STAT 224 Lecture 0
 A Brief Introduction to R and RStudio

Yibi Huang
Department of Statistics
University of Chicago

Preface

This lecture is for students have never or haven't used R and RStudio for a long time.

If you have been using R and RStudio, you can quickly skim through the slides and can skip the video.

What Are R \& RStudio?

- R is a statistical programming language
- RStudio is a convenient interface for R (an integrated development environment, IDE)
- An analogy
- R is like a car's engine
- RStudio is like a car's dashboard

R: Engine

RStudio: Dashboard

Installation of R and RStudio

Installation of R

Go to https://cran.r-project.org/. Select Download R for Windows, MacOS, or Linux depending on your operation system to the dowloading page for the installation file.

- Windows: Click "Download R x.y.z for Windows". Then run downloaded .exe file to install. Agree to all of the installation defaults (unless you already know how to customize R).
- MacOS: Click on one of the "R-x.y.z.pkg" file depending on the version of your Mac OS to begin the installation. You can leave the default options as is just like for Windows. Please note that you might have to (re)install Xquartz if you use Mac OS X.
- Linux: I assume Linux users know how to install software on it yourself...

Installation of RStudio

Go to https://www.rstudio.com/products/rstudio/download/ and select [RStudio Desktop]. Select an installer based on your OS and then install.

If You have previously installed R or R Studio

If you have previously installed R or RStudio on your machine, I recommend uninstalling the old versions and installing the latest version of \mathbf{R} and RStudio since some libraries that we'll install might not be compatible with older versions of R.

RStudio Interface

RStudio Interface

- Type R codes in the [Source Editor], and hit [Ctrl+Enter] (Windows) or [Cmd+Enter] (Mac) to execute. Output in the [Console].
- Select several lines of R codes and hit [Ctrl+Enter] (or [Cmd+Enter] on Mac) to execute the selected lines.
- You can save your R codes in a .R file (R script) for reuse.

R as a Calculator

R as a Calculator

```
3+2
[1] 5
3-2
[1] 1
3*2
[1] }
3/2
[1] 1.5
3^2 # power
[1] 9
sqrt(3)
[1] 1.732051
exp(3)
[1] 20.08554
log(100) # natural log
[1] 4.60517
log10(100) # base 10 log
[1] 2
```

$\log \left(\frac{10}{1+\sqrt{3}}\right)$
$\log (10 /(1+$ sqrt (3)) $)$
[1] 1.297533
$\sqrt{\frac{3^{2}}{e^{1.5}+1}}$
sqrt($\left.3^{\wedge} 2 /(\exp (1.5)+1)\right)$
[1] 1.281339

You can save them as an "object" and then reuse them later.

```
x = log(10/(1+sqrt(3)))
y = sqrt(3^2/(exp(1.5)+1))
x*y
[1] 1.662579
```


Vectors

Vectors

A vector is a sequence of values, which can be created using the c() function, where c() stands for "combine" or "concatenate."

```
z = c(5, 3, 1, 6, 7, 2) # This line saves 5,3,1,6,7,2 as a vector z
z # This line prints the entire vector
[1] 5 3 1 6 7 2
```

Ways to create some commonly used vectors:

```
1:8
[1] 1 2 3 4 5 6 7 8
10:15
[1] 10}11
seq(from = 3, to = 21, by = 2)
    [1] }
rep(5, 4) # rep means "repeat"
[1] 5 5 5 5
rep(c(1,2), 4)
[1] 1 2 1 2 1 2 1 2
```


Indexes of Vectors

You can use square brackets [] to retrieve elements in a vector.

```
z=c(5, 3, 1, 6, 7, 2)
z[3] # the 3rd element
[1] 1
z[c(1,4)] # the 1st and 4th elements
[1] 5 6
z[1:4] # the first 4 elements
[1] 5 3 1 6
```

Negative indexes means excluding those elements

```
z[-c(1,4)] # excluding the 1st and 4th elements
```

[1] $31 \begin{array}{lll}{[1} & 7\end{array}$
z[-(1:3)] \# excluding the first 3 elements
[1] 672

Computation with Vectors

Comutations (+,-, /, *, $\log (), \ldots)$ on a vector are applied to every element of the vector.

```
z = c(5, 3, 1, 6, 7, 2)
z+2 # add every element by 2
[1] 7 5 3 8 9 4
z*2 # multiply every element by 2
[1] 10 6 2 2 12 14 4
z^2 # square every element
[1] 25 9 1 36 49 4
```


Computation with Vectors

Computations on two or more vectors are applied elementwise if the vectors are of the same length.

```
v1 = c(1,2,3,1,2)
v2 = c(0,1,2,3,0)
v1+v2
    [1] 1 3 5 4 2
v1*v2
    [1] 0 2 6 3 0
```


sort(), min(), max(), sum(), mean(), length()

```
z = c(5, 3, 1, 6, 7, 2)
sort(z) # sort elements in z from minimum to maximum
[1] 1 2 3 5 6 7
min(z) # minimum of z
[1] 1
max(z) # maximum of z
[1] 7
sum(z) # the sum of all elements of z
[1] 24
mean(z) # the mean of all elements of z
[1] 4
length(z) # the length of vector z
[1] 6
```


Loading Data and Changing Working Directory

The FEV Data

The data file fevdata.txt contains data from a sample of 654 youths, aged 3 to 19, in the area of East Boston during middle to late 1970's.

age	fev	ht	sex	smoke
9	1.708	57.0	0	0
8	1.724	67.5	0	0
7	1.720	54.5	0	0
9	1.558	53.0	1	0
9	1.895	57.0	1	0
8	2.336	61.0	0	0
$\ldots($ omitted) \ldots				
16	2.795	63.0	0	1
15	3.211	66.5	0	0

Variables of the FEV Data

- age: Subject's age in years
- fev: Lung capacity of subject, measured by forced expiratory volume (abbreviated as FEV), the amount of air an individual can exhale in the first second of forceful breath in liters
- ht: Subject's height in inches
- sex: Gender of the subject, coded as: $0=$ Female, $1=$ Male
- smoke: Subject's smoking status, coded as:

0 = Nonsmoker, 1 = Smoker

How to Import Data from a File to R?

- First, download the data file fevdata.txt from the link http://www.stat.uchicago.edu/~yibi/s224/data/fevdata.txt and save it on your computer
- The R command to load data from a text file is read.table()

```
fevdata = read.table("fevdata.txt", header=TRUE)
# cannot open file 'fevdata.txt': No such file or directory Error
# in file(file, "rt") : cannot open the connection
```

Oops! We get an error message!!

How to Import Data from a File to R?

- First, download the data file fevdata.txt from the link http://www.stat.uchicago.edu/~yibi/s224/data/fevdata.txt and save it on your computer
- The R command to load data from a text file is read.table()

```
fevdata = read.table("fevdata.txt", header=TRUE)
# cannot open file 'fevdata.txt': No such file or directory Error
# in file(file, "rt") : cannot open the connection
```

Oops! We get an error message!!

This is because we haven't told R where the file is located, which can be done by providing the complete path to the file or by setting the working directory to the folder the data file is located.

How to Set the Working Directory? (1)

How to Set the Working Directory? (2)

Let's Try Loading Data From a File Again!

```
fevdata = read.table("fevdata.txt", header=TRUE)
```

If it works, you should see fevdata show up in the [Environment] panel on the top right.
fevdata is an data matrix (in R we called it a data frame).
The R function $\operatorname{dim}()$ returns the dimension of a data frame.
dim(fevdata)
[1] 6545

We can see fevdata has 654 rows (cases) and 5 columns (variables).

Data Frame

Indexes for a Data Frame

```
fevdata[2,] # 2nd row of data
    age fev ht sex smoke
2 8 1.724 67.5 0 0
fevdata[,3] # 3rd column of data
# [1] 57.0 67.5 54.5 53.0 57.0 61.0 58.0
# ...(omitted)...
#[650] 67.0 68.0 60.0 63.0 66.5
fevdata[1:5,3] # first 5 elements in the 3rd column
[1] 57.0 67.5 54.5 53.0 57.0
```

Negative indexes also mean "exclusion"
fevdata[1:5,-3] \# the first 5 rows but not the 3rd column
fevdata[-(1:5),] \# excluding the first 5 rows of data

head() and tail()

head() extract the first few rows of a data frame (6 rows by default)

head (fevdata)										
age								fev	ht	sex smoke
1	9	1.708	57.0	0	0					
2	8	1.724	67.5	0	0					
3	7	1.720	54.5	0	0					
4	9	1.558	53.0	1	0					
5	9	1.895	57.0	1	0					
6	8	2.336	61.0	0	0					

head(fevdata, 3) \# the first 3 rows, output omitted

Similarly, tail() extracts the last few rows of a data frame.

	age	fev	ht		smoke
652	18	2.853	60.0	0	0
653	16	2.795	63.0	0	1

str() Shows the Structure of a Data frame

```
str(fevdata)
'data.frame': 654 obs. of 5 variables:
$ age : int 9 8 7 9 9 8 6 6 8 9 ...
$ fev : num 1.71 1.72 1.72 1.56 1.9 ...
$ ht : num 57 67.5 54.5 53 57 61 58 56 58.5 60 ...
$ sex : int 0 0 0 1 100 0 0 0 ...
$ smoke: int O O O O O O O O O O ...
```

