STAT 224 Lecture 2
 Multiple Linear Regression, Part 1

Yibi Huang
Department of Statistics
University of Chicago

Outline

- What are multiple linear regression models
- Least squares estimation
- Fitted values, residuals, estimate of variance
- Interpretation of regression coefficients

What Are Multiple Linear Regression Models

Deterministic Models (No Errors)

Deterministic describe perfect relationships between variables w/ no errors

$$
Y=f\left(X_{1}, X_{2}, \ldots, X_{p}\right)
$$

Examples:

- Newton's second law of motion:

$$
\underset{\text { (Force) }}{F}=\underset{\text { (mass) }}{m} \times \underset{\text { (acceleration) }}{a}
$$

- Ideal gas law: $P V=n R T$

$$
\underset{\substack{\text { pressure } \\ \text { of gas }}}{P} \times \underset{\substack{\text { volume } \\ \text { of gas }}}{V}=\underset{\substack{\text { amount of gas } \\ \text { in moles }}}{n} \underset{\substack{\text { ideal jas } \\ \text { constant }}}{ } \times \underset{\substack{\text { temperature } \\ \text { in }{ }^{\circ} K}}{T}
$$

Example: Timber Volume of Trees

Say we want to model timber volume of a tree as a function of its radius and height. If the trunk of a tree is a cylinder, then

$$
\text { volume }=\pi r^{2} h, \quad \text { where } \quad \begin{aligned}
& r=\text { radius } \\
& h=\text { height }
\end{aligned}
$$

If the trunk of a tree is a cone, then

$$
\text { volume }=\frac{1}{3} \pi r^{2} h
$$

However, as tree trunks are not exactly cylinders or cones, the formulas above is subject to error. We may model the timber volume of a tree as a function of its radius and height w/ error.

$$
\begin{aligned}
\text { volume } & =f(r, h)+\varepsilon \\
& =\alpha r^{2} h+\varepsilon \quad \text { where } \alpha \text { is a constant. }
\end{aligned}
$$

Statistical Models

A Statistical model is a simple, low-dimensional (as fewer predictors as possible) summary of

- the relationship present in the data
- the data-generation process
- the relationship present in the population

Statistical models allow errors (uncertainty)

$\underset{\text { response }}{Y}=$| deterministic |
| :---: |
| function |$\quad+\underset{\text { error }}{\text { (noise) }} \boldsymbol{f}$

Linear Regression Models

In STAT 22400, we focus on linear regression models where

$$
\begin{aligned}
Y & =f\left(X_{1}, X_{2}, \ldots, X_{p}\right)+\varepsilon \\
& =\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots \beta_{p} X_{p}+\varepsilon
\end{aligned}
$$

The adjective linear means the model is linear in its parameters $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$. For example, the following are linear regression models

$$
\begin{aligned}
& Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\varepsilon \\
& Y=\beta_{0}+\beta_{1} \log (X)+\varepsilon
\end{aligned}
$$

even though the relationship between Y and X is not linear.

Some Non-linear Models Can Be Turned Linear (1)

where $Y^{\prime}=1 / Y, X^{\prime}=1 / X$.

Some Non-linear Models Can Be Turned Linear (1)

Ex 1:

where $Y^{\prime}=1 / Y, X^{\prime}=1 / X$.
Ex 2: Timber volume of trees $\approx c r^{2} h$ or more generally, $\alpha r^{\beta_{1}} h^{\beta_{2}}$
Non-linear model: $\left.\begin{array}{ccc}\text { Volume } \\ & \downarrow & \\ & \downarrow & \\ & & \\ & & \\ \beta_{1} & & \\ \hline\end{array}\right]$
Taking logarithm $\quad \log ($ Volume $)=\log (\alpha)+\beta_{1} \log (r)+\beta_{2} \log (h)$

Linear model: $\quad Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}$
where $Y=\log$ (Volume), $X_{1}=\log (r)=\log$ (radius), and $X_{2}=\log (h)=\log ($ height $)$.

Some Non-linear Models Can Be Turned Linear (2)

Ex 3: Production Function
In economics, the Cobb-Douglas production function,

$$
V=\alpha K^{\beta_{1}} L^{\beta_{2}}, \quad \text { where } \quad \begin{aligned}
& V=\text { output } \\
& K=\text { capital } \\
& L=\text { labor }
\end{aligned}
$$

is a widely used form of the production function to represent the relationship between the amounts of two or more inputs, particularly physical capital K and labor L, and the amount of output V that can be produced by those inputs. Despite of its nonlinear from, the production function can be turned into a linear model by taking the log of both sides,

$$
\log (V)=\log (\alpha)+\beta_{1} \log (K)+\beta_{2} \log (L)
$$

Which of the Following Models are Linear?

(a) $Y=\beta_{0}+\beta_{1}^{X}+\varepsilon$
(b) $Y=\beta_{0} \beta_{1}^{X} \varepsilon$
(c) $Y=\beta_{0}+\beta_{1} e^{X}+\varepsilon$
(d) $Y=\beta_{0}+\beta_{1} X^{2}+\beta_{2} \log (X)+\varepsilon$

Which of the Following Models are Linear?

(a) $Y=\beta_{0}+\beta_{1}^{X}+\varepsilon$
(b) $Y=\beta_{0} \beta_{1}^{X} \varepsilon$

(d) $Y=\beta_{0}+\beta_{1} X^{2}+\beta_{2} \log (X)+\varepsilon \ldots \ldots \ldots \ldots \ldots \ldots$. Linear

Which of the following models can be turned linear after transformation?

(a) $Y=\beta_{0}+\beta_{1}^{X}+\varepsilon$
(b) $Y=\beta_{0} \beta_{1}^{X} \varepsilon$

Which of the following models can be turned linear after transformation?

(a) $Y=\beta_{0}+\beta_{1}^{X}+\varepsilon$
(b) $Y=\beta_{0} \beta_{1}^{X} \varepsilon$

Ans: (b)

Data for Multiple Linear Regression Models

	SLR		MLR				
	X	Y	X_{1}	X_{2}	\ldots	X_{p}	Y
case 1:	x_{1}	y_{1}	x_{11}	x_{12}	\cdots	$x_{1 p}$	y_{1}
case 2:	x_{2}	y_{2}	x_{21}	x_{22}	\ldots	$x_{2 p}$	y_{2}
			!	!	\ddots.	!	!
case n :	x_{n}	y_{n}	$x_{n 1}$	$x_{n 2}$	\ldots	$x_{n p}$	y_{n}

- For SLR, we observe pairs of data values.
- For MLR, we observe rows of data values.
- Each row (or pair) is called a case, a record, or a data point
- y_{i} is the response (or dependent variable) of the i th case
- There are p explanatory variables (or predictors, covariates), and $x_{i k}$ is the value of the explanatory variable X_{k} of the i th case

Multiple Linear Regression Models

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{p} x_{i p}+\varepsilon_{i}
$$

In the model above,

- ε_{i} 's (errors, or noise) are i.i.d. $N\left(0, \sigma^{2}\right)$
- Parameters include:
- $\beta_{0}=$ intercept;
- $\beta_{k}=$ regression coefficient (slope) for the k th explanatory variable, $k=1, \ldots, p$
- $\sigma^{2}=\operatorname{Var}\left(\varepsilon_{i}\right)=$ the variance of errors
- Observed (known): $y_{i}, x_{i 1}, x_{i 2}, \ldots, x_{i p}$

Unknown: $\beta_{0}, \beta_{1}, \ldots, \beta_{p}, \sigma^{2}, \varepsilon_{i}$'s

- Random: ε_{i} 's, y_{i} 's

Constants (not random): β_{k} 's, $\sigma^{2}, x_{i k}$'s

Multiple Linear Regression Models in Matrix Notation

$$
\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]}_{Y_{n \times 1}}=\underbrace{\left[\begin{array}{ccccc}
1 & x_{11} & x_{21} & \cdots & x_{p 1} \\
1 & x_{12} & x_{22} & \cdots & x_{p 2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{1 n} & x_{2 n} & \cdots & x_{p n}
\end{array}\right]}_{X_{n \times(p+1)}} \underbrace{\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{p}
\end{array}\right]}_{\beta_{(p+1) \times 1}}+\underbrace{\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right]}_{\varepsilon_{n \times 1}}
$$

or

$$
Y=X \beta+\varepsilon
$$

Least Squares Estimation

Fitting the Model — Least Squares Method

Recall for SLR, the least squares estimate ($\widehat{\beta}_{0}, \widehat{\beta}_{1}$) for $\left(\beta_{0}, \beta_{1}\right)$ is the intercept and slope of the straight line with the minimum sum of squared vertical distances to the data points

$$
\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)^{2}
$$

Fitting the Model - Least Squares Method

Recall for SLR, the least squares estimate ($\widehat{\beta}_{0}, \widehat{\beta}_{1}$) for $\left(\beta_{0}, \beta_{1}\right)$ is the intercept and slope of the straight line with the minimum sum of squared vertical distances to the data points

$$
\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)^{2}
$$

MLR is just like SLR. The least squares estimate $\left(\widehat{\beta}_{0}, \ldots, \widehat{\beta}_{p}\right)$ for $\left(\beta_{0}, \ldots, \beta_{p}\right)$ is the intercept and slopes of the (hyper)plane with the minimum sum of squared vertical distance to the data points

$$
\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i 1}-\ldots-\widehat{\beta}_{p} x_{i p}\right)^{2}
$$

The "Hat" Notation

From now on, we use the "hat" notation to differentiate

- the estimated coefficient $\widehat{\beta}_{j}$ from
- the actual unknown coefficient β_{j}

Least Squares Problem for SLR

To find the $\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)$ that minimize

$$
L\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)^{2}
$$

one can set the derivatives of L with respect to $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ to 0

$$
\begin{aligned}
& \frac{\partial L}{\partial \widehat{\beta}_{0}}=-2 \sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)=0 \\
& \frac{\partial L}{\partial \widehat{\beta}_{1}}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i}\right)=0
\end{aligned}
$$

This results in the 2 equations below in 2 unknowns $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$.

$$
\begin{aligned}
n \widehat{\beta}_{0}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i} & =\sum_{i=1}^{n} y_{i} \\
\widehat{\beta}_{0} \sum_{i=1}^{n} x_{i}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} & =\sum_{i=1}^{n} x_{i} y_{i}
\end{aligned}
$$

Least Squares Problem for SLR

$$
\begin{array}{r}
n \widehat{\beta}_{0}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i} \\
\widehat{\beta}_{0} \sum_{i=1}^{n} x_{i}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i}
\end{array}
$$

Least Squares Problem for SLR

$$
\begin{array}{r}
\widehat{\beta}_{0}+\widehat{\beta}_{1} \overbrace{\sum_{i=1}^{n} x_{i}}^{=n \bar{x}}=\overbrace{\sum_{i=1}^{n} y_{i}}^{=n \bar{y}} \\
\widehat{\beta}_{0} \underbrace{\sum_{i=1}^{n} x_{i}}_{=n \bar{x}}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i}
\end{array}
$$

Least Squares Problem for SLR

$$
\begin{aligned}
& \quad n \widehat{\beta}_{0}+\widehat{\beta}_{1} \overbrace{\sum_{i=1}^{n} x_{i}}^{=n \bar{x}}=\overbrace{\sum_{i=1}^{n} y_{i}}^{=n \bar{y}} \stackrel{\text { divide by } n}{\Longrightarrow} \widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{x}=\bar{y} \Rightarrow \widehat{\beta}_{0}=\bar{y}-\widehat{\beta}_{1} \bar{x} \\
& \widehat{\beta}_{0} \underbrace{\sum_{i=1}^{n} x_{i}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i}}_{=n \bar{x}}
\end{aligned}
$$

Least Squares Problem for SLR

$$
\begin{gathered}
n \widehat{\beta}_{0}+\widehat{\beta}_{1} \overbrace{\sum_{i=1}^{n} x_{i}}^{=n \bar{x}}=\overbrace{\sum_{i=1}^{n} y_{i}}^{=n \bar{y}} \stackrel{\text { divide by } n}{\Longrightarrow} \widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{x}=\bar{y} \Rightarrow \widehat{\beta}_{0}=\bar{y}-\widehat{\beta}_{1} \bar{x} \\
\widehat{\beta}_{0} \underbrace{\sum_{i=1}^{n} x_{i}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i} \Longrightarrow \widehat{\beta}_{0} n \bar{x}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i}}_{=n \bar{x}}
\end{gathered}
$$

Least Squares Problem for SLR

$$
\begin{gathered}
n \widehat{\beta}_{0}+\widehat{\beta}_{1} \overbrace{\sum_{i=1}^{n} x_{i}}^{=n \bar{x}}=\overbrace{\sum_{i=1}^{n} y_{i}}^{=n \bar{y}} \stackrel{\text { divide by } n}{\Longrightarrow} \widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{x}=\bar{y} \Rightarrow \widehat{\beta}_{0}=\bar{y}-\widehat{\beta}_{1} \bar{x} \\
\widehat{\beta}_{0} \underbrace{\sum_{i=1}^{n} x_{i}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i} \Longrightarrow \widehat{\beta}_{0} n \bar{x}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i}}_{=n \bar{x}}
\end{gathered}
$$

Replacing $\widehat{\beta}_{0}$ with $\bar{y}-\widehat{\beta}_{1} \bar{x}$ in the second equation, we get

$$
\begin{aligned}
& \left(\bar{y}-\widehat{\beta}_{1} \bar{x}\right) n \bar{x}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i} \\
\Longleftrightarrow & \widehat{\beta}_{1}\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right)=\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y} \\
\Longleftrightarrow & \widehat{\beta}_{1}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}
\end{aligned}
$$

HW

- Show that

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}=\left(\sum_{i=1}^{n} x_{i} y_{i}\right)-n \bar{x} \bar{y} .
$$

- Show that

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)-n \bar{x}^{2}
$$

Hence, there are 3 formulae for LS estimate of the slope:

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Least Squares Problem for MLR

To find the $\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}\right)$ that minimize

$$
L\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}\right)=\sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i 1}-\ldots-\widehat{\beta}_{p} x_{i p}\right)^{2}
$$

one can set the derivatives of L with respect to $\widehat{\beta}_{j}$ to 0

$$
\begin{aligned}
& \frac{\partial L}{\partial \widehat{\beta}_{0}}=-2 \sum_{i=1}^{n}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i 1}-\ldots-\widehat{\beta}_{p} x_{i p}\right) \\
& \frac{\partial L}{\partial \widehat{\beta}_{k}}=-2 \sum_{i=1}^{n} x_{i k}\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i 1}-\ldots-\widehat{\beta}_{p} x_{i p}\right), k=1,2, \ldots, p
\end{aligned}
$$

and then equate them to 0 . This results in a system of $(p+1)$ equations in $(p+1)$ unknowns on the next page.

Least Squares Problem for MLR

The least squares estimate $\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}\right)$ is the solution to the following system of equations, called the normal equations.

$$
\begin{gathered}
\widehat{\beta}_{0} \cdot n \quad+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i 1} \quad+\cdots+\widehat{\beta}_{p} \sum_{i=1}^{n} x_{i p}=\sum_{i=1}^{n} y_{i} \\
\widehat{\beta}_{0} \sum_{i=1}^{n} x_{i 1}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i 1}^{2} \quad+\cdots+\widehat{\beta}_{p} \sum_{i=1}^{n} x_{i 1} x_{i p}=\sum_{i=1}^{n} x_{i 1} y_{i} \\
\vdots \\
\widehat{\beta}_{0} \sum_{i=1}^{n} x_{i k}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i k} x_{i 1}+\cdots+\widehat{\beta}_{p} \sum_{i=1}^{n} x_{i k} x_{i p}=\sum_{i=1}^{n} x_{i k} y_{i} \\
\vdots \\
\widehat{\beta}_{0} \sum_{i=1}^{n} x_{i p}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i p} x_{i 1}+\cdots+\widehat{\beta}_{p} \sum_{i=1}^{n} x_{i p}^{2}=\sum_{i=1}^{n} x_{i p} y_{i}
\end{gathered}
$$

Least Squares Problem for MLR

The least squares estimate $\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}\right)$ is the solution to the following system of equations, called the normal equations.

$$
\begin{gathered}
\widehat{\beta}_{0} \cdot n \quad+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i 1} \quad+\cdots+\widehat{\beta}_{p} \sum_{i=1}^{n} x_{i p}=\sum_{i=1}^{n} y_{i} \\
\widehat{\beta}_{0} \sum_{i=1}^{n} x_{i 1}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i 1}^{2} \quad+\cdots+\widehat{\beta}_{p} \sum_{i=1}^{n} x_{i 1} x_{i p}=\sum_{i=1}^{n} x_{i 1} y_{i} \\
\vdots \\
\widehat{\beta}_{0} \sum_{i=1}^{n} x_{i k}+\widehat{\beta}_{1} \sum_{i=1}^{n} x_{i k} x_{i 1}+\cdots+\widehat{\beta}_{p} \sum_{i=1}^{n} x_{i k} x_{i p}=\sum_{i=1}^{n} x_{i k} y_{i} \\
\vdots \\
\widehat{\beta}_{0} \underbrace{\sum_{i=1}^{n} x_{i p}}_{\text {known }}+\widehat{\beta}_{1} \underbrace{\sum_{i=1}^{n} x_{i p} x_{i 1}}_{\text {known }}+\cdots+\widehat{\beta}_{p} \underbrace{\sum_{i=1}^{n} x_{i p}^{2}}_{\text {known }}=\underbrace{\sum_{i=1}^{n} x_{i p} y_{i}}_{\text {known }}
\end{gathered}
$$

- In matrix notation, the normal equation is $\left(X^{T} X\right) \widehat{\beta}=X^{T} Y$, and the least squares estimate is $\widehat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y$
- Don't worry about solving the equations.
R and other software can do the computation for us.

Parameters v.s. Estimates

Note β_{i} 's are the coefficients of the MLR model, and $\widehat{\beta}_{i}$'s are the estimates of β_{i} 's.

For SLR mdodel,

- $y=\beta_{0}+\beta_{1} x$ is the least square line for the population.
- $y=\widehat{\beta}_{0}+\widehat{\beta}_{1} x$ is the least square line for a sample

Fitted Values, Residuals, Estimate of σ^{2}

Fitted Values

The fitted value or predicted value:

$$
\widehat{y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\ldots+\widehat{\beta}_{p} x_{i p}
$$

Again, the "hat" notation is used.

- \widehat{y}_{i} is the fitted value
- y_{i} is the actual observed value

Errors and Residuals

- One cannot directly compute the errors

$$
\varepsilon_{i}=y_{i}-\beta_{0}-\beta_{1} x_{i 1}-\ldots-\beta_{p} x_{i p}
$$

since the coefficients $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$ are unknown.

- The errors ε_{i} can be estimated by the residuals e_{i} defined as:

$$
\text { residual } \begin{aligned}
e_{i} & =\text { observed } y_{i}-\text { predicted } y_{i} \\
& =y_{i}-\widehat{y}_{i} \\
& =y_{i}-\underbrace{\left.\widehat{(\widehat{\beta}}_{0}+\widehat{\beta}_{1} x_{i 1}+\ldots+\widehat{\beta}_{p} x_{i p}\right)}_{\text {predicted } y_{i}}
\end{aligned}
$$

- $e_{i} \neq \varepsilon_{i}$ in general since $\widehat{\beta}_{j} \neq \beta_{j}$

Properties of Residuals

Recall the LS estimate $\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}\right)$ satisfies the equations

$$
\begin{gathered}
\sum_{i=1}^{n}(\underbrace{\left(y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i 1}-\ldots-\widehat{\beta}_{p} x_{i p}\right.}_{=y_{i}-\widehat{y}_{i}=e_{i}=\text { residual }})=0 \text { and } \\
\sum_{i=1}^{n} x_{i k}(\overbrace{y_{i}-\widehat{\beta}_{0}-\widehat{\beta}_{1} x_{i 1}-\ldots-\widehat{\beta}_{p} x_{i p}})=0, k=1,2, \ldots, p .
\end{gathered}
$$

The residuals e_{i} hence have the properties

$$
\underbrace{\sum_{i=1}^{n} e_{i}=0}_{\text {Residuals add up to 0. }}, \underbrace{\sum_{i=1}^{n} x_{i k} e_{i}=0, k=1,2, \ldots, p}_{\text {Residuals are orthogonal to predictors. }}
$$

The two properties combined imply that the residuals have 0 correlation with each of the p predictors since

$$
\operatorname{Cov}\left(X_{k}, e\right)=\frac{1}{n-1}(\underbrace{\sum_{i=1}^{n} x_{i k} e_{i}}_{=0}-n \bar{x}_{k} \underbrace{\bar{e}}_{=0})=0
$$

Mean Square Error (MSE) — Estimate of σ^{2}

The variance σ^{2} of the errors ε_{i} 's is estimated by the mean square error (MSE), the sum of squares of residuals divided by $n-p-1$.

$$
\text { MSE }=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-p-1}=\frac{\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}}{n-p-1}
$$

Why divided by $n-p-1$ instead of by n ?

- A simple reason is it takes at least $p+1$ observations to estimate $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$. Need at least $p+2$ observations to get non-zero residuals to determine the variability of the estimate

Mean Square Error (MSE) — Estimate of σ^{2}

The variance σ^{2} of the errors ε_{i} 's is estimated by the mean square error (MSE), the sum of squares of residuals divided by $n-p-1$.

$$
\text { MSE }=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-p-1}=\frac{\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}}{n-p-1}
$$

Why divided by $n-p-1$ instead of by n ?

- A simple reason is it takes at least $p+1$ observations to estimate $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$. Need at least $p+2$ observations to get non-zero residuals to determine the variability of the estimate
- We will show (in the next Lecture) that MSE is an unbiased estimator for σ^{2}.

Example: The Auto Data

Auto data of 9 variables about 392 car models in the 1980s.
The variables include

- acceleration: Time to accelerate from 0 to 60 mph (in seconds)
- horsepower: Engine horsepower
- weight: Vehicle weight (lbs.)

Description of all 9 variables: https://rdrr.io/cran/ISLR/man/Auto.html
You can download the data at
https://www.stat.uchicago.edu/~yibi/s224/data/Auto.txt
Please change the working directory to the folder where
Auto.txt is stored, and load the data as follows.
Auto = read.table("Auto.txt", h=T)

How to Do Regression in R?

lm(acceleration \sim weight + horsepower, data=Auto)

Call:
$\operatorname{lm}($ formula $=$ acceleration \sim weight + horsepower, data $=$ Auto)

Coefficients:

(Intercept)	weight	horsepower
18.4358	0.0023	-0.0933

The $\operatorname{lm}()$ command above asks R to fit the model acceleration $=\beta_{0}+\beta_{1}$ weight $+\beta_{2}$ horsepower $+\varepsilon$
and R gives us the regression equation
acceleration $=18.4358+0.0023$ weight -0.0933 horsepower

More R Commands

```
lm1 = lm(acceleration ~ weight + horsepower, data=Auto)
lm1$coef
(Intercept) weight horsepower
    18.435791 0.002302 -0.093313
```


More R Commands

```
lm1 = lm(acceleration ~ weight + horsepower, data=Auto)
lm1$coef
(Intercept) weight horsepower
    18.435791 0.002302 -0.093313
lm1$fit # show the fitted values
lm1$res # show the residuals
```


More R Commands

```
lm1 = lm(acceleration ~ weight + horsepower, data=Auto)
```

lm1\$coef
(Intercept)
18.435791
lm1\$fit
lm1\$res
\# show the estimated beta's
weight horsepower
$0.002302-0.093313$

```
\# show the residuals
```

plot(lm1\$fit,lm1\$res, xlab="Fitted Values", ylab="Residuals")

Interpretation of Regression Coefficients

Interpretation of the Intercept β_{0}

$\beta_{0}=$ intercept $=$ the mean value of Y when all $X_{j}{ }^{\prime}$ are 0.

- may have no practical meaning
e.g., β_{0} is meaningless in the Auto model as no car has 0 weight

Interpretation of the regression coefficient for β_{j}

$\beta_{j}=$ the regression coefficient for X_{j}, is the mean change in the response Y when X_{j} is increased by one unit holding other X_{i} 's constant.

- Also called the partial regression coefficients because they are adjusted for the other covariates
- Interpretation of β_{j} depends on the presence of other predictors in the model e.g., the $2 \beta_{1}$'s in the 2 models below have different interpretations

$$
\begin{aligned}
& \text { Model 1: } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon \\
& \text { Model } 2: Y=\beta_{0}+\beta_{1} X_{1}+\varepsilon
\end{aligned}
$$

Something Wrong?

```
# Model 1
lm(acceleration ~ weight, data=Auto)$coef
(Intercept) weight
    19.572666 -0.001354
# Model 2
lm(acceleration ~ weight + horsepower, data=Auto)$coef
(Intercept) weight horsepower
    18.435791 0.002302 -0.093313
```

The coefficient $\widehat{\beta}_{1}$ for weight is negative in the Model 1 but positive in the Model 2.

Do heavier cars require more or less time to accelerate from 0 to 60 mph ?

Effect of weight Not Controlling for Other Predictors

library (ggplot2)
ggplot(Auto, aes(x=weight, y=acceleration)) + geom_point()

From the scatter plot above, are weight and acceleration are positively or negatively associated? Do heavier vehicles generally require more or less time to accelerate from 0 to 60 mph ? Is that reasonable?

Effect of weight Controlling for horsepower (1)

```
ggplot(Auto, aes(x=weight, y=acceleration, col=horsepower)) +
    geom_point()
ggplot(Auto, aes(x=weight, y=acceleration, col=horsepower)) +
    geom_point() + scale_color_gradientn(colours = rainbow(5))
```


Effect of weight Controlling for horsepower (2)

ggplot(Auto, aes(x=weight, y=acceleration, col=horsepower)) + geom_point() + scale_color_gradientn(colours = rainbow(5))

Consider car models of similar horsepower (similar color), are weight and acceleration positively or negatively correlated?

Effect of weight Controlling for horsepower (3)

R codes for the plot on the previous page

Auto\$hp = cut(Auto\$horsepower, breaks=c ($45,70,80,90,100,110,130,150,230)$,
labels=c("hp<=70", "70 < hp <= 80", " $80<h p<=90 "$,
"90 < hp <= 100", " $100<\mathrm{hp}<=110 "$,
"110 < hp <= 130",
" $130<\mathrm{hp}<=150^{\circ}$, "hp > 150"))
ggplot(Auto, aes(x=weight, y=acceleration, col=horsepower)) + geom_point() + scale_color_gradientn(colours = rainbow(5)) + facet_wrap(~hp, nrow=2) + theme(legend.position="top")

Example: Auto Data - Simpson's Paradox

Why is the association btw acceleration and weight flipped from positive to negative when horsepower is ignored?

Example: Auto Data - Simpson's Paradox

> Why is the association btw acceleration and weight flipped from positive to negative when horsepower is ignored?

- Heavier vehicles (purple dots) tend to have more horsepower while lighter ones (red dots) tend to have less

Example: Auto Data - Simpson's Paradox

> Why is the association btw acceleration and weight flipped from positive to negative when horsepower is ignored?

- Heavier vehicles (purple dots) tend to have more horsepower while lighter ones (red dots) tend to have less
- Vehicles with more horsepower (purple dots) require less time to accelerate while those with less (red dots) require more

Example: Auto Data - Simpson's Paradox

horsepower
150
100
$=50$

Why is the association btw acceleration and weight flipped from positive to negative when horsepower is ignored?

- Heavier vehicles (purple dots) tend to have more horsepower while lighter ones (red dots) tend to have less
- Vehicles with more horsepower (purple dots) require less time to accelerate while those with less (red dots) require more
- Hence, when ignoring horsepower, it looks like heavier vehicles require less time to accelerate, though heavier vehicles require more time to accelerate after the effect of horsepower is adjusted (which means considering only vehicles with similar horsepower)

What We Mean by "Adjusted for Other Coveriates"?

For a multiple linear regression model with p predictors

$$
Y=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}+\varepsilon
$$

β_{j} represents the effect of X_{j} on the respone variable Y after it has been adjusted for all of X_{1}, \ldots, X_{p} except X_{j}.

What does "adjusted for" mean?

What We Mean by "Adjusted for Other Coveriates" (2)?

The LS estimate $\widehat{\beta}_{j}$ for β_{j} in the MLR model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}+\varepsilon
$$

would be identical to the slope for the SLR model computed as follows.

1. Regress Y on all other X_{k} 's except X_{j}
2. Regress X_{j} on all other X_{k} 's except X_{j}
3. Fit a SLR model using the residuals from Step 1 as the response and the residuals from Step 2 as the predictor.

What We Mean by "Adjusted for Other Coveriates" (2)?

The LS estimate $\widehat{\beta}_{j}$ for β_{j} in the MLR model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}+\varepsilon
$$

would be identical to the slope for the SLR model computed as follows.

1. Regress Y on all other X_{k} 's except X_{j}
2. Regress X_{j} on all other X_{k} 's except X_{j}
3. Fit a SLR model using the residuals from Step 1 as the response and the residuals from Step 2 as the predictor.

Moreover, the intercept obtained in Step 3 would be 0.

What We Mean by "Adjusted for Other Coveriates" (2)?

The LS estimate $\widehat{\beta}_{j}$ for β_{j} in the MLR model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}+\varepsilon
$$

would be identical to the slope for the SLR model computed as follows.

1. Regress Y on all other X_{k} 's except X_{j}
2. Regress X_{j} on all other X_{k} 's except X_{j}
3. Fit a SLR model using the residuals from Step 1 as the response and the residuals from Step 2 as the predictor.

Moreover, the intercept obtained in Step 3 would be 0.
This proof of this result involves complicated matrix algebra and hence is omitted. We just illustrate with an example.

For the Auto Data, recall we have fit the model

$$
\text { acceleration }=\beta_{0}+\beta_{1} \text { weight }+\beta_{2} \text { horsepower }+\varepsilon
$$

and obtained the estimate for β_{1} to be $\widehat{\beta}_{2}=0.0023$.
Step 1. Regress acceleration on horsepower. Let RY be the residuals of this model.

RY $=\operatorname{lm}($ acceleration \sim horsepower, data=Auto) \$res

Step 2. Regress weight on horsepower. Let RWT be the residuals of this model.

RWT $=\operatorname{lm}(w e i g h t ~ \sim ~ h o r s e p o w e r, ~ d a t a=A u t o) \$ r e s ~$

Step 3. Regress RY on RWT.

```
lm(RY ~ RWT)$coef
(Intercept) RWT
    7.352e-17 2.302e-03
```

Observe that

- the estimated intercept is exactly 0 (slightly off due to rounding error)
- the estimated coefficient for RWT is exactly same estimated coefficient for weight in the model.

lm(acceleration \sim weight + horsepower, data=Auto) \$coef		
(Intercept)	weight	horsepower
18.435791	0.002302	-0.093313

$R Y=$ acceleration $-\tilde{\beta}_{0}-\tilde{\beta}_{1}$ horsepower $=$ the part of acceleration not explained by horsepower
weight might be correlated with other predictors in the model.

$$
\text { weight }=\check{\beta}_{0}+\check{\beta}_{1} \text { horsepower }+ \text { error }
$$

We can break weight into 2 components:

- a part that's linear w/ of horsepower, and
- the part RWT that is uncorrelated with horsepower

The first part is useless in predicting acceleration since horsepower haS been included in the model. Only RWT provides the additional information that horsepower cannot provide.

