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Outline

• What are multiple linear regression models
• Least squares estimation
• Fitted values, residuals, estimate of variance
• Interpretation of regression coefficients
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What Are Multiple Linear
Regression Models



Deterministic Models (No Errors)

Deterministic describe perfect relationships between variables w/
no errors

Y = f (X1, X2, . . . , Xp)

Examples:

• Newton’s second law of motion:

F = m × a
(Force) (mass) (acceleration)

• Ideal gas law: PV = nRT

P × V = n × R × T
pressure volume amount of gas ideal gass temperature

of gas of gas in moles constant in ◦K
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Example: Timber Volume of Trees

Say we want to model timber volume of a tree as a function of its
radius and height. If the trunk of a tree is a cylinder, then

volume = πr2h, where r = radius
h = height

If the trunk of a tree is a cone, then

volume =
1
3
πr2h r

h

r

h

However, as tree trunks are not exactly cylinders or cones, the
formulas above is subject to error. We may model the timber
volume of a tree as a function of its radius and height w/ error.

volume = f (r, h) + ε

= αr2h + ε where α is a constant.
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Statistical Models

A Statistical model is a simple, low-dimensional (as fewer
predictors as possible) summary of

• the relationship present in the data
• the data-generation process
• the relationship present in the population

Statistical models allow errors (uncertainty)

Y = f (X1, X2, . . . , Xp) + ε

response deterministic error
function (noise)
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Linear Regression Models

In STAT 22400, we focus on linear regression models where

Y = f (X1, X2, . . . , Xp) + ε

= β0 + β1X1 + β2X2 + . . . βpXp + ε

The adjective linear means the model is linear in its parameters
β0, β1, . . . , βp. For example, the following are linear regression
models

Y = β0 + β1X + β2X2 + ε

Y = β0 + β1 log(X) + ε

even though the relationship between Y and X is not linear.
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Some Non-linear Models Can Be Turned Linear (1)

Ex 1: Non-linear model: Y =
X

αX + β
reciprocal 1/Y = α + β(1/X)

↓ ↓ ↓

Linear model: Y ′ = α + βX′

where Y ′ = 1/Y, X′ = 1/X.

Ex 2: Timber volume of trees ≈ cr2h or more generally, αrβ1hβ2

Non-linear model: Volume = α × rβ1 × hβ2

↓ ↓ ↓ ↓

Taking logarithm log(Volume)= log(α)+ β1 log(r)+ β2 log(h)
↓ ↓ ↓ ↓

Linear model: Y = β0 + β1X1 + β2X2

where Y = log(Volume), X1 = log(r) = log(radius), and
X2 = log(h) = log(height).
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Some Non-linear Models Can Be Turned Linear (2)

Ex 3: Production Function

In economics, the Cobb-Douglas production function,

V = output
V = αKβ1 Lβ2 , where K = capital

L = labor

is a widely used form of the production function to represent the
relationship between the amounts of two or more inputs,
particularly physical capital K and labor L, and the amount of
output V that can be produced by those inputs. Despite of its
nonlinear from, the production function can be turned into a linear
model by taking the log of both sides,

log(V) = log(α) + β1 log(K) + β2 log(L).
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Which of the Following Models are Linear?

(a) Y = β0 + β
X
1 + ε

(b) Y = β0β
X
1 ε

(c) Y = β0 + β1eX + ε

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear

(d) Y = β0 + β1X2 + β2 log(X) + ε

. . . . . . . . . . . . . . . . . . . . . . . . . . Linear
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Which of the Following Models are Linear?
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X
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Which of the following models can be turned linear after trans-
formation?

(a) Y = β0 + β
X
1 + ε

(b) Y = β0β
X
1 ε

Ans: (b)
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Data for Multiple Linear Regression Models

SLR MLR
X Y X1 X2 . . . Xp Y

case 1: x1 y1 x11 x12 . . . x1p y1

case 2: x2 y2 x21 x22 . . . x2p y2
...
...

...
...
. . .

...
...

case n: xn yn xn1 xn2 . . . xnp yn

• For SLR, we observe pairs of data values.
• For MLR, we observe rows of data values.
• Each row (or pair) is called a case, a record, or a data point
• yi is the response (or dependent variable) of the ith case
• There are p explanatory variables (or predictors,

covariates), and xik is the value of the explanatory variable Xk

of the ith case
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Multiple Linear Regression Models

yi = β0 + β1xi1 + . . . + βpxip + εi

In the model above,

• εi’s (errors, or noise) are i.i.d. N(0, σ2)
• Parameters include:

• β0 = intercept;
• βk = regression coefficient (slope) for the kth explanatory

variable, k = 1, . . . , p
• σ2 = Var(εi)= the variance of errors

• Observed (known): yi, xi1, xi2, . . . , xip

Unknown: β0, β1, . . . , βp, σ2, εi’s
• Random: εi’s, yi’s

Constants (not random): βk’s, σ2, xik’s

12



Multiple Linear Regression Models in Matrix Notation


y1

y2
...

yn

︸︷︷︸
Yn×1

=


1 x11 x21 · · · xp1

1 x12 x22 · · · xp2
...
...

...
. . .

...

1 x1n x2n · · · xpn

︸                          ︷︷                          ︸
Xn×(p+1)



β0

β1

β2
...

βp

︸︷︷︸
β(p+1)×1

+


ε1

ε2
...

εn

︸︷︷︸
εn×1

or
Y = Xβ + ε
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Least Squares Estimation



Fitting the Model — Least Squares Method

Recall for SLR, the least squares
estimate (̂β0, β̂1) for (β0, β1) is the
intercept and slope of the straight
line with the minimum sum of
squared vertical distances to the
data points∑n

i=1
(yi − β̂0 − β̂1xi)2.

3

5

7

9

3 4 5 6
X

Y

MLR is just like SLR. The least squares estimate (̂β0, . . . , β̂p) for
(β0, . . . , βp) is the intercept and slopes of the (hyper)plane with the
minimum sum of squared vertical distance to the data points∑n

i=1
(yi − β̂0 − β̂1xi1 − . . . − β̂pxip)2
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The “Hat” Notation

From now on, we use the “hat” notation to differentiate

• the estimated coefficient β̂ j from
• the actual unknown coefficient β j
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Least Squares Problem for SLR

To find the (̂β0, β̂1) that minimize

L(̂β0, β̂1) =
n∑

i=1

(yi − β̂0 − β̂1xi)2

one can set the derivatives of L with respect to β̂0 and β̂1 to 0

∂L

∂β̂0
= −2

∑n

i=1
(yi − β̂0 − β̂1xi) = 0

∂L

∂β̂1
= −2

∑n

i=1
xi(yi − β̂0 − β̂1xi) = 0

This results in the 2 equations below in 2 unknowns β̂0 andβ̂1.

nβ̂0 + β̂1

∑n

i=1
xi =
∑n

i=1
yi

β̂0

∑n

i=1
xi + β̂1

∑n

i=1
x2

i =
∑n

i=1
xiyi
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Least Squares Problem for SLR

nβ̂0 + β̂1

∑n

i=1
xi =
∑n

i=1
yi

divide by n
=⇒ β̂0 + β̂1 x̄ = ȳ ⇒ β̂0 = ȳ − β̂1 x̄

β̂0

∑n

i=1
xi + β̂1

n∑
i=1

x2
i =

n∑
i=1

xiyi

=⇒ β̂0nx̄ + β̂1

n∑
i=1

x2
i =

n∑
i=1

xiyi

Replacing β̂0 with ȳ − β̂1 x̄ in the second equation, we get

(ȳ − β̂1 x̄)nx̄ + β̂1

∑n

i=1
x2

i =
∑n

i=1
xiyi

⇐⇒ β̂1

(∑n

i=1
x2

i − nx̄2
)
=
∑n

i=1
xiyi − nx̄ȳ

⇐⇒ β̂1 =

∑n
i=1 xiyi − nx̄ȳ∑n
i=1 x2

i − nx̄2
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Least Squares Problem for SLR

nβ̂0 + β̂1
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i=1 x2

i − nx̄2

17



Least Squares Problem for SLR

nβ̂0 + β̂1

=nx̄︷   ︸︸   ︷∑n

i=1
xi =
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HW

• Show that∑n

i=1
(xi − x̄)(yi − ȳ) =

∑n

i=1
(xi − x̄)yi =

(∑n

i=1
xiyi

)
− nx̄ȳ.

• Show that ∑n

i=1
(xi − x̄)2 =

(∑n

i=1
x2

i

)
− nx̄2.

Hence, there are 3 formulae for LS estimate of the slope:

β̂1 =

∑n
i=1 xiyi − nx̄ȳ∑n
i=1 x2

i − nx̄2
=

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2 =

∑n
i=1(xi − x̄)yi∑n
i=1(xi − x̄)2
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Least Squares Problem for MLR

To find the (̂β0, β̂1, . . . , β̂p) that minimize

L(̂β0, β̂1, . . . , β̂p) =
n∑

i=1

(yi − β̂0 − β̂1xi1 − . . . − β̂pxip)2

one can set the derivatives of L with respect to β̂ j to 0

∂L

∂β̂0
= −2

n∑
i=1

(yi − β̂0 − β̂1xi1 − . . . − β̂pxip)

∂L

∂β̂k
= −2

n∑
i=1

xik(yi − β̂0 − β̂1xi1 − . . . − β̂pxip), k = 1, 2, . . . , p

and then equate them to 0. This results in a system of (p + 1)
equations in (p + 1) unknowns on the next page.
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Least Squares Problem for MLR

The least squares estimate (̂β0, β̂1, . . . , β̂p) is the solution to the
following system of equations, called the normal equations.

β̂0 · n + β̂1
∑n

i=1 xi1 + · · ·+ β̂p
∑n

i=1 xip =
∑n

i=1 yi

β̂0
∑n

i=1 xi1 + β̂1
∑n

i=1 x2
i1 + · · ·+ β̂p

∑n
i=1 xi1xip =

∑n
i=1 xi1yi

...

β̂0
∑n

i=1 xik + β̂1
∑n

i=1 xikxi1 + · · ·+ β̂p
∑n

i=1 xikxip =
∑n

i=1 xikyi
...

β̂0
∑n

i=1 xip + β̂1
∑n

i=1 xipxi1 + · · ·+ β̂p
∑n

i=1 x2
ip =

∑n
i=1 xipyi

• In matrix notation, the normal equation is (XT X)̂β = XT Y,
and the least squares estimate is β̂ = (XT X)−1XT Y

• Don’t worry about solving the equations.
R and other software can do the computation for us.
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Parameters v.s. Estimates

Note βi’s are the coefficients of the MLR model,
and β̂i’s are the estimates of βi’s.

For SLR mdodel,

• y = β0 + β1x is the least square line for the population.
• y = β̂0 + β̂1x is the least square line for a sample

60 65 70 75 80

60

65

70

75

X

Y

y = β0 + β1x
y = β̂0 + β̂1x

Population
Sample
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Fitted Values, Residuals, Estimate
of σ2



Fitted Values

The fitted value or predicted value:

ŷi = β̂0 + β̂1xi1 + . . . + β̂pxip

Again, the “hat” notation is used.

• ŷi is the fitted value
• yi is the actual observed value
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Errors and Residuals

• One cannot directly compute the errors

εi = yi − β0 − β1xi1 − . . . − βpxip

since the coefficients β0, β1, . . . , βp are unknown.

• The errors εi can be estimated by the residuals ei defined as:

residual ei = observed yi − predicted yi

= yi − ŷi

= yi − (̂β0 + β̂1xi1 + . . . + β̂pxip)︸                           ︷︷                           ︸
predicted yi

• ei , εi in general since β̂ j , β j
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Properties of Residuals

Recall the LS estimate (̂β0, β̂1, . . . , β̂p) satisfies the equations∑n

i=1
(yi − β̂0 − β̂1xi1 − . . . − β̂pxip︸                              ︷︷                              ︸

= yi−̂yi = ei = residual

) = 0 and

∑n

i=1
xik(
︷                              ︸︸                              ︷
yi − β̂0 − β̂1xi1 − . . . − β̂pxip) = 0, k = 1, 2, . . . , p.

The residuals ei hence have the properties∑n

i=1
ei = 0︸         ︷︷         ︸

Residuals add up to 0.

,
∑n

i=1
xikei = 0, k = 1, 2, . . . , p.︸                                    ︷︷                                    ︸

Residuals are orthogonal to predictors.

The two properties combined imply that the residuals have 0
correlation with each of the p predictors since

Cov(Xk, e) =
1

n − 1

(∑n

i=1
xikei︸       ︷︷       ︸

=0

−nx̄k ē︸︷︷︸
=0

)
= 0
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Mean Square Error (MSE) — Estimate of σ2

The variance σ2 of the errors εi’s is estimated by the mean square
error (MSE), the sum of squares of residuals divided by n − p − 1.

MSE =

∑n
i=1 e2

i

n − p − 1
=

∑n
i=1(yi − ŷi)2

n − p − 1

Why divided by n − p − 1 instead of by n?

• A simple reason is it takes at least p + 1 observations to
estimate β0, β1, . . . , βp. Need at least p + 2 observations to get
non-zero residuals to determine the variability of the estimate

• We will show (in the next Lecture) that MSE is an unbiased
estimator for σ2.
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n − p − 1

Why divided by n − p − 1 instead of by n?

• A simple reason is it takes at least p + 1 observations to
estimate β0, β1, . . . , βp. Need at least p + 2 observations to get
non-zero residuals to determine the variability of the estimate

• We will show (in the next Lecture) that MSE is an unbiased
estimator for σ2.

26



Example: The Auto Data

Auto data of 9 variables about 392 car models in the 1980s.
The variables include

• acceleration: Time to accelerate from 0 to 60 mph (in
seconds)

• horsepower: Engine horsepower
• weight: Vehicle weight (lbs.)

Description of all 9 variables: https://rdrr.io/cran/ISLR/man/Auto.html

You can download the data at

https://www.stat.uchicago.edu/~yibi/s224/data/Auto.txt

Please change the working directory to the folder where
Auto.txt is stored, and load the data as follows.

Auto = read.table("Auto.txt", h=T)
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How to Do Regression in R?

lm(acceleration ~ weight + horsepower, data=Auto)

Call:

lm(formula = acceleration ~ weight + horsepower, data = Auto)

Coefficients:

(Intercept) weight horsepower

18.4358 0.0023 -0.0933

The lm() command above asks R to fit the model

acceleration = β0 + β1weight + β2horsepower + ε

and R gives us the regression equation

̂acceleration = 18.4358 + 0.0023 weight−0.0933 horsepower

28



More R Commands

lm1 = lm(acceleration ~ weight + horsepower, data=Auto)

lm1$coef # show the estimated beta's
(Intercept) weight horsepower

18.435791 0.002302 -0.093313

lm1$fit # show the fitted values

lm1$res # show the residuals

plot(lm1$fit,lm1$res,

xlab="Fitted Values",

ylab="Residuals")
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Interpretation of Regression
Coefficients



Interpretation of the Intercept β0

β0 = intercept = the mean value of Y when all X j’ are 0.

• may have no practical meaning
e.g., β0 is meaningless in the Auto model as no car has 0
weight
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Interpretation of the regression coefficient for β j

β j = the regression coefficient for X j, is the mean change in the
response Y when X j is increased by one unit holding other Xi’s
constant.

• Also called the partial regression coefficients because they
are adjusted for the other covariates

• Interpretation of β j depends on the presence of other
predictors in the model
e.g., the 2 β1’s in the 2 models below have different
interpretations

Model 1 : Y = β0 + β1X1 + β2X2 + ε

Model 2 : Y = β0 + β1X1 + ε.
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Something Wrong?

# Model 1

lm(acceleration ~ weight, data=Auto)$coef

(Intercept) weight

19.572666 -0.001354

# Model 2

lm(acceleration ~ weight + horsepower, data=Auto)$coef

(Intercept) weight horsepower

18.435791 0.002302 -0.093313

The coefficient β̂1 for weight is negative in the Model 1 but positive
in the Model 2.

Do heavier cars require more or less time to accelerate from 0 to
60 mph?
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Effect of weight Not Controlling for Other Predictors

library(ggplot2)

ggplot(Auto, aes(x=weight, y=acceleration)) + geom_point()
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From the scatter plot above, are weight and acceleration are
positively or negatively associated? Do heavier vehicles generally
require more or less time to accelerate from 0 to 60 mph? Is that
reasonable? 33



Effect of weight Controlling for horsepower (1)

ggplot(Auto, aes(x=weight, y=acceleration, col=horsepower)) +

geom_point()

ggplot(Auto, aes(x=weight, y=acceleration, col=horsepower)) +

geom_point() + scale_color_gradientn(colours = rainbow(5))
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Effect of weight Controlling for horsepower (2)

ggplot(Auto, aes(x=weight, y=acceleration, col=horsepower)) +

geom_point() + scale_color_gradientn(colours = rainbow(5))

10

15

20

25

2000 3000 4000 5000
weight

ac
ce

le
ra

tio
n

50

100

150

200

horsepower

Consider car models of similar horsepower (similar color), are
weight and acceleration positively or negatively correlated?
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Effect of weight Controlling for horsepower (3)
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R codes for the plot on the previous page

Auto$hp = cut(Auto$horsepower,

breaks=c(45,70, 80, 90,100,110, 130, 150,230),

labels=c("hp<=70", "70 < hp <= 80", "80 < hp <= 90",

"90 < hp <= 100", "100 < hp <= 110",

"110 < hp <= 130",

"130 < hp <= 150", "hp > 150"))

ggplot(Auto, aes(x=weight, y=acceleration, col=horsepower)) +

geom_point() + scale_color_gradientn(colours = rainbow(5)) +

facet_wrap(~hp, nrow=2) + theme(legend.position="top")
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Example: Auto Data — Simpson’s Paradox
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Why is the association
btw acceleration and
weight flipped from pos-
itive to negative when
horsepower is ignored?

• Heavier vehicles (purple dots) tend to have more horsepower while
lighter ones (red dots) tend to have less

• Vehicles with more horsepower (purple dots) require less time to
accelerate while those with less (red dots) require more

• Hence, when ignoring horsepower, it looks like heavier vehicles
require less time to accelerate, though heavier vehicles require
more time to accelerate after the effect of horsepower is adjusted
(which means considering only vehicles with similar horsepower)
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What We Mean by “Adjusted for Other Coveriates”?

For a multiple linear regression model with p predictors

Y = β0 + β1X1 + · · · + βpXp + ε

β j represents the effect of X j on the respone variable Y
after it has been adjusted for all of X1, . . . , Xp except X j.

What does “adjusted for” mean?
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What We Mean by “Adjusted for Other Coveriates” (2)?

The LS estimate β̂ j for β j in the MLR model

Y = β0 + β1X1 + · · · + βpXp + ε

would be identical to the slope for the SLR model computed as
follows.

1. Regress Y on all other Xk’s except X j

2. Regress X j on all other Xk’s except X j

3. Fit a SLR model using the residuals from Step 1 as the
response and the residuals from Step 2 as the predictor.

Moreover, the intercept obtained in Step 3 would be 0.

This proof of this result involves complicated matrix algebra and
hence is omitted. We just illustrate with an example.
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For the Auto Data, recall we have fit the model

acceleration = β0 + β1weight + β2horsepower + ε

and obtained the estimate for β1 to be β̂2 = 0.0023.

Step 1. Regress acceleration on horsepower. Let RY be the
residuals of this model.

RY = lm(acceleration ~ horsepower, data=Auto)$res

Step 2. Regress weight on horsepower. Let RWT be the residuals
of this model.

RWT = lm(weight ~ horsepower, data=Auto)$res
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Step 3. Regress RY on RWT.

lm(RY ~ RWT)$coef

(Intercept) RWT

7.352e-17 2.302e-03

Observe that

• the estimated intercept is exactly 0 (slightly off due to
rounding error)

• the estimated coefficient for RWT is exactly same estimated
coefficient for weight in the model.

lm(acceleration ~ weight + horsepower, data=Auto)$coef

(Intercept) weight horsepower

18.435791 0.002302 -0.093313
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RY = acceleration − β̃0 − β̃1horsepower

= the part of acceleration not explained by horsepower

weight might be correlated with other predictors in the model.

weight = β̌0 + β̌1horsepower + error

We can break weight into 2 components:

• a part that’s linear w/ of horsepower, and
• the part RWT that is uncorrelated with horsepower

The first part is useless in predicting acceleration since
horsepower haS been included in the model. Only RWT provides
the additional information that horsepower cannot provide.
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