STAT 222 Lecture 25
 Confounded Two-Level Factorial Designs In 4 and 8 Blocks

Yibi Huang

Coverage

Section 13.1-13.3, 13.5 of Dean \& Voss

Confounded 2^{k} Factorial in More Blocks

In Lecture 24, we introduced a way to divide treatments in a single replicate 2^{k} factorial design in two blocks of size 2^{k-1} such that all but one parameter in full k-way model are estimable.

- A block of size 2^{k-1} can be too big (if $k \geq 5$) to be homogeneous

Confounded 2^{k} Factorial in More Blocks

In Lecture 24, we introduced a way to divide treatments in a single replicate 2^{k} factorial design in two blocks of size 2^{k-1} such that all but one parameter in full k-way model are estimable.

- A block of size 2^{k-1} can be too big (if $k \geq 5$) to be homogeneous
- Better if one can divide the 2^{k} in 4 block, 8 blocks, or in 2^{s} blocks

Confounded 2^{4} Factorial in 4 Blocks

			Block			
TC	ABC	ABCD	I II III	IV		
0000	-1	1	\checkmark			
0001	-1	-1	\checkmark			
0010	1	-1		\checkmark		
0011	1	1			\checkmark	
0100	1	-1		\checkmark		
0101	1	1			\checkmark	
0110	-1	1		\checkmark		
0111	-1	-1	\checkmark			
1000	1	-1		\checkmark		
1001	1	1			\checkmark	
1010	-1	1		\checkmark		
1011	-1	-1	\checkmark			
1100	-1	1		\checkmark		
1101	-1	-1	\checkmark			
1110	1	-1		\checkmark		
1111	1	1			\checkmark	

One can divide a 2^{4} design into 4 blocks using two contrasts.
For example, one can divide according to the coefficients of the two contrasts $(A B C, A B C D)$:

- Block I if

$$
\left(c_{i j k l}^{A B C}, c_{i j k l}^{A B C D}\right)=(-1,-1)
$$

- Block II if
$\left(c_{i j k \ell}^{A B C}, c_{i j k \ell}^{A B C D}\right)=(-1,1)$
- Block III if

$$
\left(c_{i j k \ell}^{A B C}, c_{i j k \ell}^{A B C D}\right)=(1,-1)
$$

- Block IV if

$$
\left(c_{i j k \ell}^{A B C}, c_{i j k \ell}^{A B C D}\right)=(1,1)
$$

Confounded 2^{4} Factorial in 4 Blocks

			Block			
TC	ABC	ABCD	I II III	IV		
0000	-1	1	\checkmark			
0001	-1	-1	\checkmark			
0010	1	-1		\checkmark		
0011	1	1			\checkmark	
0100	1	-1		\checkmark		
0101	1	1			\checkmark	
0110	-1	1	\checkmark			
0111	-1	-1	\checkmark			
1000	1	-1		\checkmark		
1001	1	1			\checkmark	
1010	-1	1		\checkmark		
1011	-1	-1	\checkmark			
1100	-1	1		\checkmark		
1101	-1	-1	\checkmark			
1110	1	-1		\checkmark		
1111	1	1			\checkmark	

One can divide a 2^{4} design into 4 blocks using two contrasts.
For example, one can divide according to the coefficients of the two contrasts $(A B C, A B C D)$:

- Block I if

$$
\left(c_{i j k l}^{A B C}, c_{i j k l}^{A B C D}\right)=(-1,-1)
$$

- Block II if
$\left(c_{i j k \ell}^{A B C}, c_{i j k \ell}^{A B C D}\right)=(-1,1)$
- Block III if

$$
\left(c_{i j k \ell}^{A B C}, c_{i j k \ell}^{A B C D}\right)=(1,-1)
$$

- Block IV if
$\left(c_{i j k \ell}^{A B C}, c_{i j k \ell}^{A B C D}\right)=(1,1)$

Confounded 2^{4} Factorial in 4 Blocks

			Block			
TC	ABC	$A B C D$	I II III	IV		
0000	-1	1	\checkmark			
0001	-1	-1	\checkmark			
0010	1	-1			\checkmark	
0011	1	1			\checkmark	
0100	1	-1		\checkmark		
0101	1	1			\checkmark	
0110	-1	1		\checkmark		
0111	-1	-1	\checkmark			
1000	1	-1		\checkmark		
1001	1	1			\checkmark	
1010	-1	1		\checkmark		
1011	-1	-1	\checkmark			
1100	-1	1		\checkmark		
1101	-1	-1	\checkmark			
1110	1	-1		\checkmark		
1111	1	1			\checkmark	

One can divide a 2^{4} design into 4 blocks using two contrasts.
For example, one can divide according to the coefficients of the two contrasts $(A B C, A B C D)$:

- Block I if

$$
\left(c_{i j k l}^{A B C}, c_{i j k l}^{A B C D}\right)=(-1,-1)
$$

- Block II if
$\left(c_{i j k \ell}^{A B C}, c_{i j k \ell}^{A B C D}\right)=(-1,1)$
- Block III if
$\left(c_{i j k \ell}^{A B C}, c_{i j k \ell}^{A B C D}\right)=(1,-1)$
- Block IV if
$\left(c_{i j k \ell}^{A B C}, c_{i j k \ell}^{A B C D}\right)=(1,1)$

Confounded 2^{4} Factorial in 4 Blocks

			Block			
TC	ABC	ABCD	I II III	IV		
0000	-1	1		\checkmark		
0001	-1	-1	\checkmark			
0010	1	-1		\checkmark		
0011	1	1			\checkmark	
0100	1	-1		\checkmark		
0101	1	1			\checkmark	
0110	-1	1		\checkmark		
0111	-1	-1	\checkmark			
1000	1	-1		\checkmark		
1001	1	1			\checkmark	
1010	-1	1		\checkmark		
1011	-1	-1	\checkmark			
1100	-1	1		\checkmark		
1101	-1	-1	\checkmark			
1110	1	-1		\checkmark		
1111	1	1			\checkmark	

One can divide a 2^{4} design into 4 blocks using two contrasts.
For example, one can divide according to the coefficients of the two contrasts $(A B C, A B C D)$:

- Block I if

$$
\left(c_{i j k l}^{A B C}, c_{i j k l}^{A B C D}\right)=(-1,-1)
$$

- Block II if
$\left(c_{i j k \ell}^{A B C}, c_{i j k \ell}^{A B C D}\right)=(-1,1)$
- Block III if

$$
\left(c_{i j k \ell}^{A B C}, c_{i j k \ell}^{A B C D}\right)=(1,-1)
$$

- Block IV if
$\left(c_{i j k \ell}^{A B C}, c_{i j k \ell}^{A B C D}\right)=(1,1)$

Three Contrasts Are Confounded in a 2^{4} Factorial in 4 Blocks

If one divide the 2^{4} treatments into 4 blocks by the two contrasts: $A B C$ and $A B C D, A B C$ and $A B C D$ will be confounded with blocks and hence are not estimable.

Three Contrasts Are Confounded in a 2^{4} Factorial in 4 Blocks

If one divide the 2^{4} treatments into 4 blocks by the two contrasts: $A B C$ and $A B C D, A B C$ and $A B C D$ will be confounded with blocks and hence are not estimable.

- In total, there are $2^{4}-1=15$ degrees of freedom.

Three Contrasts Are Confounded in a 2^{4} Factorial in 4 Blocks

If one divide the 2^{4} treatments into 4 blocks by the two contrasts: $A B C$ and $A B C D, A B C$ and $A B C D$ will be confounded with blocks and hence are not estimable.

- In total, there are $2^{4}-1=15$ degrees of freedom.
- The 4 blocks take $4-1=3$ degrees of freedom.

Three Contrasts Are Confounded in a 2^{4} Factorial in 4 Blocks

If one divide the 2^{4} treatments into 4 blocks by the two contrasts: $A B C$ and $A B C D, A B C$ and $A B C D$ will be confounded with blocks and hence are not estimable.

- In total, there are $2^{4}-1=15$ degrees of freedom.
- The 4 blocks take $4-1=3$ degrees of freedom.
- Treatments in the full 4 -way model take $2^{4}-1=15$ parameters, Two were confounded. Can we estimate the remaining $15-2=13$ parameters?

Three Contrasts Are Confounded in a 2^{4} Factorial in 4 Blocks

If one divide the 2^{4} treatments into 4 blocks by the two contrasts: $A B C$ and $A B C D, A B C$ and $A B C D$ will be confounded with blocks and hence are not estimable.

- In total, there are $2^{4}-1=15$ degrees of freedom.
- The 4 blocks take $4-1=3$ degrees of freedom.
- Treatments in the full 4 -way model take $2^{4}-1=15$ parameters, Two were confounded. Can we estimate the remaining $15-2=13$ parameters?
- Only $15-3=12$ degrees of freedom left for treatment. That is, only 12 parameters are estimable.

Three Contrasts Are Confounded in a 2^{4} Factorial in 4 Blocks

If one divide the 2^{4} treatments into 4 blocks by the two contrasts: $A B C$ and $A B C D, A B C$ and $A B C D$ will be confounded with blocks and hence are not estimable.

- In total, there are $2^{4}-1=15$ degrees of freedom.
- The 4 blocks take $4-1=3$ degrees of freedom.
- Treatments in the full 4 -way model take $2^{4}-1=15$ parameters, Two were confounded. Can we estimate the remaining $15-2=13$ parameters?
- Only $15-3=12$ degrees of freedom left for treatment. That is, only 12 parameters are estimable.
- There is one more contrast that is confounded, in addition to $A B C$ and $A B C D$

Recall that coefficients of $A B C$ and $A B C D$ are

$$
c_{i j k \ell}^{A B C}=c_{i j k \ell}^{A} c_{i j k \ell}^{B} c_{i j k \ell}^{C}, \quad c_{i j k \ell}^{A B C D}=c_{i j k \ell}^{A} c_{i j k \ell}^{B} c_{i j k \ell}^{C} c_{i j k \ell}^{D}
$$

where

$$
\begin{aligned}
& c_{i j k \ell}^{A}=\left\{\begin{array}{ll}
-1 & \text { if } i=0 \\
1 & \text { if } i=1
\end{array}, c_{i j k \ell}^{B}=\left\{\begin{array}{ll}
-1 & \text { if } j=0 \\
1 & \text { if } j=1
\end{array},\right.\right. \\
& c_{i j k \ell}^{C}=\left\{\begin{array}{ll}
-1 & \text { if } k=0 \\
1 & \text { if } k=1
\end{array}, c_{i j k \ell}^{D}=\left\{\begin{array}{ll}
-1 & \text { if } \ell=0 \\
1 & \text { if } \ell=1
\end{array} .\right.\right.
\end{aligned}
$$

The product of coefficients of $A B C$ and $A B C D$ is

$$
\begin{aligned}
c_{i j k \ell}^{A B C} c_{i j k \ell}^{A B C D} & =c_{i j k \ell}^{A} c_{i j k \ell}^{B} c_{i j k \ell}^{C} c_{i j k \ell}^{A} c_{i j k \ell}^{B} C_{i j k \ell}^{C} c_{i j k \ell}^{D} \\
& =\underbrace{\left(c_{i j k \ell}^{A}\right)^{2}}_{=1} \underbrace{\left(c_{i j k \ell}^{B}\right)^{2}}_{=1} \underbrace{\left(c_{i j k \ell}^{C}\right)^{2}}_{=1} c_{i j k \ell}^{D}=c_{i j k \ell}^{D}
\end{aligned}
$$

- In Blocks I and IV, $c_{i j k \ell}^{D}$ is always +1
- In Blocks II and III, $c_{i j k \ell}^{D}$ is always -1

Main effect D is also confounded with block and hence is not estimable.

We wish all the main effects can be estimated. Hence, it's not a good idea to divide blocks using the contrasts $A B C$ and $A B C D$.

In general, when one divides a 2^{k} design into 4 blocks by two contrasts,

- not only the two contrasts are confounded with blocks
- the "product" of the two contrasts is also confounded with blocks

In the "product" of contrasts, any letter with exponent 2 can be ignored. For example,

- If $A B C D$ and $A C D$ are confounded, $(A B C D)(A C D)=A^{2} B C^{2} D^{2}=B$ is also confounded
- If $A B C$ and $B C D$ are confounded, $(A B C)(B C D)=A B^{2} C^{2} D=A D$ is also confounded

2^{4} Design in 4 Blocks

- We wish to estimate all main effects and 2-way interactions
- It's a bad idea to divide 2^{4} Design into 4 blocks using the 4 -way interaction $A B C D$ and a 3 -way interaction. This way, one of the main effects would be confounded
- Better to divide using two 3-way contrasts like ABC and ABD. Their product is a two way interaction. This way, all main effects and all but one of the two-way interactions can be estimated
- It's impossible to divide a 2^{4} design into 4 blocks in a way that all main effects and two-way interactions are estimable.

How to Divide a 2^{5} Design in 4 Blocks

Consider a 2^{5} design with 5 factors A, B, C, D, E.

- Again, we wish to estimate all main effects and 2-way interactions
- It's a bad idea to divide using the 5-way contrasts ABCDE, since, for example

$$
(A B C D)(A B C D E)=E \quad \text { and } \quad(A B C)(A B C D E)=D E
$$

Some main effect or two-way interaction will be confounded.

- Better using a 3-way interaction and a 4-way interaction with as few letters in common as possible, like

$$
(A B C D)(C D E)=A B E
$$

Example: Mangold Experiment (Section 13.5)

A study to investigate the effects of 5 different fertilizers on the growth of mangold roots. The five factors were

- A: Sulphate of ammonia (0 or 0.6 cwt per acre),
- B: Superphosphate (0 or 0.5 cwt per acre),
- C: Muriate of potash (0 or 1.0 cwt per acre),
- D: Agricultural salt (0 or 5 cwt per acre), and
- E: Dung (0 or 10 tons per acre).

The $2^{5}=32$ treatments are divided into 4 blocks of size 8 , by the contrasts $A B D$ and $B C E$. Their product $(A B D)(B C E)=A C D E$ is also confounded.

```
mangold = read.table(
    "https://www.stat.uchicago.edu/~yibi/s222/mangold.txt",h=T)
mangold$A = as.factor(mangold$A)
mangold$B = as.factor(mangold$B)
mangold$C = as.factor(mangold$C)
mangold$D = as.factor(mangold$D)
mangold$E = as.factor(mangold$E)
contrasts(mangold$A) = contr.sum(2)
contrasts(mangold$B) = contr.sum(2)
contrasts(mangold$C) = contr.sum(2)
contrasts(mangold$D) = contr.sum(2)
contrasts(mangold$E) = contr.sum(2)
lm1 = lm(y ~ A*B*C*D*E, data=mangold)
lm1$coef
\begin{tabular}{rrrr} 
(Intercept) & A 1 & B 1 & C 1 \\
1098.50 & -166.50 & 9.75 & -4.75 \\
D 1 & E 1 & \(\mathrm{~A} 1: \mathrm{B} 1\) & \(\mathrm{~A} 1: \mathrm{C} 1\) \\
-67.25 & -90.50 & 3.25 & 38.75 \\
\(\mathrm{~B} 1: \mathrm{C} 1\) & \(\mathrm{~A} 1: \mathrm{D} 1\) & \(\mathrm{~B} 1: \mathrm{D} 1\) & \(\mathrm{C} 1: \mathrm{D} 1\) \\
-14.00 & 22.75 & 13.50 & 31.00 \\
\(\mathrm{~A} 1: \mathrm{E} 1\) & \(\mathrm{~B} 1: \mathrm{E} 1\) & \(\mathrm{C} 1: \mathrm{E} 1\) & \(\mathrm{D} 1: \mathrm{E} 1\) \\
-3.00 & -1.75 & -5.25 & -20.75
\end{tabular}
A1:B1:C1
A1:B1:D1
    3.00
A1:C1:D1
B1:C1:D1
3.00
3.00
18.50
1.25
```


Half-Normal Probablity Plot - Mangold Experiment

library (daewr)
halfnorm(lm1\$coef [-1])

zscore $=0.020220 .060680 .10120 .1420 .18290 .22420 .26590 .3080 .3507$

- A, D, E main effects are the most prominent ones
- Note BCE is confounded and hence it might just stands out because of the block effect
- There might be a bit AC interactions
- All other effects are small

If cannot install the daewr library, one can use the halfnorm plot in the faraway library.

```
library(faraway)
par(mai=c(.6,.6,.05,.05),mgp=c(2,.5,0))
halfnorm(lm1$coef[-1], nlab=4, ylab= "abs(Effects)")
qqline(c(-abs(lm1$coef[-1]), abs(lm1$coef[-1])))
halfnorm(lm1$coef[-1], nlab=4, labs= names(lm1$coef[-1]),
    ylab= "abs(Effects)")
qqline(c(-abs(lm1$coef[-1]),abs(lm1$coef[-1])))
```


One can specify the number of labelled effects to 4 by adding $\mathrm{nl} \mathrm{ab}=4$.

Analysis By Pooling Terms Into Errors

If the 3-, 4-, and 5-way interactions are assumed to be negligible, their SS, apart from ABD, BCE, and ACDE, which are confounded with blocks, can be pooled into error.
mangold\$block $=$ as.factor (mangold\$block)
$\operatorname{lm} 2=\operatorname{lm}\left(y \sim b l o c k+(A+B+C+D+E)^{\wedge} 2\right.$, data=mangold)

See the ANOVA table on the next page.

- A, D, E main effects are highly significant
- AC interaction is a bit significant
anova(lm2)
Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value $\quad \operatorname{Pr}(>F)$

| block | 3 52832
 A 17611 2.59 | 0.09724 |
| :--- | ---: | ---: | ---: | ---: | ---: |

A	1887112	887112	130.63	0.000000037

B	1	3042	3042	0.45	0.51503

C	1	722	722	0.11	0.74957

D	1	144722	144722	21.31	0.00048

E	1	262088	262088	38.59	0.000031564

A:B	1	338	338	0.05	0.82693
A:C	1	48050	48050	7.08	0.01964
A:D	1	16562	16562	2.44	0.14238
A:E	1	288	288	0.04	0.84003
B:C	1	6272	6272	0.92	0.35408
B:D	1	5832	5832	0.86	0.37097
B:E	1	98	98	0.01	0.90622
C:D	1	30752	30752	4.53	0.05305
C:E	1	882	882	0.13	0.72435
D:E	1	13778	13778	2.03	0.17790

Residuals 13882866791

95\% Simultaneous Cls for the 5 Main Effects

We can construct Cls based on the model lm2, with MSE = SSE/dfE $=88286 / 13 \approx 6791.23$

For all 5 main effects, their SE's all equals

$$
\mathrm{SE}=\sqrt{\operatorname{MSE}\left(\frac{1}{r}+\frac{1}{r}\right)}=\sqrt{6791.23\left(\frac{1}{16}+\frac{1}{16}\right)} \approx 29.136
$$

since the means of the two levels of a factor are both an average of 16 numbers.

Bonferroni's critical value for 5 Cls is about 3.012
qt(0.05/2/5, df=13, lower.tail=FALSE)
[1] 3.012

```
library(mosaic)
mean(y ~ A, data=mangold)
    0 1
    9321265
```

The $99 \% \mathrm{Cl}$ for A main effect $\alpha_{1}-\alpha_{0}$ is

$$
(1265-932) \pm 3.012 \times 29.136 \approx 333 \pm 87.77=(245.23,420.77)
$$

Adding Sulphate of ammonia increase the yield by 245.23 to 420.77.

```
mean(y ~ B, data=mangold)
    0 1
1108 1089
mean(y ~ C, data=mangold)
    0 1
10941103
mean(y ~ D, data=mangold)
    0 1
1031 1166
mean(y ~ E, data=mangold)
    0 1
1008 1189
```

The simultaneous Cl s for $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ are
For $\mathrm{B}:(1088.75-1108.25) \pm 87.77=-19.5 \pm 87.77=(-107.27,68.27)$
For $C:(1103.25-1093.75) \pm 87.77=9.5 \pm 87.77=(-78.27,97.27)$
For $D:(1165.75-1031.25) \pm 87.77=134.5 \pm 87.77=(46.73,222.27)$
For $E:(1189.00-1008.00) \pm 87.77=181 \pm 87.77=(93.23268 .77)$

AC Interaction Plots

```
par(mai=c(.6,.6,.15,.3),mgp=c(2,.5,0))
with(mangold, interaction.plot(A, C, y, type="b"))
```


- Slight AC interaction
- To maximize the yield, A should be set at high level
- When A is high, C should also be set at the high level to maximize the yield.

2^{k} Designs in 8 Blocks

- Can use 3 contrasts to divide into 8 blocks
- All possible products of subsets the 3 contrasts are also confounded.
- In total, 8-1 contrasts are confounded
- E.g., in a 2^{6} design, if one divides using the BCD, $A B E$, and ADF contrasts, then

$$
\begin{aligned}
(B C D)(A B E) & =A C D E \\
(B C D)(A D F) & =A B C F \\
(A B E)(A D F) & =B D E F \\
(B C D)(A B E)(A D F) & =C E F
\end{aligned}
$$

are also confounded.

