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Two-Level Factorial Designs (2k Designs)
▶ Two-level factorial designs (2k designs) are factorial designs in

which each factor is investigated at only two levels.

Why using 2k designs?

▶ The early stages of a study usually involve the investigation of
a large number of potential factors to discover the “vital few”
factors.

▶ The # of observations required by a full factorial design grows
exponentially with the number of factors. E.g., it takes at
least 2k = 212 = 4096 observations to investigate k = 12
factors. If any of the 12 factors has 3 or more levels, it takes
at least 3 × 211 = 6144 observations for just a single replicate

▶ Hence, we can only afford 2 levels for each factor, and just a
single replicate for each factor combination

▶ Two level factorial experiments are often used during these
stages to quickly filter out unwanted effects and identify the
important ones
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Notation of Two-Level Factorial Designs

As all the factors have 2 levels only, their levels are usually referred
to as (low, high) and coded as

0 = low, 1 = high.

E.g., the observations yijk of a 23 design are hence denoted as

y000, y001, y010, y011, y100, y101, y110, y111.
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Parameter Estimates of a 2k Design
Parameter estimates for the full 3-way factorial model

yijk = µ + αi + βj + γk + αβij + βγjk + αγij + αβγijk + εijk ,

under the zero-sum constraints can be shown to be of the form∑
ijk cijkyijk/2k where the coefficients cijk are as shown in the table

below.

µ̂ α̂1 β̂1 γ̂1 α̂β11 α̂γ11 β̂γ11 α̂βγ111
(1) A B C AB AC BC ABC

000 1 −1 −1 −1 1 1 1 −1
001 1 −1 −1 1 1 −1 −1 1
010 1 −1 1 −1 −1 1 −1 1
011 1 −1 1 1 −1 −1 1 −1
100 1 1 −1 −1 −1 −1 1 1
101 1 1 −1 1 −1 1 −1 −1
110 1 1 1 −1 1 −1 −1 −1
111 1 1 1 1 1 1 1 1
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µ̂ α̂1 β̂1 γ̂1 α̂β11 α̂γ11 β̂γ11 α̂βγ111
(1) A B C AB AC BC ABC

000 1 −1 −1 −1 1 1 1 −1
001 1 −1 −1 1 1 −1 −1 1
010 1 −1 1 −1 −1 1 −1 1
011 1 −1 1 1 −1 −1 1 −1
100 1 1 −1 −1 −1 −1 1 1
101 1 1 −1 1 −1 1 −1 −1
110 1 1 1 −1 1 −1 −1 −1
111 1 1 1 1 1 1 1 1

For example,

µ̂ = (y000 + y001 + y010 + y011 + y100 + y101 + y110 + y111)/8
α̂1 = (−y000 − y001 − y010 − y011 + y100 + y101 + y110 + y111)/8

α̂β11 = (y000 + y001 − y010 − y011 − y100 − y101 + y110 + y111)/8

and so on.
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µ̂ α̂1 β̂1 γ̂1 α̂β11 α̂γ11 β̂γ11 α̂βγ111
(1) A B C AB AC BC ABC

000 1 −1 −1 −1 1 1 1 −1
001 1 −1 −1 1 1 −1 −1 1
010 1 −1 1 −1 −1 1 −1 1
011 1 −1 1 1 −1 −1 1 −1
100 1 1 −1 −1 −1 −1 1 1
101 1 1 −1 1 −1 1 −1 −1
110 1 1 1 −1 1 −1 −1 −1
111 1 1 1 1 1 1 1 1

▶ Note only 1 parameter for each main effect or interaction.
Parameter at the levels can be determined using the zero-sum
constraints

▶ Except for the grand mean, all other estimates are contrasts
as

∑
ijk cijk = 0

▶ Hence, we often just refer to the estimates as contrasts and
denote them as

A, B, C , AB, AC , BC , ABC .
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A B C AB AC BC ABC
000 −1 −1 −1 1 1 1 −1
001 −1 −1 1 1 −1 −1 1
010 −1 1 −1 −1 1 −1 1
011 −1 1 1 −1 −1 1 −1
100 1 −1 −1 −1 −1 1 1
101 1 −1 1 −1 1 −1 −1
110 1 1 −1 1 −1 −1 −1
111 1 1 1 1 1 1 1

Observe the coefficients of the A, B, C, contrasts are

cA
ijk =

{
−1 if i = 0
1 if i = 1

, cB
ijk =

{
−1 if j = 0
1 if j = 1

, cC
ijk =

{
−1 if k = 0
1 if k = 1

.

In other words, for a main effect contrast of a factor

▶ cijk = 1 if the factor is at the high level
▶ cijk = −1 if the factor is at the low level
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A B C AB AC BC ABC
000 −1 −1 −1 1 1 1 −1
001 −1 −1 1 1 −1 −1 1
010 −1 1 −1 −1 1 −1 1
011 −1 1 1 −1 −1 1 −1
100 1 −1 −1 −1 −1 1 1
101 1 −1 1 −1 1 −1 −1
110 1 1 −1 1 −1 −1 −1
111 1 1 1 1 1 1 1

For the interaction contrasts, their coefficients cijk are just the
products of the coefficients of the main effect contrasts of
corresponding factors.

For example,

▶ cAB
ijk = cA

ijkcB
ijk

▶ cAC
ijk = cA

ijkcC
ijk

▶ cABC
ijk = cA

ijkcB
ijkcC

ijk
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We just showed the parameter estimates for 23 designs, the
parameter estimates for a general 2k designs are in the form

cijk...yijk.../2k

where

▶ the coefficients cijk... for the main effect of a factor is 1 if the
factor is at the high level and −1 if the factor is at the low
level

▶ the coefficients cijk of an interaction are just the products of
the coefficients of the main effect contrasts of corresponding
factors,

e.g., for a 24 design

▶ cABD
ijkℓ = cA

ijkℓcB
ijkℓcD

ijkℓ

▶ cABCD
ijkℓ = cA

ijkℓcB
ijkℓcC

ijkℓcD
ijkℓ
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Contrasts in a 2k Design Are Orthogonal
We said two contrasts C1 =

∑
i c(1)

i µi and C2 =
∑

i c(2)
i µi are

orthogonal to each other if∑
i
c(1)

i c(2)
i = 0.

Observe the 7 contrasts on
the right in a 23 design are
orthogonal to each other.

A B C AB AC BC ABC
000 −1 −1 −1 1 1 1 −1
001 −1 −1 1 1 −1 −1 1
010 −1 1 −1 −1 1 −1 1
011 −1 1 1 −1 −1 1 −1
100 1 −1 −1 −1 −1 1 1
101 1 −1 1 −1 1 −1 −1
110 1 1 −1 1 −1 −1 −1
111 1 1 1 1 1 1 1

In general, the main effect and interaction contrasts below for a 2k

design are orthogonal to each other.

A, B, C , . . . , AB, AC , . . . , ABC , ABD, . . . , ABCD, . . . .
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Contrasts in a 2k Design Are Uncorrelated w/ Each Other
As yijk ’s are independent with
equal variance σ2, for any two
contrasts U, V of the 7 con-
trasts on the right, their co-
variance is

A B C AB AC BC ABC
000 −1 −1 −1 1 1 1 −1
001 −1 −1 1 1 −1 −1 1
010 −1 1 −1 −1 1 −1 1
011 −1 1 1 −1 −1 1 −1
100 1 −1 −1 −1 −1 1 1
101 1 −1 1 −1 1 −1 −1
110 1 1 −1 1 −1 −1 −1
111 1 1 1 1 1 1 1

Cov(U, V ) = Cov
( ∑

ijk
cU

ijkyijk ,
∑

i ′j′k′ cV
i ′j′k′yi ′j′k′

)
=

∑
ijk

cU
ijkcV

ijk Var(yijk)︸ ︷︷ ︸
=σ2

+
∑
ijk

∑
i ′j′k′

cU
ijkcV

i ′j′k′ Cov(yijk , yi ′j′k′)︸ ︷︷ ︸
=0 by indep.

= σ2 ∑
ijk

cU
ijkcV

ijk︸ ︷︷ ︸
=0

= 0 since U, V are orthogonal

The same argument applies to other 2k designs in general.
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Contrasts in a 2k Design Have an Identical Variance
As yijk ’s are independent with
a constant variance σ2, all of
the 7 contrasts in a 23 design
on the right have an identical
variance 23σ2 since

Var
( ∑

ijk
cijkyijk

)
=

∑
ijk

c2
ijk︸︷︷︸

=1

Var(yijk)︸ ︷︷ ︸
=σ2

=
∑
ijk

σ2 = 23σ2,

A B C AB AC BC ABC
000 −1 −1 −1 1 1 1 −1
001 −1 −1 1 1 −1 −1 1
010 −1 1 −1 −1 1 −1 1
011 −1 1 1 −1 −1 1 −1
100 1 −1 −1 −1 −1 1 1
101 1 −1 1 −1 1 −1 −1
110 1 1 −1 1 −1 −1 −1
111 1 1 1 1 1 1 1

where c2
ijk = 1 since all cijk ’s are 1 or −1.

▶ Parameter estimates for the full model (under the zero-sum
constraints) of a 23 design also have an identical variance σ2/23

since they are just the contrasts above divided by 23

▶ Parameter estimates for the full model of a 2k design also
have an identical variance σ2/2k .
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Properties of Parameter Estimates of a 2k Design

Under the zero-sum constraints, parameter estimates of the full
main-effect-interaction model of a 2k design

1. are unbiased estimates of their corresponding parameters;
2. have an identical variance σ2/2k ;
3. are uncorrelated and hence independent of each other

▶ Recall if normally distributed, zero correlation implies
independence

4. are normally distributed since they are linear combinations of
y ’s, which are independent normal
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Single-Replicate Data (Review)

Recall in L17, we said the MSE of a full k-way model is 0 if there
is only a single replicate.

▶ cannot test the significance of all main effects and interactions
of all order under the full model

▶ can test the significance of the main effects and some
lower-order interactions by pooling higher order interactions
into error and get a non-zero MSE.

▶ However, we are not able to test the significance of terms that
are pooled into errors

Half normal probability plot is a tool that one can examine all main
effects and interactions altogether and identify non-negligible ones.
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How Do Half Normal Probability Plots Work?

▶ Under the zero-sum constraint, recall that parameter
estimates of a full model of a 2k are independent and
normally distributed with constant variance.

▶ The expected value of any of these contrasts is 0 if the
corresponding parameter (main effect or interaction) is 0.

▶ So, estimates corresponding to zero effects would look like a
sample from N(0, σ2/2k), and estimates corresponding to
significant effects looks outliers

▶ Sparsity Assumption: most parameters are 0, only a few are
non-zero

▶ A half-normal probability plot plots the sorted absolute values
of the estimates on the vertical axis against the sorted
expected scores from a half-normal distribution.
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Example 7.5.1 Drill Advance Experiment (p.220 Dean & Voss)
A 2 × 2 × 2 × 2 experiment to study the effects of 4 factors on the
rate of advance of a small stone drill.
▶ A: load on the drill
▶ B: flow rate through the drill
▶ C: speed of rotation
▶ D: type of mud used in drilling

Each factor was observed at two levels, coded 1 and 2.
Response = log10(Advance)
drill = read.table(

"http://www.stat.uchicago.edu/~yibi/s222/drill.txt", h=T)
drill$A = as.factor(drill$A)
drill$B = as.factor(drill$B)
drill$C = as.factor(drill$C)
drill$D = as.factor(drill$D)
contrasts(drill$A) = contr.sum(2)
contrasts(drill$B) = contr.sum(2)
contrasts(drill$C) = contr.sum(2)
contrasts(drill$D) = contr.sum(2)
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Fitting a full 4-way model, the SE’s of all coefficients are NaN (Not
a Number) since SSE = 0

summary(lm(log10(Advance) ~ A*B*C*D, data=drill))$coef
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.693885 NaN NaN NaN
A1 -0.028227 NaN NaN NaN
B1 -0.125963 NaN NaN NaN
C1 -0.250686 NaN NaN NaN
D1 -0.070908 NaN NaN NaN
A1:B1 -0.007462 NaN NaN NaN
A1:C1 0.002248 NaN NaN NaN
B1:C1 -0.010902 NaN NaN NaN
A1:D1 0.014527 NaN NaN NaN
B1:D1 -0.003244 NaN NaN NaN
C1:D1 0.021311 NaN NaN NaN
A1:B1:C1 -0.002253 NaN NaN NaN
A1:B1:D1 -0.011339 NaN NaN NaN
A1:C1:D1 -0.011558 NaN NaN NaN
B1:C1:D1 0.007494 NaN NaN NaN
A1:B1:C1:D1 0.008385 NaN NaN NaN
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Pooling 4-way interaction into error, we can get a non-zero SSE
and calculate the SE for each remaining parameter.
Observe parameters under the zero-sum constraints all have the
same SE since they all have an identical variance.
summary(lm(log10(Advance) ~ (A+B+C+D)ˆ3, data=drill))$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.693885 0.008385 82.7495 0.007693
A1 -0.028227 0.008385 -3.3662 0.183833
B1 -0.125963 0.008385 -15.0218 0.042317
C1 -0.250686 0.008385 -29.8957 0.021287
D1 -0.070908 0.008385 -8.4562 0.074937
A1:B1 -0.007462 0.008385 -0.8899 0.537056
A1:C1 0.002248 0.008385 0.2681 0.833273
A1:D1 0.014527 0.008385 1.7325 0.333268
B1:C1 -0.010902 0.008385 -1.3001 0.417406
B1:D1 -0.003244 0.008385 -0.3868 0.765012
C1:D1 0.021311 0.008385 2.5415 0.238649
A1:B1:C1 -0.002253 0.008385 -0.2686 0.832926
A1:B1:D1 -0.011339 0.008385 -1.3522 0.405380
A1:C1:D1 -0.011558 0.008385 -1.3784 0.399565
B1:C1:D1 0.007494 0.008385 0.8937 0.535685
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Half Normal Probability Plot in R (using daewr)
1. Fit the model and get the parameter estimates under the

zero-sum constraint.
2. Exclude the intercept since we don’t expect it to be zero
3. Make half-normal probability plot based on the remaining

estimates using the halfnom() function in the daewr library
(“daewr” = the book Design and Analysis of Experiments with R).

library(daewr)
model1 = lm(log10(Advance) ~ A*B*C*D, data=drill)
halfnorm(model1$coef[-1])
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From the half-normal probability
plot, we see estimates B, C, D
main effects are outliers compared
to other negligible coefficients,
consistent with the ANOVA table
below obtained by pooling all in-
teractions into errors. 0.0 0.5 1.0 1.5 2.0
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anova(lm(log10(Advance) ~ A+B+C+D, data=drill))
Analysis of Variance Table

Response: log10(Advance)
Df Sum Sq Mean Sq F value Pr(>F)

A 1 0.013 0.013 7.02 0.023
B 1 0.254 0.254 139.74 1.4e-07
C 1 1.005 1.005 553.46 9.3e-11
D 1 0.080 0.080 44.28 3.6e-05
Residuals 11 0.020 0.002
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Half Normal Plot Using the faraway Library
If having trouble installing the daewr library, one can use the
halfnorm plot in the faraway library1 instead, which, by default,
labels the effects by 1, 2, 3,. . . , rather than A, B, AB,. . . , and the
straight line is NOT included.
library(faraway)
par(mai=c(.6,.6,.05,.05),mgp=c(2,.5,0))
halfnorm(model1$coef[-1])
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1"faraway" = author of the book Linear Models with R. This solution is
suggested by Antonio Fernandes. Thanks, Antonio!
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Half Normal Plot Using the faraway Library (2)
Nonetheless, we can change the effect labels by adding labs=
names(model1$coef[-1]) within halfnorm() and add the
straight line using qqline() ourselves.
library(faraway)
par(mai=c(.6,.6,.05,.05),mgp=c(2,.5,0))
halfnorm(model1$coef[-1], labs= names(model1$coef[-1]),

ylab= "abs(Effects)")
qqline(c(-abs(model1$coef[-1]),abs(model1$coef[-1])))
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Pros and Cons of Half-Normal Probability Plot

Pros:

▶ Can check all main effects and interactions of all orders all at
once

Cons:

▶ no p-values are provided. Identification of “significant” effects
can be subjective

▶ doesn’t work well if the sparsity assumption is not met(most
effects are zero, only a few are non-zero) as we need a
sufficient number of null effects to estimate the unknown
variance and identify the outliers
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