{2} \neq 1$ for the model $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon$, then say, $\beta_{1}+\beta_{2}=1+\delta$.

$$
\begin{aligned}
& Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon \\
& Y=\beta_{0}+\beta_{1} X_{1}+\left(1-\beta_{1}+\delta\right) X_{2}+\varepsilon \\
& ==\beta_{0}+X_{2}+\beta_{1}\left(X_{1}-X_{2}\right)+\delta X_{2}+\varepsilon
\end{aligned}
$$

- Testing whether $\beta_{1}+\beta_{2}=1$ is equivalent to testing $\delta=0$.
- Note the term $+X_{2}$ has a known coefficient +1 and hence is an offset
lmfull $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2)$
lmreduced $=\operatorname{lm}(\mathrm{Y} \sim \mathrm{I}(\mathrm{X} 1-\mathrm{X} 2)$, offset $=\mathrm{X} 2$)
anova(lmreduced, lmfull)
F-Test on a Single β_{j} is Equivalent to t-Test

F-Test on a Single β_{j} is Equivalent to t-Test

Say one wants to test a single $\beta_{3}=0$ in the model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\varepsilon
$$

- one can do a t-test by reading the t-statistic and P-value for X_{3} from the output for summary ($\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3)$)
- alternatively, one can conduct an F-test comparing the models

$$
\text { Full model : } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\varepsilon
$$

Reduced model : $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon$
$\operatorname{anova}(\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3), \operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2))$

One can show that the F-statistic $=(t \text {-statistic })^{2}$ and the P-values are the same, and thus the two tests are equivalent.

The proof involves complicate matrix algebra and is hence omitted.
E.g., for the trees data, one might test the β_{j} for \log (Height) using an F-test,

```
lm1 = lm(log(Volume) ~ log(Diameter) + log(Height), data = trees)
lmreduced = lm(log(Volume) ~ log(Diameter), data = trees)
anova(lmreduced,lm1)
Analysis of Variance Table
Model 1: log(Volume) ~ log(Diameter)
Model 2: log(Volume) ~ log(Diameter) + log(Height)
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 29 0.383
2 28 0.185 1 0.198 29.9 0.0000078
```

summary (lm1) \$coef

Estimate	Std. Error t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$	
-6.632	0.79979	-8.292	$5.057 \mathrm{e}-09$
1.983	0.07501	26.432	$2.423 \mathrm{e}-21$
1.117	0.20444	5.464	$7.805 \mathrm{e}-06$

Observe

- $(t \text {-statistics })^{2}=(5.4644)^{2} \approx 29.86=F$-statistic.
- The P-values are both 0.0000078 .

The slight difference is due to rounding.

