STAT 222 Lecture 25 Confounded Two-Level Factorial Designs In 4 and 8 Blocks

Yibi Huang

Section 13.1-13.3, 13.5 of Dean & Voss

In Lecture 24, we introduced a way to divide treatments in a single replicate 2^k factorial design in *two blocks* of size 2^{k-1} such that all but one parameter in full *k*-way model are estimable.

A block of size 2^{k−1} can be too big (if k ≥ 5) to be homogeneous In Lecture 24, we introduced a way to divide treatments in a single replicate 2^k factorial design in *two blocks* of size 2^{k-1} such that all but one parameter in full *k*-way model are estimable.

- A block of size 2^{k−1} can be too big (if k ≥ 5) to be homogeneous
- Better if one can divide the 2^k in 4 block, 8 blocks, or in 2^s blocks

			Block			
ТC	ABC	ABCD	1	11		IV
0000	-1	1		\checkmark		
0001	-1	$^{-1}$	\checkmark			
0010	1	$^{-1}$			\checkmark	
0011	1	1				\checkmark
0100	1	-1			\checkmark	
0101	1	1				\checkmark
0110	-1	1		\checkmark		
0111	-1	-1	\checkmark			
1000	1	$^{-1}$			\checkmark	
1001	1	1				\checkmark
1010	-1	1		\checkmark		
1011	-1	$^{-1}$	\checkmark			
1100	-1	1		\checkmark		
1101	-1	-1	\checkmark			
1110	1	-1			\checkmark	
1111	1	1				\checkmark

One can divide a 2⁴ design into 4 blocks using *two contrasts*. For example, one can divide according to the coefficients of the two contrasts (*ABC*, *ABCD*):

- ► Block I if $(c_{ijk\ell}^{ABC}, c_{ijk\ell}^{ABCD}) = (-1, -1)$
- ► Block II if $(c_{ijk\ell}^{ABC}, c_{ijk\ell}^{ABCD}) = (-1, 1)$
- ► Block III if $(c_{ijk\ell}^{ABC}, c_{ijk\ell}^{ABCD}) = (1, -1)$

			Block			
ТC	ABC	ABCD	1	11		IV
0000	$^{-1}$	1		\checkmark		
0001	$^{-1}$	$^{-1}$	\checkmark			
0010	1	-1			\checkmark	
0011	1	1				\checkmark
0100	1	-1			\checkmark	
0101	1	1				\checkmark
0110	-1	1		\checkmark		
0111	-1	-1	\checkmark			
1000	1	$^{-1}$			\checkmark	
1001	1	1				\checkmark
1010	-1	1		\checkmark		
1011	-1	-1	\checkmark			
1100	-1	1		\checkmark		
1101	$^{-1}$	$^{-1}$	\checkmark			
1110	1	-1			\checkmark	
1111	1	1				\checkmark

One can divide a 2⁴ design into 4 blocks using *two contrasts*. For example, one can divide according to the coefficients of the two contrasts (*ABC*, *ABCD*):

- ► Block I if $(c_{ijk\ell}^{ABC}, c_{ijk\ell}^{ABCD}) = (-1, -1)$
- ► Block II if $(c_{ijk\ell}^{ABC}, c_{ijk\ell}^{ABCD}) = (-1, 1)$
- ► Block III if $(c_{ijk\ell}^{ABC}, c_{ijk\ell}^{ABCD}) = (1, -1)$

			Block			
ТC	ABC	ABCD	1	11		IV
0000	$^{-1}$	1		\checkmark		
0001	-1	-1	\checkmark			
0010	1	-1			\checkmark	
0011	1	1				\checkmark
0100	1	$^{-1}$			\checkmark	
0101	1	1				\checkmark
0110	-1	1		\checkmark		
0111	-1	-1	\checkmark			
1000	1	-1			\checkmark	
1001	1	1				\checkmark
1010	-1	1		\checkmark		
1011	-1	-1	\checkmark			
1100	-1	1		\checkmark		
1101	-1	-1	\checkmark			
1110	1	-1			\checkmark	
1111	1	1				\checkmark

One can divide a 2⁴ design into 4 blocks using *two contrasts*. For example, one can divide according to the coefficients of the two contrasts (*ABC*, *ABCD*):

- Block I if $(c_{ijk\ell}^{ABC}, c_{ijk\ell}^{ABCD}) = (-1, -1)$
- ► Block II if $(c_{ijk\ell}^{ABC}, c_{ijk\ell}^{ABCD}) = (-1, 1)$
- $\blacktriangleright \text{ Block III if } (c_{ijk\ell}^{ABC}, c_{ijk\ell}^{ABCD}) = (1, -1)$

			Block			
ТC	ABC	ABCD	1	11		IV
0000	$^{-1}$	1		\checkmark		
0001	-1	-1	\checkmark			
0010	1	-1			\checkmark	
0011	1	1				\checkmark
0100	1	$^{-1}$			\checkmark	
0101	1	1				\checkmark
0110	-1	1		\checkmark		
0111	-1	$^{-1}$	\checkmark			
1000	1	-1			\checkmark	
1001	1	1				\checkmark
1010	-1	1		\checkmark		
1011	-1	-1	\checkmark			
1100	-1	1		\checkmark		
1101	-1	-1	\checkmark			
1110	1	-1			\checkmark	
1111	1	1				\checkmark

One can divide a 2⁴ design into 4 blocks using *two contrasts*. For example, one can divide according to the coefficients of the two contrasts (*ABC*, *ABCD*):

- Block I if $(c_{ijk\ell}^{ABC}, c_{ijk\ell}^{ABCD}) = (-1, -1)$
- ► Block II if $(c_{ijk\ell}^{ABC}, c_{ijk\ell}^{ABCD}) = (-1, 1)$
- $\blacktriangleright \text{ Block III if } (c_{ijk\ell}^{ABC}, c_{ijk\ell}^{ABCD}) = (1, -1)$

If one divide the 2^4 treatments into 4 blocks by the two contrasts: ABC and ABCD, ABC and ABCD will be confounded with blocks and hence are not estimable.

▶ In total, there are $2^4 - 1 = 15$ degrees of freedom.

- In total, there are $2^4 1 = 15$ degrees of freedom.
- The 4 blocks take 4 1 = 3 degrees of freedom.

- ▶ In total, there are $2^4 1 = 15$ degrees of freedom.
- The 4 blocks take 4 1 = 3 degrees of freedom.
- ► Treatments in the full 4-way model take 2⁴ 1 = 15 parameters, Two were confounded. Can we estimate the remaining 15 2 = 13 parameters?

- ▶ In total, there are $2^4 1 = 15$ degrees of freedom.
- The 4 blocks take 4 1 = 3 degrees of freedom.
- ► Treatments in the full 4-way model take 2⁴ 1 = 15 parameters, Two were confounded. Can we estimate the remaining 15 2 = 13 parameters?
- ► Only 15 3 = 12 degrees of freedom left for treatment. That is, only 12 parameters are estimable.

- ▶ In total, there are $2^4 1 = 15$ degrees of freedom.
- The 4 blocks take 4 1 = 3 degrees of freedom.
- ► Treatments in the full 4-way model take 2⁴ 1 = 15 parameters, Two were confounded. Can we estimate the remaining 15 2 = 13 parameters?
- Only 15 3 = 12 degrees of freedom left for treatment. That is, only 12 parameters are estimable.
- There is one more contrast that is confounded, in addition to ABC and ABCD

Recall that coefficients of ABC and ABCD are

$$c^{ABC}_{ijk\ell} = c^{A}_{ijk\ell}c^{B}_{ijk\ell}c^{C}_{ijk\ell}, \quad c^{ABCD}_{ijk\ell} = c^{A}_{ijk\ell}c^{B}_{ijk\ell}c^{C}_{ijk\ell}c^{D}_{ijk\ell}$$

where

$$c_{ijk\ell}^{A} = \begin{cases} -1 & \text{if } i = 0\\ 1 & \text{if } i = 1 \end{cases}, \ c_{ijk\ell}^{B} = \begin{cases} -1 & \text{if } j = 0\\ 1 & \text{if } j = 1 \end{cases}, \\ c_{ijk\ell}^{C} = \begin{cases} -1 & \text{if } k = 0\\ 1 & \text{if } k = 1 \end{cases}, \ c_{ijk\ell}^{D} = \begin{cases} -1 & \text{if } \ell = 0\\ 1 & \text{if } \ell = 1 \end{cases}$$

The product of coefficients of ABC and ABCD is

$$c_{ijk\ell}^{ABC}c_{ijk\ell}^{ABCD} = c_{ijk\ell}^{A}c_{ijk\ell}^{B}c_{ijk\ell}^{C}c_{ijk\ell}^{A}c_{ijk\ell}^{B}c_{ijk\ell}^{C}c_{ijk\ell}^{D}c_{ijk\ell}^{D}$$
$$= \underbrace{(c_{ijk\ell}^{A})^{2}}_{=1}\underbrace{(c_{ijk\ell}^{B})^{2}}_{=1}\underbrace{(c_{ijk\ell}^{C})^{2}}_{=1}c_{ijk\ell}^{D}c_{ijk\ell}^{$$

- ▶ In Blocks I and IV, $c_{ijk\ell}^D$ is always +1
- ▶ In Blocks II and III, $c_{ijk\ell}^D$ is always -1

Main effect D is also confounded with block and hence is not estimable.

We wish all the main effects can be estimated. Hence, it's not a good idea to divide blocks using the contrasts ABC and ABCD.

In general, when one divides a 2^k design into 4 blocks by two contrasts,

- not only the two contrasts are confounded with blocks
- the "product" of the two contrasts is also confounded with blocks

In the "*product*" of contrasts, *any letter with exponent 2 can be ignored*. For example,

► If ABCD and ACD are confounded, $(ABCD)(ACD) = A^2BC^2D^2 = B$ is also confounded

If ABC and BCD are confounded,
 (ABC)(BCD) = AB²C²D = AD is also confounded

2⁴ Design in 4 Blocks

- ▶ We wish to estimate all main effects and 2-way interactions
- It's a bad idea to divide 2⁴ Design into 4 blocks using the 4-way interaction ABCD and a 3-way interaction. This way, one of the main effects would be confounded
- Better to divide using two 3-way contrasts like ABC and ABD. Their product is a two way interaction. This way, all main effects and all but one of the two-way interactions can be estimated
- It's impossible to divide a 2⁴ design into 4 blocks in a way that all main effects and two-way interactions are estimable.

How to Divide a 2⁵ Design in 4 Blocks

Consider a 2^5 design with 5 factors A, B, C, D, E.

- Again, we wish to estimate all main effects and 2-way interactions
- It's a bad idea to divide using the 5-way contrasts ABCDE, since, for example

(ABCD)(ABCDE) = E and (ABC)(ABCDE) = DE.

Some main effect or two-way interaction will be confounded.
 Better using a 3-way interaction and a 4-way interaction with as few letters in common as possible, like

(ABCD)(CDE) = ABE.

Example: Mangold Experiment (Section 13.5)

A study to investigate the effects of 5 different fertilizers on the growth of mangold roots. The five factors were

- A: Sulphate of ammonia (0 or 0.6 cwt per acre),
- B: Superphosphate (0 or 0.5 cwt per acre),
- C: Muriate of potash (0 or 1.0 cwt per acre),
- D: Agricultural salt (0 or 5 cwt per acre), and
- E: Dung (0 or 10 tons per acre).

The $2^5 = 32$ treatments are divided into 4 blocks of size 8, by the contrasts ABD and BCE. Their product (ABD)(BCE) = ACDE is also confounded.

mangold = read.tak	ole(
"https://www.sta	at.uchicago.edu/	'~yibi/s222/mang	<pre>gold.txt",h=T)</pre>
mangold\$A = as.fac	tor(mangold\$A)		
mangold\$B = as.fac	ctor(mangold\$B)		
mangold\$C = as.fac	ctor(mangold\$C)		
mangold\$D = as.fac	ctor(mangold\$D)		
mangold\$E = as.fac	ctor(mangold\$E)		
contrasts(mangold	SA) = contr.sum((2)	
contrasts(mangold	B) = contr.sum((2)	
contrasts(mangold	SC) = contr.sum((2)	
contrasts(mangold	SD) = contr.sum((2)	
contrasts(mangold	SE) = contr.sum((2)	
lm1 = lm(y ~ A*B*C	C*D*E, <mark>data=</mark> mang	gold)	
lm1\$coef			
(Intercept)	A1	B1	C1
1098.50	-166.50	9.75	-4.75
D1	E1	A1:B1	A1:C1
-67.25	-90.50	3.25	38.75
B1:C1	A1:D1	B1:D1	C1:D1
-14.00	22.75	13.50	31.00
A1:E1	B1:E1	C1:E1	D1:E1
-3.00	-1.75	-5.25	-20.75
A1:B1:C1	A1:B1:D1	A1:C1:D1	B1:C1:D1
3.00	3.00	18.50	1.25

11 / 20

Half-Normal Probablity Plot — Mangold Experiment

library(daewr)
halfnorm(lm1\$coef[-1])

zscore= 0.02022 0.06068 0.1012 0.142 0.1829 0.2242 0.2659 0.308 0.3507

- A, D, E main effects are the most prominent ones
- Note BCE is confounded and hence it might just stands out because of the block effect
- There might be a bit AC interactions
- All other effects are small

If cannot install the daewr library, one can use the halfnorm plot in the faraway library.

One can specify the number of labelled effects to 4 by adding nlab=4.

Analysis By Pooling Terms Into Errors

If the 3-, 4-, and 5-way interactions are assumed to be negligible, their SS, apart from ABD, BCE, and ACDE, which are confounded with blocks, can be pooled into error.

mangold\$block = as.factor(mangold\$block)
lm2 = lm(y ~ block + (A+B+C+D+E)^2, data=mangold)

See the ANOVA table on the next page.

- A, D, E main effects are highly significant
- AC interaction is a bit significant

anova(1m2) Analysis of Variance Table

Response:	У				
	\mathtt{Df}	Sum Sq	Mean Sq	F value	Pr(>F)
block	3	52832	17611	2.59	0.09724
Α	1	887112	887112	130.63	0.00000037
В	1	3042	3042	0.45	0.51503
С	1	722	722	0.11	0.74957
D	1	144722	144722	21.31	0.00048
E	1	262088	262088	38.59	0.000031564
A:B	1	338	338	0.05	0.82693
A:C	1	48050	48050	7.08	0.01964
A:D	1	16562	16562	2.44	0.14238
A:E	1	288	288	0.04	0.84003
B:C	1	6272	6272	0.92	0.35408
B:D	1	5832	5832	0.86	0.37097
B:E	1	98	98	0.01	0.90622
C:D	1	30752	30752	4.53	0.05305
C:E	1	882	882	0.13	0.72435
D:E	1	13778	13778	2.03	0.17790
Residuals	13	88286	6791		

95% Simultaneous CIs for the 5 Main Effects

We can construct CIs based on the model lm2, with $MSE=SSE/dfE=88286/13\approx 6791.23$

For all 5 main effects, their SE's all equals

$$SE = \sqrt{MSE\left(\frac{1}{r} + \frac{1}{r}\right)} = \sqrt{6791.23\left(\frac{1}{16} + \frac{1}{16}\right)} \approx 29.136$$

since the means of the two levels of a factor are both an average of 16 numbers.

Bonferroni's critical value for 5 Cls is about 3.012

qt(0.05/2/5, df=13, lower.tail=FALSE)
[1] 3.012

The 99% CI for A main effect $\alpha_1 - \alpha_0$ is

 $(1265 - 932) \pm 3.012 \times 29.136 \approx 333 \pm 87.77 = (245.23, 420.77)$

Adding Sulphate of ammonia increase the yield by 245.23 to 420.77.

The simultaneous CIs for B, C, D, E are

For B : $(1088.75 - 1108.25) \pm 87.77 = -19.5 \pm 87.77 = (-107.27, 68.27)$ For C : $(1103.25 - 1093.75) \pm 87.77 = 9.5 \pm 87.77 = (-78.27, 97.27)$ For D : $(1165.75 - 1031.25) \pm 87.77 = 134.5 \pm 87.77 = (46.73, 222.27)$ For E : $(1189.00 - 1008.00) \pm 87.77 = 181 \pm 87.77 = (93.23268.77)$

AC Interaction Plots

par(mai=c(.6,.6,.15,.3),mgp=c(2,.5,0))
with(mangold, interaction.plot(A, C, y, type="b"))

- Slight AC interaction
- To maximize the yield, A should be set at high level
- When A is high, C should also be set at the high level to maximize the yield.

2^k Designs in 8 Blocks

- Can use 3 contrasts to divide into 8 blocks
- All possible products of subsets the 3 contrasts are also confounded.
- ▶ In total, 8 1 contrasts are confounded
- E.g., in a 2⁶ design, if one divides using the BCD, ABE, and ADF contrasts, then

$$(BCD)(ABE) = ACDE,$$

 $(BCD)(ADF) = ABCF,$
 $(ABE)(ADF) = BDEF,$
 $BCD)(ABE)(ADF) = CEF$

are also confounded.