
STAT 222 Lecture 24
Confounded Two-Level Factorial Designs

In 2 Blocks

Yibi Huang

1 / 26



Coverage

Section 13.1-13.3 of Dean & Voss
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Example 13.3.1 Field Experiment

A 24 experiment on the yield of beans where the 4 factors are

▶ A = amount of dung (0 or 10 tons) spread per acre
▶ B = amount of nitrochalk (0 and 45 lb) per acre
▶ C = amount of superphosphate (0 and 67 lb) per acre.
▶ D = amount of muriate of potash (0 and 112 lb) per acre.

Block I Block II
Trtmt Yield Trtmt Yield
0000 58 0001 55
0011 51 0010 45
0101 44 0100 42
0110 50 0111 36
1001 43 1000 53
1010 50 1011 55
1100 41 1101 41
1111 44 1110 48

Two dissimilar blocks of land.
Each block was divided into 8 plots.

A single-replicate experiment with
24 = 16 factor combinations (TC) di-
vided into b = 2 blocks of size k = 8.

Incomplete block design but not
BIBD
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23 Design in Two Blocks

For a single-replicate 2 × 2 × 2 = 23 design that each factor has 2
levels (0 = low, 1 = high), the 8 treatments are denoted as

000, 001, 010, 011, 100, 101, 110, 111.

Suppose there are two blocks each of size 4 available. How to
divide the 8 treatments into the two blocks so that as many
parameters in the 3-way model below can be estimated as possible?

yijkh = µ+αi + βj + γk + αβij + βγjk + αγij + αβγijk︸ ︷︷ ︸
treatment

+ θh︸︷︷︸
block

+εijkh

▶ 8 observations in total, total df = 8 − 1 = 7

▶ 7 df for treatments + 1 df for blocks > 7 df in total
▶ not all parameters can be estimated
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Recall parameter estimates for the full 3-way model of 23 design
yijk = µ + αi + βj + γk + αβij + βγjk + αγij + αβγijk + εijk ,

under the zero-sum constraints are of the form
∑

ijk cijkyijk/23

where the coefficients cijk are as shown in the table below.

µ̂ α̂1 β̂1 γ̂1 α̂β11 α̂γ11 β̂γ11 α̂βγ111
(1) A B C AB AC BC ABC

000 1 −1 −1 −1 1 1 1 −1
001 1 −1 −1 1 1 −1 −1 1
010 1 −1 1 −1 −1 1 −1 1
011 1 −1 1 1 −1 −1 1 −1
100 1 1 −1 −1 −1 −1 1 1
101 1 1 −1 1 −1 1 −1 −1
110 1 1 1 −1 1 −1 −1 −1
111 1 1 1 1 1 1 1 1

For example,
µ̂ = (y000 + y001 + y010 + y011 + y100 + y101 + y110 + y111)/8

α̂1 = (−y000 − y001 − y010 − y011 + y100 + y101 + y110 + y111)/8
α̂β11 = (y000 + y001 − y010 − y011 − y100 − y101 + y110 + y111)/8
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23 Design in 2 Blocks, Confounding ABC
Let’s try dividing the treatments by the coefficients of the ABC
contrast.

▶ placing those with coefficient cABC
ijk = +1 in one block,

▶ and those with coefficient cABC
ijk = −1 in the other block

µ̂ α̂1 β̂1 γ̂1 α̂β11 α̂γ11 β̂γ11 α̂βγ111 Block
(1) A B C AB AC BC ABC I II

000 1 −1 −1 −1 1 1 1 −1 ✓
001 1 −1 −1 1 1 −1 −1 1 ✓
010 1 −1 1 −1 −1 1 −1 1 ✓
011 1 −1 1 1 −1 −1 1 −1 ✓
100 1 1 −1 −1 −1 −1 1 1 ✓
101 1 1 −1 1 −1 1 −1 −1 ✓
110 1 1 1 −1 1 −1 −1 −1 ✓
111 1 1 1 1 1 1 1 1 ✓

Can one estimate µ, α1, β1, γ1, αβ11, . . . etc in this design?
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Under the model,
yijkh = µ+

treatment︷ ︸︸ ︷
αi + βj + γk + αβij + βγjk + αγij + αβγijk +

block︷︸︸︷
θh +εijkh

if there is no block effect, θh = 0 for both blocks, the model above
is simply the full 3-way model. We know the estimates

µ̂, α̂1, β̂1, γ̂1, α̂β11, α̂γ11, β̂γ11, α̂βγ111

defined by their coefficients given in the table below would be
unbiased estimates of their corresponding parameters.

µ̂ α̂1 β̂1 γ̂1 α̂β11 α̂γ11 β̂γ11 α̂βγ111 Block
(1) A B C AB AC BC ABC I II

000 1 −1 −1 −1 1 1 1 −1 ✓
001 1 −1 −1 1 1 −1 −1 1 ✓
010 1 −1 1 −1 −1 1 −1 1 ✓
011 1 −1 1 1 −1 −1 1 −1 ✓
100 1 1 −1 −1 −1 −1 1 1 ✓
101 1 1 −1 1 −1 1 −1 −1 ✓
110 1 1 1 −1 1 −1 −1 −1 ✓
111 1 1 1 1 1 1 1 1 ✓

We hence just need to check whether the expected values of these
estimates are affected by the extra block effect. 7 / 26



Estimating µ in 23 Design in 2 Blocks, Confounding ABC
µ̂ α̂1 β̂1 γ̂1 α̂β11 α̂γ11 β̂γ11 α̂βγ111 Block

(1) A B C AB AC BC ABC I II
000 1 −1 −1 −1 1 1 1 −1 ✓
001 1 −1 −1 1 1 −1 −1 1 ✓
010 1 −1 1 −1 −1 1 −1 1 ✓
011 1 −1 1 1 −1 −1 1 −1 ✓
100 1 1 −1 −1 −1 −1 1 1 ✓
101 1 1 −1 1 −1 1 −1 −1 ✓
110 1 1 1 −1 1 −1 −1 −1 ✓
111 1 1 1 1 1 1 1 1 ✓

µ̂ is the average of the 8 observations of which half are in Block I
and half in Block II. Contribution of the block effect to the
expected value of µ̂ is

θI + θII + θII + θI + θII + θI + θI + θII = 0
adds up to 0 because of the zero-sum constraints θI + θII .
Hence, µ̂ remains an unbiased estimate for µ even if the block
effect is present.
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Estimating α1 in 23 Design in 2 Blocks, Confounding ABC
µ̂ α̂1 β̂1 γ̂1 α̂β11 α̂γ11 β̂γ11 α̂βγ111 Block

(1) A B C AB AC BC ABC I II
000 1 −1 −1 −1 1 1 1 −1 ✓
001 1 −1 −1 1 1 −1 −1 1 ✓
010 1 −1 1 −1 −1 1 −1 1 ✓
011 1 −1 1 1 −1 −1 1 −1 ✓
100 1 1 −1 −1 −1 −1 1 1 ✓
101 1 1 −1 1 −1 1 −1 −1 ✓
110 1 1 1 −1 1 −1 −1 −1 ✓
111 1 1 1 1 1 1 1 1 ✓

Observe among the 4 observations w/ cA
ijk = +1, half are in Block I

and half in Block II. Their block effects add up to θI + θI + θII + θII .

Likewise, the 4 observations that cA
ijk = −1 also split evenly in the

two blocks. The sum of their block effects are θI + θI + θII + θII .

α̂1 remains unbiased as the Block effect affects its expected value
by

θI + θI + θII + θII︸ ︷︷ ︸
from those w/ CA

ijk=1

− (θI + θI + θII + θII)︸ ︷︷ ︸
from those w/ CA

ijk=−1

= 0.
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ABC Is Confounded w/ Blocks. Other Parameters Can Be Estimated
One can replace cA

ijk with the coefficients cU
ijk of another contrast U

and the argument on the previous page remain valid. Hence, these
parameter estimates remain unbiased estimates for their
corresponding parameters even if the block effect is present.

The only exception is the contrast ABC which we used to define
the blocks.

▶ The 4 observations w/ cABC
ijk = −1 are all in Block I, Their

block effects add up to θI + θI + θI + θI .
▶ The 4 observations that cA

ijk = +1 are all in Block II. The sum
of their block effects are θII + θII + θII + θII .

▶ The expected value of α̂βγ111 is affected by block by

− (θI + θI + θI + θI)︸ ︷︷ ︸
from those w/ CABC

ijk =−1

+ (θII + θII + θII + θII)︸ ︷︷ ︸
from those w/ CABC

ijk =1

= 4(θII−θI) ̸= 0.

We hence said the ABC interaction is confounded with block
effects and cannot be estimated.
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Summary of 2k Design in 2 Blocks w/ ABC Confounded

µ̂ α̂1 β̂1 γ̂1 α̂β11 α̂γ11 β̂γ11 α̂βγ111 Block
(1) A B C AB AC BC ABC I II

000 1 −1 −1 −1 1 1 1 −1 ✓
001 1 −1 −1 1 1 −1 −1 1 ✓
010 1 −1 1 −1 −1 1 −1 1 ✓
011 1 −1 1 1 −1 −1 1 −1 ✓
100 1 1 −1 −1 −1 −1 1 1 ✓
101 1 1 −1 1 −1 1 −1 −1 ✓
110 1 1 1 −1 1 −1 −1 −1 ✓
111 1 1 1 1 1 1 1 1 ✓

▶ ABC interaction is confounded w/ block effects and hence
cannot be estimated

▶ All other parameters can be estimated as in a 23 design
without blocking
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23 Design in 2 Blocks w/ Other Contrasts Confounded
One can also use other contrasts, like AB, to define the blocks.

µ̂ α̂1 β̂1 γ̂1 α̂β11 α̂γ11 β̂γ11 α̂βγ111 Block
(1) A B C AB AC BC ABC I II

000 1 −1 −1 −1 1 1 1 −1 ✓
001 1 −1 −1 1 1 −1 −1 1 ✓
010 1 −1 1 −1 −1 1 −1 1 ✓
011 1 −1 1 1 −1 −1 1 −1 ✓
100 1 1 −1 −1 −1 −1 1 1 ✓
101 1 1 −1 1 −1 1 −1 −1 ✓
110 1 1 1 −1 1 −1 −1 −1 ✓
111 1 1 1 1 1 1 1 1 ✓

For such designs, all parameters can be estimated except for the
one that is used to define the blocks, which will be confounded
with block effects.

▶ AB interactions would be confounded with blocks in the
design above and hence cannot be estimated
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2k Design in 2 Blocks of Size 2k−1

The 23 factorial in 2 blocks design can be generalized to 2k designs.

▶ 2 blocks of size 2k−1

▶ The 2 blocks are defined by one of the contrasts, usually the
contrast for the highest-order interaction since it’s of the least
interest.
▶ e.g., the Field experiment introduced in the beginning is a 24

design in 2 blocks that ABCD is confounded
▶ If we are certain that some lower order interactions are zero,

we can use it to define the blocks
▶ All parameters can be estimated as in a 2k design without

blocking except for the one that is confounded.
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Back to the Field Experiment

TC yijkℓ B BC ABCD
0000 58 −1 1 1
0001 55 −1 1 −1
0010 45 −1 −1 −1
0011 51 −1 −1 1
0100 42 1 −1 −1
0101 44 1 −1 1
0110 50 1 1 1
0111 36 1 1 −1
1000 53 −1 1 −1
1001 43 −1 1 1
1010 50 −1 −1 1
1011 55 −1 −1 −1
1100 41 1 −1 1
1101 41 1 −1 −1
1110 48 1 1 −1
1111 44 1 1 1

Treatments are divided into blocks by
the ABCD contrast.

Block Treatment
I 0000, 0011, 0101, 0110

1001, 1010, 1100, 1111
II 0001, 0010, 0100, 0111

1000, 1011, 1101, 1110
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β̂1 = (−y0000 − y0001 − y0010 − y0011

+ y0100 + y0101 + y0110 + y0111

− y1000 − y1001 − y1010 − y1011

+ y1100 + y1101 + y1110 + y1111)/16
= (−58 − 55 − 45 − 51

+ 42 + 44 + 50 + 36
− 53 − 43 − 50 − 55
+ 41 + 41 + 48 + 44)/16

= −4

SSB =
∑
ijkℓ

β̂2
j = 16β̂2

j = 16(−4)2 = 256
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β̂γ11 = (y0000 + y0001 − y0010 − y0011

− y0100 − y0101 + y0110 + y0111

+ y1000 + y1001 − y1010 − y1011

− y1100 − y1101 + y1110 + y1111)/16
= (58 + 55 − 45 − 51

− 42 − 44 + 50 + 36
+ 53 + 43 − 50 − 55
− 41 − 41 + 48 + 44)/16

= 1.125
SSBC =

∑
ijkℓ

β̂γjk2 = 16(β̂γ11)2

= 16(1.125)2 = 20.25
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field = read.table(
"https://www.stat.uchicago.edu/~yibi/s222/field.txt",h=T)

field$A = as.factor(field$A)
field$B = as.factor(field$B)
field$C = as.factor(field$C)
field$D = as.factor(field$D)
contrasts(field$A) = contr.sum(2)
contrasts(field$B) = contr.sum(2)
contrasts(field$C) = contr.sum(2)
contrasts(field$D) = contr.sum(2)
lmfield = lm(yield ~ block + A*B*C*D, data=field)
lmfield$coef
(Intercept) block A1 B1 C1

4.838e+01 -7.500e-01 3.750e-01 4.000e+00 -1.250e-01
D1 A1:B1 A1:C1 B1:C1 A1:D1

1.125e+00 6.250e-01 2.250e+00 1.125e+00 2.012e-16
B1:D1 C1:D1 A1:B1:C1 A1:B1:D1 A1:C1:D1

-8.750e-01 2.500e-01 1.000e+00 -1.000e+00 -1.125e+00
B1:C1:D1 A1:B1:C1:D1

2.750e+00 NA

15 / 26



Half-Normal Probablity Plot of Field Experiment
library(daewr)
halfnorm(lmfield$coef[2:16], alpha=0.2)
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▶ B main effect is the most prominent one
▶ BCD and AC interactions might be present, not sure
▶ All other effects are small
▶ No p-value is provided in a half-normal plot
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The faraway library can also produce the halfnorm() plot if one
cannot install the daewr library.
library(faraway)
halfnorm(lmfield$coef[-1], labs= names(lmfield$coef[-1]),

ylab= "abs(Effects)")
qqline(c(-abs(lmfield$coef[-1]),abs(lmfield$coef[-1])))
halfnorm(lmfield$coef[-1], nlab = 3, labs= names(lmfield$coef[-1]),

ylab= "abs(Effects)")
qqline(c(-abs(lmfield$coef[-1]),abs(lmfield$coef[-1])))
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▶ By default, B and BCD are labelled but AC is not labelled.
▶ One can specify the number of labelled effects to 3 by adding

nlab=3 so the 3rd largest effect AC is labelled.
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anova(lm(yield ~ block + A*B*C*D, data=field))
Warning in anova.lm(lm(yield ~ block + A * B * C * D, data
= field)): ANOVA F-tests on an essentially perfect fit are
unreliable
Analysis of Variance Table

Response: yield
Df Sum Sq Mean Sq F value Pr(>F)

block 1 2.25 2.25 NaN NaN
A 1 2.25 2.25 NaN NaN
B 1 256.00 256.00 NaN NaN
C 1 0.25 0.25 NaN NaN
D 1 20.25 20.25 NaN NaN
A:B 1 6.25 6.25 NaN NaN
A:C 1 81.00 81.00 NaN NaN
B:C 1 20.25 20.25 NaN NaN
A:D 1 0.00 0.00 NaN NaN
B:D 1 12.25 12.25 NaN NaN
C:D 1 1.00 1.00 NaN NaN
A:B:C 1 16.00 16.00 NaN NaN
A:B:D 1 16.00 16.00 NaN NaN
A:C:D 1 20.25 20.25 NaN NaN
B:C:D 1 121.00 121.00 NaN NaN
Residuals 0 0.00 NaN 18 / 26



BCD Interaction Plots
par(mai=c(.6,.6,.05,.1),mgp=c(2,.5,0), las=1)
with(field, interaction.plot(C:D, B, yield, type="b"))
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▶ yield is lower when B is at high level
adding nitrochalk decreased the yield, averaged over levels of
A, C, and D.

▶ BD interaction changed w/ C
▶ When C = 0,
▶ When C = 1,
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AC Interaction Plots

par(mai=c(.6,.6,.05,.3),mgp=c(2,.5,0), las=1)
with(field, interaction.plot(A, C, yield, type="b", ylim=c(40,55)))
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Analysis By Pooling Terms Into Error

Suppose the researcher had known ahead of time that no AD
interaction,

▶ then no ABD, ACD, ABCD interaction either

▶ could pool AD, ABD, ACD into error
▶ couldn’t pool ABCD since it’s confounded w/ block

Then

SSE = SSAD + SSABD + SSACD = 0 + 16 + 20.25 = 36.25
MSE = SSE/3 ≈ 12.0833

with dfE = 3.
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By pooling AD, ABD, ACD into error, we can perform F-tests for
the remain terms.
▶ B main effect is the most significant, P-value ≈ 0.02
▶ none of the rest is significant at 5% level

anova(lm(yield ~ block + B*C*(A+D), data=field))
Analysis of Variance Table

Response: yield
Df Sum Sq Mean Sq F value Pr(>F)

block 1 2.25 2.25 0.186 0.6952
B 1 256.00 256.00 21.186 0.0193
C 1 0.25 0.25 0.021 0.8947
A 1 2.25 2.25 0.186 0.6952
D 1 20.25 20.25 1.676 0.2861
B:C 1 20.25 20.25 1.676 0.2861
B:A 1 6.25 6.25 0.517 0.5240
B:D 1 12.25 12.25 1.014 0.3882
C:A 1 81.00 81.00 6.703 0.0811
C:D 1 1.00 1.00 0.083 0.7923
B:C:A 1 16.00 16.00 1.324 0.3332
B:C:D 1 121.00 121.00 10.014 0.0507
Residuals 3 36.25 12.08
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99% CI for B Main Effect

SE(β̂1 − β̂0) = SE(ȳ•1•• − ȳ•0••)

=
√

MSE
(1

8 + 1
8

)
=

√
12.0833

(1
8 + 1

8

)
≈ 1.738

The t-critical value is about 5.841

qt(0.01/2, df=3, lower.tail=FALSE)
[1] 5.84091

The 99% CI for β1 − β0 is

−4 − 4 ± 5.841 × 1.738 ≈ (−18.15, 2.15).

Adding nitrochalk might increase the yield by −18.15 to 2.15.
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lm2 = lm(yield ~ block + B*C*(A+D), data=field)
library(emmeans)
lm2emB = emmeans(lm2, "B")
NOTE: Results may be misleading due to involvement in interactions
pairs(lm2emB, infer = c(T,T), level=0.99)
contrast estimate SE df lower.CL upper.CL t.ratio p.value
0 - 1 8 1.74 3 -2.15 18.2 4.603 0.0193

Results are averaged over the levels of: block, C, A, D
Confidence level used: 0.99
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Warning
If one analyze data using both a half-normal probability plot and
by pooling terms into error, watch out that one cannot decide
which terms to pool into error after looking at the half-normal plot
or the ANOVA table.

▶ In that case, the P-values and CI’s of the effects are not
reliable since one tends to pool terms with small effects into
error, which would lead to a small MSE and overstate the
significance

Generally, only one of the two analyses can be done on one data
set. They should be done using different experimental data.

▶ If one uses the half-normal plot to identify a set of negligible
terms, one should conduct a new study, and test the
significance of or construct CIs for the remaining effects using
the new data.
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Next Time

So far we only considered confounded 2-level factorial in two
blocks.

With 5 or 6 or more factors, the block size (24, 25, or greater) can
be too large.

Better if we could have confounded 2-level factorial in more blocks.

▶ 2k designs in 4 blocks of size 2k−2

▶ 2k designs in 8 blocks of size 2k−3
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