STAT 224 Lecture 4 Multiple Linear Regression, Part 3

Yibi Huang Department of Statistics University of Chicago

- Accuracy of Predictions
 - Confidence Intervals for Predictions
 - Prediction Intervals for Predictions
- Sum of Squares
- Model Comparison

Accuracy of Predictions for SLR

There are *TWO kinds of predictions* for the response *Y* given $X = x_0$ based on a SLR model $Y = \beta_0 + \beta_1 X + \varepsilon$:

• given $X = x_0$, estimation of the **mean response**

 $\mathbf{E}[Y|X = x_0] = \beta_0 + \beta_1 x_0$

• given *X* = *x*₀, prediction of the response for **one specific observation**

$$Y = \beta_0 + \beta_1 x_0 + \varepsilon$$

For the Fire Damage example in L03, one may want to

- estimate the average fire damage for all houses located 2 miles away from the nearest fire station, which is β₀ + 2β₁
- predict the fire damage for a specific house located 2 miles away from the nearest fire station which is β₀ + 2β₁ + ε

The first one is an **estimation** problem as $\beta_0 + \beta_1 x_0$ only involve fixed parameters β_0 , β_1 , and a known number x_0 .

The second one is a **prediction** problem as $\beta_0 + \beta_1 x_0 + \varepsilon$ involve a random number ε

Both

 $E[Y|X_0] = \beta_0 + \beta_1 x_0$ and $Y = \beta_0 + \beta_1 x_0 + \varepsilon$

are estimated/predicted by

 $\widehat{\beta}_0 + \widehat{\beta}_1 x_0$

The noise ε for a future observation is predicted to be its mean 0. We cannot make a better prediction for ε from the observed (x_i, y_i) 's since ε independent of all observed (x_i, y_i) 's.

The Two Prediction Problems Differ in Uncertainty!

For estimating $E[Y|X = x_0] = \beta_0 + \beta_1 x_0$, the variance for the estimate $\hat{\beta}_0 + \hat{\beta}_1 x_0$ can be shown to be

$$\operatorname{Var}\left(\widehat{\beta}_{0} + \widehat{\beta}_{1} x_{0}\right) = \sigma^{2} \left(\frac{1}{n} + \frac{(x_{0} - \bar{x})^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}\right)$$

To predict $Y = \beta_0 + \beta_1 x_0 + \varepsilon$, we need to include the extra variability from the noise ε .

$$\operatorname{Var}\left(\widehat{\beta}_{0} + \widehat{\beta}_{1}x_{0} + \varepsilon\right) = \operatorname{Var}\left(\widehat{\beta}_{0} + \widehat{\beta}_{1}x_{0}\right) + \operatorname{Var}(\varepsilon)$$
$$= \sigma^{2}\left(\frac{1}{n} + \frac{(x_{0} - \bar{x})^{2}}{\sum_{i=1}^{n}(x_{i} - \bar{x})^{2}}\right) + \sigma^{2}$$

As *n* gets large,

- $Var(\widehat{\beta}_0 + \widehat{\beta}_1 x_0)$ would go down to 0, but
- $\operatorname{Var}(\widehat{\beta}_0 + \widehat{\beta}_1 x_0 + \varepsilon)$ just goes down to σ^2 .

Recall the variances for the two prediction problems are

$$\begin{cases} \sigma^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right) & \text{for estimating } \mathbb{E}[Y|X = x_0] = \beta_0 + \beta_1 x_0 \\ \sigma^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right) & \text{to predict } Y \text{ when } X = x_0 \end{cases}$$

An accurate prediction (less variance) comes from

- small σ^2 (i.e., small noise ε 's)
- large sample size *n*
- large $\sum_{i=1}^{n} (x_i \bar{x})^2$ (more spread in predictors)
- small $(x_0 \bar{x})^2$

The $100(1 - \alpha)$ % confidence interval for $\beta_0 + \beta_1 x_0$ is

$$\widehat{\beta}_0 + \widehat{\beta}_1 x_0 \pm t_{(n-2,\alpha/2)} \widehat{\sigma} \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

The $100(1 - \alpha)$ % prediction interval for $Y = \beta_0 + \beta_1 x_0 + \varepsilon$ is

$$\widehat{\beta}_0 + \widehat{\beta}_1 x_0 \pm t_{(n-2,\alpha/2)} \widehat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

where $\widehat{\sigma} = \sqrt{MSE}$.

Recall the fire damage data in L03. The variables are

- dist: distance to the nearest fire station in miles
- damage: amount of fire damage in \$1000

Confidence Intervals and Prediction Intervals in R

```
lmfire = lm(damage ~ dist, data = fire)
predict(lmfire, data.frame(dist=2), interval="confidence")
    fit lwr upr
1 20.12 18.43 21.8
predict(lmfire, data.frame(dist=2), interval="prediction")
    fit lwr upr
1 20.12 14.84 25.4
```

- For houses located 2 miles away from the nearest fire station, the <u>average</u> fire damage is estimated to be \$20,120 with a 95% confidence interval from \$18,430 to \$21.800.
- When a house located 2 miles away from the nearest fire station, the fire damage is between \$14,840 to \$25,400 with 95% confidence.
- The prediction interval for a **single** house is wider.

The plot below shows the 95% confidence intervals and the 95% prediction intervals at different values of x_0 .

Both the confidence intervals and the prediction intervals are **narrowest when** $x_0 = \bar{x}$.

geom_smooth(method='lm') in ggplot() by default includes the 95% confidence intervals for estimating $E(y|X = x_0)$.

```
library(ggplot2)
ggplot(fire, aes(x=dist, y=damage)) + geom_point() +
geom_smooth(method='lm', formula='y~x') +
xlab("Distance to Nearest Fire Station (miles)") +
ylab("Fire Damage ($1000)")
```


Accuracy of Predictions for MLR

An MLR model $Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \varepsilon$ also has **two** kinds of <u>conditional prediction problems</u> of the response *Y* given the values of the predictors:

$$X_1=x_{01},\ldots,X_p=x_{0p}.$$

• estimation of the **mean response** given $X_1 = x_{01}, \ldots, X_p = x_{0p}$

$$\mathbf{E}[Y|X_0] = \beta_0 + \beta_1 x_{01} + \dots + \beta_p x_{0p}$$

 prediction of the response for one specific observation given X₁ = x₀₁,... X_p = x_{0p}

$$Y = \beta_0 + \beta_1 x_{01} + \dots + \beta_p x_{0p} + \varepsilon$$

Just like SLR, two problems have identical estimated/predicted values

$$\widehat{\beta}_0 + \widehat{\beta}_1 x_{01} + \dots + \widehat{\beta}_p x_{0p}$$

but their standard errors are different

$$s.e.(\widehat{\mathbf{E}(Y|X_0)}) = \widehat{\sigma} \sqrt{\mathbf{x}_0^T (X^T X)^{-1} \mathbf{x}_0}$$
$$s.e.(\widehat{Y}|X_0) = \widehat{\sigma} \sqrt{\mathbf{1} + \mathbf{x}_0^T (X^T X)^{-1} \mathbf{x}_0}$$

where $\mathbf{x}_0^T = (1, x_{01}, \dots, x_{0p})^T$.

The 100(1 – α)% confidence interval for $E[Y|X_1 = x_{01}, \dots X_p = x_{0p}] = \beta_0 + \beta_1 x_{01} + \dots + \beta_p x_{0p}$ is $\widehat{\beta}_0 + \widehat{\beta}_1 x_{01} + \dots + \widehat{\beta}_p x_{0p} \pm t_{(n-p-1,\alpha/2)}$ s.e.($E(\widehat{Y|X_0})$)

The $100(1 - \alpha)$ % prediction interval for $Y = \beta_0 + \beta_1 x_{01} + \dots + \beta_p x_{0p} + \varepsilon$ is

$$\widehat{\beta}_0 + \widehat{\beta}_1 x_{01} + \dots + \widehat{\beta}_p x_{0p} \pm t_{(n-p-1,\alpha/2)} \ s.e.(\widehat{Y}|X_0)$$

For the trees data in L03

- The mean log(Volume) for all 70-ft-tall, 10 ft in diameter, cherry trees is estimated to between 2.633 to 2.726, at 95% confidence level
- The log(Volume) for a randomly selected 70-ft-tall cherry tree with a diameter of 10 ft is predicted to be between 2.507 to 2.853.

One can exponentiate the intervals to get intervals for Volume rather than for log(Volume).

- The mean Volume for all 70-ft-tall, 10 ft in diameter, cherry trees is estimated to between $e^{2.633} \approx 13.92$ to $e^{2.726} \approx 15.27$ cubic ft, at 95% confidence level
- The Volume for a randomly selected 70-ft-tall cherry tree with a diameter of 10 ft is predicted to be between $e^{2.507} \approx 12.26$ to $e^{2.853} \approx 17.34$ cubic ft.

Sum of Squares, Degrees of Freedom, Mean Squares

Sum of Squares

Observe that

$$y_i - \overline{y} = \underbrace{(\widehat{y}_i - \overline{y})}_{a} + \underbrace{(y_i - \widehat{y}_i)}_{b}$$

Squaring up both sides using the identity $(a + b)^2 = a^2 + b^2 + 2ab$, we get

$$(y_i - \overline{y})^2 = \underbrace{(\overline{y_i} - \overline{y})^2}_{a^2} + \underbrace{(y_i - \widehat{y_i})^2}_{b^2} + \underbrace{2(\overline{y_i} - \overline{y})(y_i - \widehat{y_i})}_{2ab}$$

Summing up over all the cases i = 1, 2, ..., n, we get

$$\underbrace{\sum_{i=1}^{n} (y_i - \overline{y})^2}_{i=1} = \underbrace{\sum_{i=1}^{n} (\widehat{y_i} - \overline{y})^2}_{i=1} + \underbrace{\sum_{i=1}^{n} (y_i - \widehat{y_i})^2}_{i=1} + 2 \underbrace{\sum_{i=1}^{n} (\widehat{y_i} - \overline{y})(y_i - \widehat{y_i})}_{= 0, \text{ see next page.}}$$

Why $\sum_{i=1}^{n} (\widehat{y}_i - \overline{y})(y_i - \widehat{y}_i) = 0$?

$$\sum_{i=1}^{n} (\widehat{y}_{i} - \overline{y})(\underbrace{y_{i} - \widehat{y}_{i}})_{=e_{i}}$$

$$= \sum_{i=1}^{n} \widehat{y}_{i}e_{i} - \sum_{i=1}^{n} \overline{y}e_{i}$$

$$= \sum_{i=1}^{n} (\widehat{\beta}_{0} + \widehat{\beta}_{1}x_{i1} + \dots + \widehat{\beta}_{p}x_{ip})e_{i} - \sum_{i=1}^{n} \overline{y}e_{i}$$

$$= \widehat{\beta}_{0} \underbrace{\sum_{i=1}^{n} e_{i}}_{=0} + \widehat{\beta}_{1} \underbrace{\sum_{i=1}^{n} x_{i1}e_{i}}_{=0} + \dots + \widehat{\beta}_{p} \underbrace{\sum_{i=1}^{n} x_{ip}e_{i}}_{=0} - \overline{y} \underbrace{\sum_{i=1}^{n} e_{i}}_{=0}$$

$$= 0$$

in which we used the properties of residuals that $\sum_{i=1}^{n} e_i = 0$ and $\sum_{i=1}^{n} x_{ik}e_i = 0$ for all k = 1, ..., p.

Interpretation of Sum of Squares

- SST = total sum of squares
 - total variability of Y
 - depends on the response Y only, not on the form of the model
- SSR = regression sum of squares
 - variability of *Y* explained by *X*₁,...,*X*_p
- SSE = error (residual) sum of squares
 - = min_{$\beta_0,\beta_1,\dots,\beta_p$} $\sum_{i=1}^n (y_i \beta_0 \beta_1 x_{i1} \dots \beta_p x_{ip})^2$
 - variability of Y not explained by the X's

Degrees of Freedom

If the MLR model $y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} + \varepsilon_i$, ε_i 's i.i.d. $\sim N(0, \sigma^2)$ is true, it can be shown that

$$\frac{\mathsf{SSE}}{\sigma^2} \sim \chi^2_{n-p-1},$$

If we further assume that $\beta_1 = \beta_2 = \cdots = \beta_p = 0$, then

$$\frac{\text{SST}}{\sigma^2} \sim \chi^2_{n-1}, \quad \frac{\text{SSR}}{\sigma^2} \sim \chi^2_p$$

and SSR is independent of SSE.

Note the degrees of freedom of the 3 chi-square distributions

$$dfT = n - 1, \quad dfR = p, \quad dfE = n - p - 1$$

break down similarly

$$dfT = dfR + dfE$$

just like SST = SSR + SSE.

Multiple R^2 and Adjusted R^2

Multiple R^2 , also called the **coefficient of determination**, is defined as

$$R^{2} = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

= proportion of variability in *Y* explained by *X*₁,...,*X*_p

•
$$0 \le R^2 \le 1$$

Multiple R^2 , also called the **coefficient of determination**, is defined as

$$R^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

- $0 \le R^2 \le 1$
- For SLR, $R^2 = r_{xy}^2$ is the square of the correlation between *X* and *Y*. So multiple R^2 is a generalization of the correlation

Multiple R^2 , also called the **coefficient of determination**, is defined as

$$R^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

- $0 \le R^2 \le 1$
- For SLR, $R^2 = r_{xy}^2$ is the square of the correlation between *X* and *Y*. So multiple R^2 is a generalization of the correlation
- For MLR, R^2 is the square of the correlation between Y and \widehat{Y}

Multiple R^2 , also called the **coefficient of determination**, is defined as

$$R^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

- $0 \le R^2 \le 1$
- For SLR, $R^2 = r_{xy}^2$ is the square of the correlation between *X* and *Y*. So multiple R^2 is a generalization of the correlation
- For MLR, R^2 is the square of the correlation between Y and \widehat{Y}
- When more terms are added into a model, *R*² may increase or stay the same but never decrease

Multiple R^2 , also called the **coefficient of determination**, is defined as

$$R^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

- $0 \le R^2 \le 1$
- For SLR, $R^2 = r_{xy}^2$ is the square of the correlation between *X* and *Y*. So multiple R^2 is a generalization of the correlation
- For MLR, R^2 is the square of the correlation between Y and \widehat{Y}
- When more terms are added into a model, *R*² may increase or stay the same but never decrease
- Is large *R*² always preferable?

Since R^2 always increases as we add terms to the model, some people prefer to use an **adjusted** R^2 defined as

$$R_{adj}^{2} = 1 - \frac{\text{SSE/dfE}}{\text{SST/dfT}} = 1 - \frac{\text{SSE}/(n-p-1)}{\text{SST}/(n-1)}$$
$$= 1 - \frac{n-1}{n-p-1}(1-R^{2})$$

•
$$-\frac{p}{n-p-1} \le R_{adj}^2 \le R^2 \le 1$$

Since R^2 always increases as we add terms to the model, some people prefer to use an **adjusted** R^2 defined as

$$R_{adj}^{2} = 1 - \frac{\text{SSE/dfE}}{\text{SST/dfT}} = 1 - \frac{\text{SSE}/(n-p-1)}{\text{SST}/(n-1)}$$
$$= 1 - \frac{n-1}{n-p-1}(1-R^{2})$$

•
$$-\frac{p}{n-p-1} \le R_{adj}^2 \le R^2 \le 1$$

• Unlike R^2 , R^2_{adj} can be negative

Since R^2 always increases as we add terms to the model, some people prefer to use an **adjusted** R^2 defined as

$$R_{adj}^{2} = 1 - \frac{\text{SSE/dfE}}{\text{SST/dfT}} = 1 - \frac{\text{SSE}/(n-p-1)}{\text{SST}/(n-1)}$$
$$= 1 - \frac{n-1}{n-p-1}(1-R^{2}).$$

•
$$-\frac{p}{n-p-1} \le R_{adj}^2 \le R^2 \le 1$$

• Unlike R^2 , R^2_{adi} can be negative

• R_{adj}^2 does not always increase as more variables are added. In fact, if unnecessary terms are added, R_{adj}^2 may decrease. > lmtrees = lm(log(Volume) ~ log(Diameter) + log(Height), data = trees)
> summary(lmtrees)

... (output omitted)

Residual standard error: 0.08139 on 28 degrees of freedom Multiple R-squared: 0.9777, Adjusted R-squared: 0.9761 F-statistic: 613.2 on 2 and 28 DF, p-value: < 2.2e-16

The R output above shows that $R^2 = 0.9777$ and $R^2_{adj} = 0.9761$.

The predictors log(Diameter) and log(Height) can explain 97.77% of the variation in log(Volume).

F-Tests on Multiple Regression Coefficients
We say Model 1 is **nested in** Model 2 if Model 1 is a special case of Model 2 (and hence Model 2 is an extension of Model 1).

E.g., for the 4 models below,

Model A : $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$ Model B : $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$ Model C : $Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \varepsilon$ Model D : $Y = \beta_0 + \beta_1 (X_1 + X_2) + \varepsilon$

• B is nested in A since A reduces to B when $\beta_3 = 0$

We say Model 1 is **nested in** Model 2 if Model 1 is a special case of Model 2 (and hence Model 2 is an extension of Model 1).

E.g., for the 4 models below,

- B is nested in A since A reduces to B when $\beta_3 = 0$
- C is also nested in A since A reduces to C when $\beta_2 = 0$

We say Model 1 is **nested in** Model 2 if Model 1 is a special case of Model 2 (and hence Model 2 is an extension of Model 1).

E.g., for the 4 models below,

- B is nested in A since A reduces to B when $\beta_3 = 0$
- C is also nested in A since A reduces to C when $\beta_2 = 0$
- D is nested in B since B reduces to D when $\beta_1 = \beta_2$

We say Model 1 is **nested in** Model 2 if Model 1 is a special case of Model 2 (and hence Model 2 is an extension of Model 1).

E.g., for the 4 models below,

- B is nested in A since A reduces to B when $\beta_3 = 0$
- C is also nested in A since A reduces to C when $\beta_2 = 0$
- D is nested in B since B reduces to D when $\beta_1 = \beta_2$
- B and C are NOT nested in either way

We say Model 1 is **nested in** Model 2 if Model 1 is a special case of Model 2 (and hence Model 2 is an extension of Model 1).

E.g., for the 4 models below,

- B is nested in A since A reduces to B when $\beta_3 = 0$
- C is also nested in A since A reduces to C when $\beta_2 = 0$
- D is nested in B since B reduces to D when $\beta_1 = \beta_2$
- B and C are NOT nested in either way
- D is NOT nested in C

Nesting Relationship is Transitive

If Model 1 is nested in Model 2, and Model 2 is nested in Model 3, then Model 1 is also nested in Model 3.

For example, for models in the previous slide,

D is nested in B, and B is nested in A,

implies D is also nested in A, which is clearly true because Model A reduces to Model D when

 $\beta_1 = \beta_2$, and $\beta_3 = 0$.

Nesting Relationship is Transitive

If Model 1 is nested in Model 2, and Model 2 is nested in Model 3, then Model 1 is also nested in Model 3.

For example, for models in the previous slide,

D is nested in B, and B is nested in A,

implies D is also nested in A, which is clearly true because Model A reduces to Model D when

 $\beta_1 = \beta_2$, and $\beta_3 = 0$.

When two models are nested (Model 1 is nested in Model 2),

- the simpler model (Model 1) is called the reduced model,
- the more general model (Model 2) is called the full model.

<u>Question</u>: Compare the SST's for Model A, B, C, and D. Which one is the largest? Or are they equal?

<u>Question</u>: Compare the SST's for Model A, B, C, and D. Which one is the largest? Or are they equal?

The 4 models have an identical SST. SST = $\sum_{i=1}^{n} (y_i - \overline{y})^2$ only depends on the response *y* but not on which predictors are included in the model.

SSE of Nested Models

When a reduced model is nested in a full model, then

(i) $SSE_{reduced} \ge SSE_{full}$, and (ii) $SSR_{reduced} \le SSR_{full}$.

Proof.

- Observe that min{*a*, *b*, *c*, *d*} ≤ min{*a*, *b*, *c*} is always true for any numbers *a*, *b*, *c*, and *d*
- In general, min S₁ ≤ min S₂ if S₂ is a subset of S₁ where S₁ and S₂ are two sets of numbers
- We will prove (i) for

full model $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$

reduced model $y_i = \beta_0 + \beta_1 x_{i1} + \beta_3 x_{i3} + \varepsilon_i$

The proofs for other nested models are similar.

$$SSE_{full} = \min_{\beta_0,\beta_1,\beta_2,\beta_3} \sum_{i=1}^{n} (y_1 - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2} - \beta_3 x_{i3})^2$$

$$\leq \min_{\beta_0,\beta_1,\beta_3} \sum_{i=1}^{n} (y_1 - \beta_0 - \beta_1 x_{i1} - \beta_3 x_{i3})^2 = SSE_{reduced}$$

Part (ii) follows directly from (i), the identity SST = SSR + SSE, and the fact that all MLR models of the same data have a common SST

General Framework for Testing Nested Models

 H_0 : reduced model is true v.s. H_1 : full model is true

• Since the reduced model is nested in the full model,

 $SSE_{reduced} \ge SSE_{full}$

- Simplicity or Accuracy?
 - The full model fits the data better (with a smaller SSE) but is more complicate
 - The reduced model doesn't fit as well but is simpler.
 - If SSE_{reduced} ≈ SSE_{full}, one can sacrifice a bit of accuracy in exchange for simplicity
 - If SSE_{reduced} >> SSE_{full}, it would sacrifice too much in accuracy in exchange for simplicity. The full model is preferred.

- Hence, a larger difference SSE_{reduced} SSE_{full} is stronger evidence against the reduced model
- How large SSE_{reduced} SSE_{full} is considered large?
 - It depends on the difference in the complexity of the two models, which can be reflected by the difference in the number of parameters of the two models,

$$dfE_{reduced} - dfE_{full}$$

- The larger the magnitude of the noise, σ², the larger SSE_{reduced} – SSE_{full} is even if H₀ is true
- Hence a reasonable test statistic is $\frac{(\text{SSE}_{reduced} \text{SSE}_{full})/(\text{dfE}_{reduced} \text{dfE}_{full})}{\sigma^2}$
- Need to estimate the unknown σ^2 with the MSE.
- Should estimate σ^2 using MSE_{*full*} rather than MSE_{*reduced*} as the full model is always true since the reduced model is a special case of the full model

$$F = \frac{(\mathsf{SSE}_{reduced} - \mathsf{SSE}_{full})/(\mathsf{dfE}_{reduced} - \mathsf{dfE}_{full})}{\mathsf{MSE}_{full}}$$

- dfE_{reduced} is the df for SSE for the reduced model.
- dfE_{full} is the df for SSE for the full model.
- $F \ge 0$ since $SSE_{reduced} \ge SSE_{full}$
- The smaller the *F*-statistic, the more the reduced model is favored
- Under H₀, the *F*-statistic has an *F*-distribution with dfE_{reduced}-dfE_{full} and dfE_{full} degrees of freedom.

Testing the hypotheses

$$H_0: \beta_1 = \cdots = \beta_p = 0$$
 v.s. $H_a:$ not all $\beta_1 \dots, \beta_p = 0$

is a test to evaluate the **overall significance** of a model.

Full :
$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$$

Reduced : $y_i = \beta_0 + \varepsilon_i$ (all predictors are unnecessary)

• The LS estimate for β_0 in the reduced model is $\widehat{\beta}_0 = \overline{y}$, so

$$SSE_{reduced} = \sum_{i=1}^{n} (y_i - \widehat{\beta}_0)^2 = \sum_i (y_i - \overline{y})^2 = SST_{full}$$

Testing the hypotheses

$$H_0: \beta_1 = \cdots = \beta_p = 0$$
 v.s. $H_a:$ not all $\beta_1 \dots, \beta_p = 0$

is a test to evaluate the **overall significance** of a model.

Full :
$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$$

Reduced : $y_i = \beta_0 + \varepsilon_i$ (all predictors are unnecessary)

• The LS estimate for β_0 in the reduced model is $\widehat{\beta}_0 = \overline{y}$, so

$$SSE_{reduced} = \sum_{i=1}^{n} (y_i - \widehat{\beta}_0)^2 = \sum_i (y_i - \overline{y})^2 = SST_{full}$$

• df $E_{full} = n - p - 1$.

Testing the hypotheses

$$H_0: \beta_1 = \cdots = \beta_p = 0$$
 v.s. $H_a:$ not all $\beta_1 \dots, \beta_p = 0$

is a test to evaluate the **overall significance** of a model.

Full :
$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$$

Reduced : $y_i = \beta_0 + \varepsilon_i$ (all predictors are unnecessary)

• The LS estimate for β_0 in the reduced model is $\widehat{\beta}_0 = \overline{y}$, so

$$SSE_{reduced} = \sum_{i=1}^{n} (y_i - \widehat{\beta}_0)^2 = \sum_i (y_i - \overline{y})^2 = SST_{full}$$

- df $E_{full} = n p 1$.
- dfE_{reduced} = n 1 since the reduced model has 0 predictors.

Testing All Coefficients Equal Zero

Hence
$$F = \frac{(\text{SSE}_{reduced} - \text{SSE}_{full})/(\text{dfE}_{reduced} - \text{dfE}_{full})}{\text{MSE}_{full}}$$
$$= \frac{(\text{SST}_{full} - \text{SSE}_{full})/[n - 1 - (n - p - 1)]}{\text{SSE}_{full}/(n - p - 1)}$$
$$= \frac{\text{SSR}_{full}/p}{\text{SSE}_{full}/(n - p - 1)} = \frac{\text{MSR}_{full}}{\text{MSE}_{full}}.$$

Moreover, $F \sim F_{p,n-p-1}$ under $H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0.$

In R, the *F* statistic and *p*-value are displayed in the last line of the output of the summary() command.

> lmtrees = lm(log(Volume) ~ log(Diameter) + log(Height), data = trees)
> summary(lmtrees)

... (part of output omitted)...
Residual standard error: 0.08139 on 28 degrees of freedom
Multiple R-squared: 0.9777, Adjusted R-squared: 0.9761
F-statistic: 613.2 on 2 and 28 DF, p-value: < 2.2e-16</pre>

The test of all coefficients equal zero is often summarized in an ANOVA table.

		Sum of	Mean	
Source	df	Squares	Squares	F
Regression	dfR = p	SSR	$\text{MSR} = \frac{\text{SSR}}{\text{dfR}}$	$F = \frac{MSR}{MSE}$
Error	dfE = n - p - 1	SSE	$MSE = \frac{SSE}{dfE}$	

Total dfT = n - 1 SST

ANOVA is the shorthand for **an**alysis **o**f **va**riance.

It decomposes the total variation in the response (SST) into separate pieces that correspond to different sources of variation, like SST = SSR + SSE in the regression setting.

Example Tree Data

Ex. Testing H₀: $\beta_2 = \beta_3 = 0$ under the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$.

- full model: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$
- reduced model: $Y = \beta_0 + \beta_1 X_1 + \varepsilon$

lmfull = lm(Y ~ X1 + X2 + X3)
lmreduced = lm(Y ~ X1)
anova(lmreduced, lmfull)

In the model for the trees data,

 $\log(\text{Volume}) = \beta_0 + \beta_1 \log(\text{Diameter}) + \beta_2 \log(\text{Height}) + \varepsilon$

recall we think that $\beta_1 = 2$ and $\beta_2 = 1$.

We can test both coefficients in one test. Under H_0 : $\beta_1 = 2$ and $\beta_2 = 1$, the full model becomes the reduced model below

 $\log(\text{Volume}) = \beta_0 + 2\log(\text{Diameter}) + 1\log(\text{Height}) + \varepsilon$

 Note in the reduced model, the coefficients of log(Diameter) and log(Height) are both *known*

In the model for the trees data,

 $\log(\text{Volume}) = \beta_0 + \beta_1 \log(\text{Diameter}) + \beta_2 \log(\text{Height}) + \varepsilon$

recall we think that $\beta_1 = 2$ and $\beta_2 = 1$.

We can test both coefficients in one test. Under H_0 : $\beta_1 = 2$ and $\beta_2 = 1$, the full model becomes the reduced model below

 $\log(\text{Volume}) = \beta_0 + 2\log(\text{Diameter}) + 1\log(\text{Height}) + \varepsilon$

- Note in the reduced model, the coefficients of log(Diameter) and log(Height) are both *known*
- Terms with known coefficients in an MLR model are called *offsets*. One can add an offset term in an lm() model like

One can then test H_0 : $\beta_1 = 2$ and $\beta_2 = 1$ simultaneously in one test as follows

Testing Equality of Coefficients

Ex1. Testing H₀: $\beta_1 = \beta_2 = \beta_3$ under the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$, the reduced model is $Y = \beta_0 + \beta_1 X_1 + \beta_1 X_2 + \beta_1 X_3 + \beta_4 X_4 + \varepsilon$ $= \beta_0 + \beta_1 (X_1 + X_2 + X_3) + \beta_4 X_4 + \varepsilon$

- Make a new variable $W = X_1 + X_2 + X_3$
- Fit the reduced model by regressing Y on W and X₄
- Find SSE_{reduced} and dfE_{reduced} dfE_{full} = ____

```
lmfull = lm(Y \sim X1 + X2 + X3 + X4)
```

```
W = X1 + X2 + X3
Imreduced = lm(Y ~ W + X4)
# or simply
Imreduced = lm(Y ~ I(X1 + X2 + X3) + X4)
```

```
anova(lmreduced, lmfull)
```

Testing Equality of Coefficients

Ex1. Testing H₀: $\beta_1 = \beta_2 = \beta_3$ under the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$, the reduced model is $Y = \beta_0 + \beta_1 X_1 + \beta_1 X_2 + \beta_1 X_3 + \beta_4 X_4 + \varepsilon$ $= \beta_0 + \beta_1 (X_1 + X_2 + X_3) + \beta_4 X_4 + \varepsilon$

- Make a new variable $W = X_1 + X_2 + X_3$
- Fit the reduced model by regressing Y on W and X₄
- Find SSE_{reduced} and dfE_{reduced} dfE_{full} = 2

```
lmfull = lm(Y \sim X1 + X2 + X3 + X4)
```

```
W = X1 + X2 + X3
Imreduced = lm(Y ~ W + X4)
# or simply
Imreduced = lm(Y ~ I(X1 + X2 + X3) + X4)
```

```
anova(lmreduced, lmfull)
```

Testing Equality of Coefficients (2)

Ex2. Testing H₀: $\beta_1 = \beta_2$ and $\beta_3 = \beta_4$ under the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$, the reduced model is

 $Y = \beta_0 + \beta_1 X_1 + \beta_1 X_2 + \beta_3 X_3 + \beta_3 X_4 + \varepsilon$ $= \beta_0 + \beta_1 (X_1 + X_2) + \beta_3 (X_3 + X_4) + \varepsilon$

- Make new variables $W_1 = X_1 + X_2$, $W_2 = X_3 + X_4$
- Fit the reduced model by regressing *Y* on *W*₁ and *W*₂
- Find SSE_{reduced} and dfE_{reduced} dfE_{full} = _____
- In R

lmfull = lm(Y ~ X1 + X2 + X3 + X4)
lmreduced = lm(Y ~ I(X1 + X2) + I(X3 + X4))
anova(lmreduced, lmfull)

Testing Equality of Coefficients (2)

Ex2. Testing H₀: $\beta_1 = \beta_2$ and $\beta_3 = \beta_4$ under the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$, the reduced model is

 $Y = \beta_0 + \beta_1 X_1 + \beta_1 X_2 + \beta_3 X_3 + \beta_3 X_4 + \varepsilon$ $= \beta_0 + \beta_1 (X_1 + X_2) + \beta_3 (X_3 + X_4) + \varepsilon$

- Make new variables $W_1 = X_1 + X_2$, $W_2 = X_3 + X_4$
- Fit the reduced model by regressing *Y* on *W*₁ and *W*₂
- Find SSE_{reduced} and dfE_{reduced} dfE_{full} = 2
- In R

lmfull = lm(Y ~ X1 + X2 + X3 + X4)
lmreduced = lm(Y ~ I(X1 + X2) + I(X3 + X4))
anova(lmreduced, lmfull)

Ex1 say the full model is

Full model : $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \epsilon$

If H₀: $\beta_2 = \beta_3 + \beta_4$, then the reduced model is

 $Y = \beta_0 + \beta_1 X_1 + (\beta_3 + \beta_4) X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$

 $= \beta_0 + \beta_1 X_1 + \frac{\beta_3}{(X_2 + X_3)} + \frac{\beta_4}{(X_2 + X_4)} + \varepsilon$

- Make new variables $W_1 = X_2 + X_3$, $W_2 = X_2 + X_4$
- Fit the reduced model by regressing *Y* on *X*₁, *W*₁ and *W*₂
- Find SSE_{reduced} and dfE_{reduced} dfE_{full} = _____

lmfull = lm(Y ~ X1 + X2 + X3 + X4)
lmreduced = lm(Y ~ X1 + I(X2 + X3) + I(X2 + X4))
anova(lmreduced, lmfull)

Ex1 say the full model is

Full model : $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \epsilon$

If H₀: $\beta_2 = \beta_3 + \beta_4$, then the reduced model is

 $Y = \beta_0 + \beta_1 X_1 + (\beta_3 + \beta_4) X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$

 $= \beta_0 + \beta_1 X_1 + \frac{\beta_3}{(X_2 + X_3)} + \frac{\beta_4}{(X_2 + X_4)} + \varepsilon$

- Make new variables $W_1 = X_2 + X_3$, $W_2 = X_2 + X_4$
- Fit the reduced model by regressing *Y* on *X*₁, *W*₁ and *W*₂
- Find SSE_{*reduced*} and dfE_{*reduced*} dfE_{*full*} = $\underline{1}$

lmfull = lm(Y ~ X1 + X2 + X3 + X4)
lmreduced = lm(Y ~ X1 + I(X2 + X3) + I(X2 + X4))
anova(lmreduced, lmfull)

Testing Coefficients under Constraints (2)

Ex2: If we suspect $\beta_2 = 2\beta_1$, then the reduced model is

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$$

= $\beta_0 + \beta_1 X_1 + 2\beta_1 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$
= $\beta_0 + \beta_1 (X_1 + 2X_2) + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$

- Make a new variable $W = X_1 + 2X_2$
- Fit the reduced model by regressing *Y* on *W*, *X*₃ and *X*₄
- Find SSE_{reduced} and dfE_{reduced} dfE_{full} = _____
- Can be done in R as follows

lmfull = lm(Y ~ X1 + X2 + X3 + X4)
lmreduced = lm(Y ~ I(X1 + 2*X2) + X3 + X4)
anova(lmreduced, lmfull)

Testing Coefficients under Constraints (2)

Ex2: If we suspect $\beta_2 = 2\beta_1$, then the reduced model is

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$$

= $\beta_0 + \beta_1 X_1 + 2\beta_1 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$
= $\beta_0 + \beta_1 (X_1 + 2X_2) + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$

- Make a new variable $W = X_1 + 2X_2$
- Fit the reduced model by regressing *Y* on *W*, *X*₃ and *X*₄
- Find SSE_{*reduced*} and dfE_{*reduced*} dfE_{*full*} = $\underline{1}$
- Can be done in R as follows

lmfull = lm(Y ~ X1 + X2 + X3 + X4)
lmreduced = lm(Y ~ I(X1 + 2*X2) + X3 + X4)
anova(lmreduced, lmfull)

Example (Tree Data)

In the model for the trees data,

 $\log(\text{Volume}) = \beta_0 + \beta_1 \log(\text{Diameter}) + \beta_2 \log(\text{Height}) + \varepsilon$

to test whether H_0 : $\beta_1 = 2\beta_2$ is true, we can conduct the test below

```
lmfull = lm(log(Volume) ~ log(Diameter) + log(Height), data=trees)
lmreduced = lm(log(Volume) ~ I(2*log(Diameter) + log(Height)), data=tre
anova(lmreduced, lmfull)
Analysis of Variance Table
```

```
Model 1: log(Volume) ~ I(2 * log(Diameter) + log(Height))
Model 2: log(Volume) ~ log(Diameter) + log(Height)
Res.Df RSS Df Sum of Sq F Pr(>F)
1     29 0.188
2     28 0.185 1  0.00204 0.31  0.58
```

Testing Coefficients under Constraints (3)

Ex3: To test H₀: $\beta_1 + \beta_2 = 1$ against H₁: $\beta_1 + \beta_2 \neq 1$ for the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$, then say, $\beta_1 + \beta_2 = 1 + \delta$.

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$ $Y = \beta_0 + \beta_1 X_1 + (1 - \beta_1 + \delta) X_2 + \varepsilon$ $= \beta_0 + X_2 + \beta_1 (X_1 - X_2) + \delta X_2 + \varepsilon$

- Testing whether $\beta_1 + \beta_2 = 1$ is equivalent to testing $\delta = 0$.
- Note the term + X₂ has a known coefficient +1 and hence is an offset

lmfull = lm(Y ~ X1 + X2)
lmreduced = lm(Y ~ I(X1 - X2), offset = X2)
anova(lmreduced, lmfull)

Testing Coefficients under Constraints (3)

Ex3: To test H₀: $\beta_1 + \beta_2 = 1$ against H₁: $\beta_1 + \beta_2 \neq 1$ for the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$, then say, $\beta_1 + \beta_2 = 1 + \delta$.

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$ $Y = \beta_0 + \beta_1 X_1 + (1 - \beta_1 + \delta) X_2 + \varepsilon$ $= \beta_0 + X_2 + \beta_1 (X_1 - X_2) + \delta X_2 + \varepsilon$

- Testing whether $\beta_1 + \beta_2 = 1$ is equivalent to testing $\delta = 0$.
- Note the term + X₂ has a known coefficient +1 and hence is an offset

lmfull = lm(Y ~ X1 + X2)
lmreduced = lm(Y ~ I(X1 - X2), offset = X2)
anova(lmreduced, lmfull)

F-Test on a Single β_j is Equivalent to *t*-Test
F-Test on a Single β_j is Equivalent to *t*-Test

Say one wants to test a single $\beta_3 = 0$ in the model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$$

- one can do a *t*-test by reading the *t*-statistic and *P*-value for X₃
 from the output for summary(lm(Y ~ X1 + X2 + X3))
- alternatively, one can conduct an F-test comparing the models

Full model : $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$

```
Reduced model : Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon
```

anova(lm(Y ~ X1 + X2 + X3), lm(Y ~ X1 + X2))

One can show that the *F*-statistic = (t-statistic)² and the *P*-values are the same, and thus the two tests are equivalent.

The proof involves complicate matrix algebra and is hence omitted.

E.g., for the trees data, one might test the β_j for log(Height) using an *F*-test,

```
lm1 = lm(log(Volume) ~ log(Diameter) + log(Height), data = trees)
lmreduced = lm(log(Volume) ~ log(Diameter), data = trees)
anova(lmreduced,lm1)
Analysis of Variance Table
```

<pre>summary(lm1)\$coef</pre>					
	Estimate	Std.	Error	t value	Pr(> t)
(Intercept)	-6.632	0	.79979	-8.292	5.057e-09
<pre>log(Diameter)</pre>	1.983	0	.07501	26.432	2.423e-21
log(Height)	1.117	0	.20444	5.464	7.805e-06

Observe

- $(t\text{-statistics})^2 = (5.4644)^2 \approx 29.86 = F\text{-statistic}.$
- The *P*-values are both 0.0000078.

The slight difference is due to rounding.