STAT 222 Lecture 23
 Single Replicate Two-Level Factorial Designs and Half Normal Probability Plots

Yibi Huang

Two-Level Factorial Designs (2k Designs)

- Two-level factorial designs (2^{k} designs) are factorial designs in which each factor is investigated at only two levels.

Why using 2^{k} designs?

- The early stages of a study usually involve the investigation of a large number of potential factors to discover the "vital few" factors.
- The \# of observations required by a full factorial design grows exponentially with the number of factors. E.g., it takes at least $2^{k}=2^{12}=4096$ observations to investigate $k=12$ factors. If any of the 12 factors has 3 or more levels, it takes at least $3 \times 2^{11}=6144$ observations for just a single replicate
- Hence, we can only afford 2 levels for each factor, and just a single replicate for each factor combination
- Two level factorial experiments are often used during these stages to quickly filter out unwanted effects and identify the important ones

Notation of Two-Level Factorial Designs

As all the factors have 2 levels only, their levels are usually referred to as (low, high) and coded as

$$
0=\text { low }, \quad 1=\text { high } .
$$

E.g., the observations $y_{i j k}$ of a 2^{3} design are hence denoted as
$y_{000}, y_{001}, y_{010}, y_{011}, y_{100}, y_{101}, y_{110}, y_{111}$.

Parameter Estimates of a 2^{k} Design

Parameter estimates for the full 3-way factorial model

$$
y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\alpha \beta_{i j}+\beta \gamma_{j k}+\alpha \gamma_{i j}+\alpha \beta \gamma_{i j k}+\varepsilon_{i j k},
$$

under the zero-sum constraints can be shown to be of the form $\sum_{i j k} c_{i j k} y_{i j k} / 2^{k}$ where the coefficients $c_{i j k}$ are as shown in the table below.

	$\widehat{\mu}$	$\widehat{\alpha}_{1}$	$\widehat{\beta}_{1}$	$\widehat{\gamma}_{1}$	$\widehat{\alpha \beta}_{11}$	$\widehat{\alpha \gamma}_{11}$	$\widehat{\beta \gamma}_{11}$	$\widehat{\alpha \beta \gamma}_{111}$
	(1)	A	B	C	$A B$	$A C$	$B C$	$A B C$
000	1	-1	-1	-1	1	1	1	-1
001	1	-1	-1	1	1	-1	-1	1
010	1	-1	1	-1	-1	1	-1	1
011	1	-1	1	1	-1	-1	1	-1
100	1	1	-1	-1	-1	-1	1	1
101	1	1	-1	1	-1	1	-1	-1
110	1	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1	1

	$\widehat{\mu}$	$\widehat{\alpha}_{1}$	$\widehat{\beta}_{1}$	$\widehat{\gamma}_{1}$	$\widehat{\alpha \beta}_{11}$	$\widehat{\alpha \gamma}_{11}$	$\widehat{\beta \gamma}_{11}$	$\widehat{\alpha \beta} \gamma_{111}$
	(1)	A	B	C	$A B$	$A C$	$B C$	$A B C$
000	1	-1	-1	-1	1	1	1	-1
001	1	-1	-1	1	1	-1	-1	1
010	1	-1	1	-1	-1	1	-1	1
011	1	-1	1	1	-1	-1	1	-1
100	1	1	-1	-1	-1	-1	1	1
101	1	1	-1	1	-1	1	-1	-1
110	1	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1	1

For example,

$$
\begin{aligned}
\widehat{\mu} & =\left(y_{000}+y_{001}+y_{010}+y_{011}+y_{100}+y_{101}+y_{110}+y_{111}\right) / 8 \\
\widehat{\alpha}_{1} & =\left(-y_{000}-y_{001}-y_{010}-y_{011}+y_{100}+y_{101}+y_{110}+y_{111}\right) / 8 \\
\widehat{\alpha \beta} & =\left(y_{000}+y_{001}-y_{010}-y_{011}-y_{100}-y_{101}+y_{110}+y_{111}\right) / 8
\end{aligned}
$$ and so on.

	$\widehat{\mu}$	$\widehat{\alpha}_{1}$	$\widehat{\beta}_{1}$	$\widehat{\gamma}_{1}$	$\widehat{\alpha \beta}_{11}$	$\widehat{\alpha \gamma}$	$\widehat{\beta \gamma}_{11}$	$\widehat{\alpha \beta \gamma}_{111}$
	(1)	A	B	C	$A B$	$A C$	$B C$	$A B C$
000	1	-1	-1	-1	1	1	1	-1
001	1	-1	-1	1	1	-1	-1	1
010	1	-1	1	-1	-1	1	-1	1
011	1	-1	1	1	-1	-1	1	-1
100	1	1	-1	-1	-1	-1	1	1
101	1	1	-1	1	-1	1	-1	-1
110	1	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1	1

- Note only 1 parameter for each main effect or interaction. Parameter at the levels can be determined using the zero-sum constraints
- Except for the grand mean, all other estimates are contrasts as $\sum_{i j k} c_{i j k}=0$
- Hence, we often just refer to the estimates as contrasts and denote them as

$$
A, B, C, A B, A C, B C, A B C
$$

	A	B	C	$A B$	$A C$	$B C$	$A B C$
000	-1	-1	-1	1	1	1	-1
001	-1	-1	1	1	-1	-1	1
010	-1	1	-1	-1	1	-1	1
011	-1	1	1	-1	-1	1	-1
100	1	-1	-1	-1	-1	1	1
101	1	-1	1	-1	1	-1	-1
110	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1

Observe the coefficients of the $\mathrm{A}, \mathrm{B}, \mathrm{C}$, contrasts are

$$
c_{i j k}^{A}=\left\{\begin{array}{ll}
-1 & \text { if } i=0 \\
1 & \text { if } i=1
\end{array}, \quad c_{i j k}^{B}=\left\{\begin{array}{ll}
-1 & \text { if } j=0 \\
1 & \text { if } j=1
\end{array}, \quad c_{i j k}^{C}=\left\{\begin{array}{ll}
-1 & \text { if } k=0 \\
1 & \text { if } k=1
\end{array} .\right.\right.\right.
$$

In other words, for a main effect contrast of a factor

- $c_{i j k}=1$ if the factor is at the high level
- $c_{i j k}=-1$ if the factor is at the low level

	A	B	C	$A B$	$A C$	$B C$	$A B C$
000	-1	-1	-1	1	1	1	-1
001	-1	-1	1	1	-1	-1	1
010	-1	1	-1	-1	1	-1	1
011	-1	1	1	-1	-1	1	-1
100	1	-1	-1	-1	-1	1	1
101	1	-1	1	-1	1	-1	-1
110	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1

For the interaction contrasts, their coefficients $c_{i j k}$ are just the products of the coefficients of the main effect contrasts of corresponding factors.

For example,

- $c_{i j k}^{A B}=c_{i j k}^{A} c_{i j k}^{B}$
- $c_{i j k}^{A C}=c_{i j k}^{A} c_{i j k}^{C}$
- $c_{i j k}^{A B C}=c_{i j k}^{A} c_{i j k}^{B} c_{i j k}^{C}$

	A	B	C	$A B$	$A C$	$B C$	$A B C$
000	-1	-1	-1	1	1	1	-1
001	-1	-1	1	1	-1	-1	1
010	-1	1	-1	-1	1	-1	1
011	-1	1	1	-1	-1	1	-1
100	1	-1	-1	-1	-1	1	1
101	1	-1	1	-1	1	-1	-1
110	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1

For the interaction contrasts, their coefficients $c_{i j k}$ are just the products of the coefficients of the main effect contrasts of corresponding factors.

For example,

- $c_{i j k}^{A B}=c_{i j k}^{A} c_{i j k}^{B}$
- $c_{i j k}^{A C}=c_{i j k}^{A} c_{i j k}^{C}$
- $c_{i j k}^{A B C}=c_{i j k}^{A} c_{i j k}^{B} c_{i j k}^{C}$

	A	B	C	$A B$	$A C$	$B C$	$A B C$
000	-1	-1	-1	1	1	1	-1
001	-1	-1	1	1	-1	-1	1
010	-1	1	-1	-1	1	-1	1
011	-1	1	1	-1	-1	1	-1
100	1	-1	-1	-1	-1	1	1
101	1	-1	1	-1	1	-1	-1
110	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1

For the interaction contrasts, their coefficients $c_{i j k}$ are just the products of the coefficients of the main effect contrasts of corresponding factors.

For example,

- $c_{i j k}^{A B}=c_{i j k}^{A} c_{i j k}^{B}$
- $c_{i j k}^{A C}=c_{i j k}^{A} c_{i j k}^{C}$
- $c_{i j k}^{A B C}=c_{i j k}^{A} c_{i j k}^{B} c_{i j k}^{C}$

We just showed the parameter estimates for 2^{3} designs, the parameter estimates for a general 2^{k} designs are in the form

$$
c_{i j k \ldots} y_{i j k \ldots} .2^{k}
$$

where

- the coefficients $c_{i j k \ldots}$... for the main effect of a factor is 1 if the factor is at the high level and -1 if the factor is at the low level
- the coefficients $c_{i j k}$ of an interaction are just the products of the coefficients of the main effect contrasts of corresponding factors,
e.g., for a 2^{4} design
- $c_{i j k \ell}^{A B D}=c_{i j k \ell}^{A} c_{i j k \ell}^{B} c_{i j k \ell}^{D}$
$-c_{i j k \ell}^{A B C D}=c_{i j k \ell}^{A} c_{i j k \ell}^{B} c_{i j k \ell}^{C} c_{i j k \ell}^{D}$

Contrasts in a 2^{k} Design Are Orthogonal

We said two contrasts $C_{1}=\sum_{i} c_{i}^{(1)} \mu_{i}$ and $C_{2}=\sum_{i} c_{i}^{(2)} \mu_{i}$ are orthogonal to each other if

$$
\sum_{i} c_{i}^{(1)} c_{i}^{(2)}=0
$$

Observe the 7 contrasts on the right in a 2^{3} design are orthogonal to each other.

	A	B	C	$A B$	$A C$	$B C$	$A B C$
000	-1	-1	-1	1	1	1	-1
001	-1	-1	1	1	-1	-1	1
010	-1	1	-1	-1	1	-1	1
011	-1	1	1	-1	-1	1	-1
100	1	-1	-1	-1	-1	1	1
101	1	-1	1	-1	1	-1	-1
110	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1

In general, the main effect and interaction contrasts below for a 2^{k} design are orthogonal to each other.

$$
A, B, C, \ldots, A B, A C, \ldots, A B C, A B D, \ldots, A B C D, \ldots
$$

Contrasts in a 2^{k} Design Are Uncorrelated w/ Each Other

As $y_{i j k}$'s are independent with equal variance σ^{2}, for any two contrasts U, V of the 7 contrasts on the right, their covariance is

	A	B	C	$A B$	$A C$	$B C$	$A B C$
000	-1	-1	-1	1	1	1	-1
001	-1	-1	1	1	-1	-1	1
010	-1	1	-1	-1	1	-1	1
011	-1	1	1	-1	-1	1	-1
100	1	-1	-1	-1	-1	1	1
101	1	-1	1	-1	1	-1	-1
110	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1

$$
\begin{aligned}
\operatorname{Cov}(U, V) & =\operatorname{Cov}\left(\sum_{i j k} c_{i j k}^{U} y_{i j k}, \sum_{i^{\prime} j^{\prime} k^{\prime}} c_{i^{\prime} j^{\prime} k^{\prime}}^{V} y_{i^{\prime} j^{\prime} k^{\prime}}\right) \\
& =\sum_{i j k} c_{i j k}^{U} c_{i j k}^{V} \underbrace{\operatorname{Var}\left(y_{i j k}\right)}_{=\sigma^{2}}+\sum_{i j k} \sum_{i^{\prime} j^{\prime} k^{\prime}} c_{i j k}^{U} c_{i^{\prime} j^{\prime} k^{\prime}}^{V} \underbrace{\operatorname{Cov}\left(y_{i j k}, y_{i^{\prime} j^{\prime} k^{\prime}}\right)}_{=0 \text { by indep. }} \\
& =\sigma^{2} \underbrace{\sum_{i j k} c_{i j k}^{U} c_{i j k}^{V}}_{=0}=0 \quad \text { since } U, V \text { are orthogonal }
\end{aligned}
$$

The same argument applies to other 2^{k} designs in general.

Contrasts in a 2^{k} Design Have an Identical Variance
As $y_{i j k}$'s are independent with a constant variance σ^{2}, all of the 7 contrasts in a 2^{3} design on the right have an identical variance $2^{3} \sigma^{2}$ since

$$
\operatorname{Var}\left(\sum_{i j k} c_{i j k} y_{i j k}\right)
$$

	A	B	C	$A B$	$A C$	$B C$	$A B C$
000	-1	-1	-1	1	1	1	-1
001	-1	-1	1	1	-1	-1	1
010	-1	1	-1	-1	1	-1	1
011	-1	1	1	-1	-1	1	-1
100	1	-1	-1	-1	-1	1	1
101	1	-1	1	-1	1	-1	-1
110	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1

$=\sum_{i j k} \underbrace{c_{i j k}^{2}}_{=1} \underbrace{\operatorname{Var}\left(y_{i j k}\right)}_{=\sigma^{2}}=\sum_{i j k} \sigma^{2}=2^{3} \sigma^{2}$,
where $c_{i j k}^{2}=1$ since all $c_{i j k}$'s are 1 or -1 .

Contrasts in a 2^{k} Design Have an Identical Variance

 As $y_{i j k}$'s are independent with a constant variance σ^{2}, all of the 7 contrasts in a 2^{3} design on the right have an identical variance $2^{3} \sigma^{2}$ since$$
\operatorname{Var}\left(\sum_{i j k} c_{i j k} y_{i j k}\right)
$$

	A	B	C	$A B$	$A C$	$B C$	$A B C$
000	-1	-1	-1	1	1	1	-1
001	-1	-1	1	1	-1	-1	1
010	-1	1	-1	-1	1	-1	1
011	-1	1	1	-1	-1	1	-1
100	1	-1	-1	-1	-1	1	1
101	1	-1	1	-1	1	-1	-1
110	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1

$=\sum_{i j k} \underbrace{c_{i j k}^{2}}_{=1} \underbrace{\operatorname{Var}\left(y_{i j k}\right)}_{=\sigma^{2}}=\sum_{i j k} \sigma^{2}=2^{3} \sigma^{2}$,
where $c_{i j k}^{2}=1$ since all $c_{i j k}$'s are 1 or -1 .

- Parameter estimates for the full model (under the zero-sum constraints) of a 2^{3} design also have an identical variance $\sigma^{2} / 2^{3}$ since they are just the contrasts above divided by 2^{3}

Contrasts in a 2^{k} Design Have an Identical Variance

 As $y_{i j k}$'s are independent with a constant variance σ^{2}, all of the 7 contrasts in a 2^{3} design on the right have an identical variance $2^{3} \sigma^{2}$ since$$
\operatorname{Var}\left(\sum_{i j k} c_{i j k} y_{i j k}\right)
$$

	A	B	C	$A B$	$A C$	$B C$	$A B C$
000	-1	-1	-1	1	1	1	-1
001	-1	-1	1	1	-1	-1	1
010	-1	1	-1	-1	1	-1	1
011	-1	1	1	-1	-1	1	-1
100	1	-1	-1	-1	-1	1	1
101	1	-1	1	-1	1	-1	-1
110	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1

$=\sum_{i j k} \underbrace{c_{i j k}^{2}}_{=1} \underbrace{\operatorname{Var}\left(y_{i j k}\right)}_{=\sigma^{2}}=\sum_{i j k} \sigma^{2}=2^{3} \sigma^{2}$,
where $c_{i j k}^{2}=1$ since all $c_{i j k}$'s are 1 or -1 .

- Parameter estimates for the full model (under the zero-sum constraints) of a 2^{3} design also have an identical variance $\sigma^{2} / 2^{3}$ since they are just the contrasts above divided by 2^{3}
- Parameter estimates for the full model of a 2^{k} design also have an identical variance $\sigma^{2} / 2^{k}$.

Properties of Parameter Estimates of a 2^{k} Design

Under the zero-sum constraints, parameter estimates of the full main-effect-interaction model of a 2^{k} design

1. are unbiased estimates of their corresponding parameters;
2. have an identical variance $\sigma^{2} / 2^{k}$;
3. are uncorrelated and hence independent of each other

- Recall if normally distributed, zero correlation implies independence

4. are normally distributed since they are linear combinations of y 's, which are independent normal

Single-Replicate Data (Review)

Recall in L17, we said the MSE of a full k-way model is 0 if there is only a single replicate.

- cannot test the significance of all main effects and interactions of all order under the full model
- can test the significance of the main effects and some lower-order interactions by pooling higher order interactions into error and get a non-zero MSE.
- However, we are not able to test the significance of terms that are pooled into errors

Half normal probability plot is a tool that one can examine all main effects and interactions altogether and identify non-negligible ones.

How Do Half Normal Probability Plots Work?

- Under the zero-sum constraint, recall that parameter estimates of a full model of a 2^{k} are independent and normally distributed with constant variance.
- The expected value of any of these contrasts is 0 if the corresponding parameter (main effect or interaction) is 0 .
- So, estimates corresponding to zero effects would look like a sample from $N\left(0, \sigma^{2} / 2^{k}\right)$, and estimates corresponding to significant effects looks outliers
- Sparsity Assumption: most parameters are 0, only a few are non-zero
- A half-normal probability plot plots the sorted absolute values of the estimates on the vertical axis against the sorted expected scores from a half-normal distribution.

Example 7.5.1 Drill Advance Experiment (p. 220 Dean \& Voss)

A $2 \times 2 \times 2 \times 2$ experiment to study the effects of 4 factors on the rate of advance of a small stone drill.

- A: load on the drill
- B: flow rate through the drill
- C: speed of rotation
- D: type of mud used in drilling

Each factor was observed at two levels, coded 1 and 2.
Response $=\log _{10}($ Advance $)$
drill $=$ read.table(
"http://www.stat.uchicago.edu/~yibi/s222/drill.txt", h=T)
drill\$A = as.factor(drill\$A)
drill\$B = as.factor(drill\$B)
drill\$C = as.factor(drill\$C)
drill\$D = as.factor(drill\$D)
contrasts(drill\$A) = contr.sum(2)
contrasts(drill\$B) = contr.sum(2)
contrasts(drill\$C) = contr.sum(2)
contrasts(drill\$D) = contr.sum(2)

Fitting a full 4-way model, the SE's of all coefficients are NaN (Not a Number) since SSE $=0$

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	0.693885	NaN	NaN	NaN
A1	-0.028227	NaN	NaN	NaN
B1	-0.125963	NaN	NaN	NaN
C1	-0.250686	NaN	NaN	NaN
D1	-0.070908	NaN	NaN	NaN
A1: B1	-0.007462	NaN	NaN	NaN
A1: C1	0.002248	NaN	NaN	NaN
B1:C1	-0.010902	NaN	NaN	NaN
A1: D1	0.014527	NaN	NaN	NaN
B1: D1	-0.003244	NaN	NaN	NaN
C1: D1	0.021311	NaN	NaN	NaN
A1:B1:C1	-0.002253	NaN	NaN	NaN
A1:B1:D1	-0.011339	NaN	NaN	NaN
A1:C1:D1	-0.011558	NaN	NaN	NaN
B1:C1:D1	0.007494	NaN	NaN	NaN
A1:B1:C1:D1	0.008385	NaN	NaN	NaN

Pooling 4-way interaction into error, we can get a non-zero SSE and calculate the SE for each remaining parameter.

Observe parameters under the zero-sum constraints all have the same $S E$ since they all have an identical variance.

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	0.693885	0.008385	82.7495	0.007693
A1	-0.028227	0.008385	-3.3662	0.183833
B1	-0.125963	0.008385	-15.0218	0.042317
C1	-0.250686	0.008385	-29.8957	0.021287
D1	-0.070908	0.008385	-8.4562	0.074937
A1: B1	-0.007462	0.008385	-0.8899	0.537056
A1: C1	0.002248	0.008385	0.2681	0.833273
A1: D1	0.014527	0.008385	1.7325	0.333268
B1:C1	-0.010902	0.008385	-1.3001	0.417406
B1:D1	-0.003244	0.008385	-0.3868	0.765012
C1:D1	0.021311	0.008385	2.5415	0.238649
A1: B1:C1	-0.002253	0.008385	-0.2686	0.832926
A1:B1:D1	-0.011339	0.008385	-1.3522	0.405380
A1:C1:D1	-0.011558	0.008385	-1.3784	0.399565
B1:C1:D1	0.007494	0.008385	0.8937	0.535685

Half Normal Probability Plot in R (using daewr)

1. Fit the model and get the parameter estimates under the zero-sum constraint.
2. Exclude the intercept since we don't expect it to be zero
3. Make half-normal probability plot based on the remaining estimates using the halfnom() function in the daewr library ("daewr" = the book Design and Analysis of Experiments with R).
```
library(daewr)
model1 = lm(log10(Advance) ~ A*B*C*D, data=drill)
halfnorm(model1$coef [-1])
```


Half Normal scores

From the half-normal probability plot, we see estimates B, C, D main effects are outliers compared to other negligible coefficients, consistent with the ANOVA table below obtained by pooling all interactions into errors.


```
zscore= 0.04179 0.1257 0.2104 0.2967 0.3853 0.477 0.573 0.6745 0.7835 0
anova(lm(log10(Advance) ~ A+B+C+D, data=drill))
Analysis of Variance Table
Response: log10(Advance)
    Df Sum Sq Mean Sq F value Pr(>F)
A 1 0.013 0.013 7.02 0.023
B 1 0.254 0.254 139.74 1.4e-07
C 1 1.005 1.005 553.46 9.3e-11
D 1 0.080 0.080 44.28 3.6e-05
Residuals 11 0.020 0.002
```


Half Normal Plot Using the faraway Library

If having trouble installing the daewr library, one can use the halfnorm plot in the faraway library ${ }^{1}$ instead, which, by default, labels the effects by $1,2,3, \ldots$, rather than $A, B, A B, \ldots$, and the straight line is NOT included.
library (faraway)
$\operatorname{par}($ mai $=c(.6, .6, .05, .05), m g p=c(2, .5,0))$
halfnorm(model1\$coef [-1])

[^0]
Half Normal Plot Using the faraway Library (2)

Nonetheless, we can change the effect labels by adding labs= names (model1\$coef [-1]) within halfnorm () and add the straight line using qqline() ourselves.
library (faraway)
$\operatorname{par}($ mai $=c(.6, .6, .05, .05), m g p=c(2, .5,0))$
halfnorm(model1\$coef[-1], labs= names(model1\$coef [-1]),
ylab= "abs(Effects)")
qqline(c(-abs(model1\$coef[-1]), abs(model1\$coef[-1])))

Pros and Cons of Half-Normal Probability Plot

Pros:

- Can check all main effects and interactions of all orders all at once

Cons:

- no p-values are provided. Identification of "significant" effects can be subjective
- doesn't work well if the sparsity assumption is not met(most effects are zero, only a few are non-zero) as we need a sufficient number of null effects to estimate the unknown variance and identify the outliers

[^0]: ${ }^{1}$ "faraway" $=$ author of the book Linear Models with R. This solution is suggested by Antonio Fernandes. Thanks, Antonio!

