STAT 222 Lecture 23 Single Replicate Two-Level Factorial Designs and Half Normal Probability Plots

Yibi Huang

Two-Level Factorial Designs (2^k Designs)

Two-level factorial designs (2^k designs) are factorial designs in which each factor is investigated at only two levels.

Why using 2^k designs?

- The early stages of a study usually involve the investigation of a large number of potential factors to discover the "vital few" factors.
- The # of observations required by a full factorial design grows exponentially with the number of factors. E.g., it takes at least 2^k = 2¹² = 4096 observations to investigate k = 12 factors. If any of the 12 factors has 3 or more levels, it takes at least 3 × 2¹¹ = 6144 observations for just a single replicate
- Hence, we can only afford 2 levels for each factor, and just a single replicate for each factor combination
- Two level factorial experiments are often used during these stages to quickly filter out unwanted effects and identify the important ones

As all the factors have 2 levels only, their levels are usually referred to as (low, high) and coded as

 $0 = \mathsf{low}, \quad 1 = \mathsf{high}.$

E.g., the observations y_{ijk} of a 2^3 design are hence denoted as

 $y_{000}, y_{001}, y_{010}, y_{011}, y_{100}, y_{101}, y_{110}, y_{111}.$

Parameter Estimates of a 2^k Design

Parameter estimates for the full 3-way factorial model

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \alpha\beta_{ij} + \beta\gamma_{jk} + \alpha\gamma_{ij} + \alpha\beta\gamma_{ijk} + \varepsilon_{ijk},$$

under the zero-sum constraints can be shown to be of the form $\sum_{ijk} c_{ijk} y_{ijk}/2^k$ where the coefficients c_{ijk} are as shown in the table below.

	$\widehat{\mu}$	$\widehat{\alpha}_1$	$\widehat{\beta}_{1}$	$\widehat{\gamma}_1$	$\widehat{\alpha\beta}_{11}$	$\widehat{\alpha}\widehat{\gamma}_{11}$	$\widehat{\beta\gamma}_{11}$	$\widehat{\alpha\beta\gamma}_{111}$
	(1)	Α	В	С	AB	AC	BC	ABC
000	1	$^{-1}$	-1	-1	1	1	1	-1
001	1	-1	-1	1	1	-1	-1	1
010	1	-1	1	-1	-1	1	-1	1
011	1	-1	1	1	-1	-1	1	-1
100	1	1	-1	-1	-1	-1	1	1
101	1	1	-1	1	-1	1	-1	-1
110	1	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1	1

	$\widehat{\mu}$	$\widehat{\alpha}_{1}$	$\widehat{\beta}_1$	$\widehat{\gamma}_1$	$\widehat{\alpha\beta}_{11}$	$\widehat{\alpha \gamma}_{11}$	$\widehat{\beta\gamma}_{11}$	$\widehat{lphaeta\gamma}_{111}$
	(1)	Α	В	С	AB	AC	BC	ABC
000	1	-1	-1	-1	1	1	1	-1
001	1	-1	-1	1	1	-1	-1	1
010	1	-1	1	-1	-1	1	-1	1
011	1	-1	1	1	-1	-1	1	-1
100	1	1	-1	-1	-1	-1	1	1
101	1	1	-1	1	-1	1	-1	-1
110	1	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1	1

For example,

 $\widehat{\mu} = (y_{000} + y_{001} + y_{010} + y_{011} + y_{100} + y_{101} + y_{110} + y_{111})/8$ $\widehat{\alpha}_1 = (-y_{000} - y_{001} - y_{010} - y_{011} + y_{100} + y_{101} + y_{110} + y_{111})/8$ $\widehat{\alpha}_{\beta_{11}} = (y_{000} + y_{001} - y_{010} - y_{011} - y_{100} - y_{101} + y_{110} + y_{111})/8$

and so on.

	$\widehat{\mu}$	$\widehat{\alpha}_1$	$\widehat{\beta}_1$	$\widehat{\gamma}_1$	$\widehat{\alpha\beta}_{11}$	$\widehat{\alpha}\widehat{\gamma}_{11}$	$\widehat{\beta\gamma}_{11}$	$\widehat{\alpha\beta\gamma_{111}}$
	(1)	A	В	С	AB	AC	BC	ABC
000	1	-1	-1	-1	1	1	1	-1
001	1	-1	-1	1	1	-1	-1	1
010	1	-1	1	-1	-1	1	-1	1
011	1	-1	1	1	-1	-1	1	$^{-1}$
100	1	1	-1	-1	-1	-1	1	1
101	1	1	-1	1	-1	1	-1	$^{-1}$
110	1	1	1	-1	1	-1	-1	$^{-1}$
111	1	1	1	1	1	1	1	1

- Note only 1 parameter for each main effect or interaction. Parameter at the levels can be determined using the zero-sum constraints
- ► Except for the grand mean, all other estimates are *contrasts* as ∑_{ijk} c_{ijk} = 0

Hence, we often just refer to the estimates as contrasts and denote them as

Observe the coefficients of the A, B, C, contrasts are

$$c_{ijk}^{A} = \begin{cases} -1 & \text{if } i = 0\\ 1 & \text{if } i = 1 \end{cases}, \quad c_{ijk}^{B} = \begin{cases} -1 & \text{if } j = 0\\ 1 & \text{if } j = 1 \end{cases}, \quad c_{ijk}^{C} = \begin{cases} -1 & \text{if } k = 0\\ 1 & \text{if } k = 1 \end{cases}$$

In other words, for a main effect contrast of a factor

	A	В	С	AB	AC	ВС	ABC
000	-1	-1	-1	1	1	1	-1
001	-1	-1	1	1	-1	-1	1
010	-1	1	$^{-1}$	-1	1	-1	1
011	-1	1	1	-1	-1	1	-1
100	1	-1	-1	-1	-1	1	1
101	1	-1	1	-1	1	-1	-1
110	1	1	$^{-1}$	1	-1	-1	-1
111	1	1	1	1	1	1	1

For the interaction contrasts, their coefficients c_{ijk} are just the products of the coefficients of the main effect contrasts of corresponding factors.

For example,

$$c^{AB}_{ijk} = c^A_{ijk} c^B_{ijk} c^{AC}_{ijk} = c^A_{ijk} c^C_{ijk} c^{ABC}_{ijk} = c^A_{ijk} c^B_{ijk} c^C_{ijk}$$

	A	В	С	AB	AC	ВС	ABC
000	-1	-1	-1	1	1	1	-1
001	-1	-1	1	1	-1	-1	1
010	-1	1	-1	-1	1	-1	1
011	-1	1	1	-1	-1	1	-1
100	1	-1	-1	-1	-1	1	1
101	1	-1	1	-1	1	-1	-1
110	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1

For the interaction contrasts, their coefficients c_{ijk} are just the products of the coefficients of the main effect contrasts of corresponding factors.

For example,

$$c^{AB}_{ijk} = c^A_{ijk} c^B_{ijk} c^{AC}_{ijk} = c^A_{ijk} c^C_{ijk} c^{ABC}_{ijk} = c^A_{ijk} c^B_{ijk} c^C_{ijk}$$

	A	В	С	AB	AC	ВС	ABC
000	-1	-1	-1	1	1	1	-1
001	-1	-1	1	1	-1	-1	1
010	-1	1	-1	-1	1	-1	1
011	-1	1	1	-1	-1	1	-1
100	1	-1	-1	-1	-1	1	1
101	1	-1	1	-1	1	-1	-1
110	1	1	-1	1	-1	-1	-1
111	1	1	1	1	1	1	1

For the interaction contrasts, their coefficients c_{ijk} are just the products of the coefficients of the main effect contrasts of corresponding factors.

For example,

$$c^{AB}_{ijk} = c^A_{ijk} c^B_{ijk} c^{AC}_{ijk} = c^A_{ijk} c^C_{ijk} c^{ABC}_{ijk} = c^A_{ijk} c^B_{ijk} c^C_{ijk}$$

We just showed the parameter estimates for 2^3 designs, the parameter estimates for a general 2^k designs are in the form

where

- ► the coefficients c_{ijk...} for the main effect of a factor is 1 if the factor is at the high level and -1 if the factor is at the low level
- the coefficients c_{ijk} of an interaction are just the products of the coefficients of the main effect contrasts of corresponding factors,

e.g., for a 2^4 design

$$c^{ABD}_{ijk\ell} = c^A_{ijk\ell} c^B_{ijk\ell} c^D_{ijk\ell} c^{ABCD}_{ijk\ell} = c^A_{ijk\ell} c^B_{ijk\ell} c^C_{ijk\ell} c^D_{ijk\ell}$$

Contrasts in a 2^k Design Are Orthogonal

We said two contrasts $C_1 = \sum_i c_i^{(1)} \mu_i$ and $C_2 = \sum_i c_i^{(2)} \mu_i$ are *orthogonal* to each other if

$$\sum_{i} c_i^{(1)} c_i^{(2)} = 0.$$

Observe the 7 contrasts on the right in a 2^3 design are *orthogonal* to each other.

	A	В	С	AB	AC	ВС	ABC
000	-1	-1	-1	1	1	1	-1
001	$\left -1\right $	$^{-1}$	1	1	-1	-1	-1 1
010	$\left -1\right $	1	-1	-1	1	-1	1
011	$\left -1\right $	1	1	-1	-1	1	$1 \\ -1$
100	1	$^{-1}$	-1	-1	-1	1	1
							-1
110	1	1	$^{-1}$	1	-1	$^{-1}$	-1
111	1	1	1	1	1	1	1

In general, the main effect and interaction contrasts below for a 2^k design are orthogonal to each other.

 $A, B, C, \ldots, AB, AC, \ldots, ABC, ABD, \ldots, ABCD, \ldots$

Contrasts in a 2^k Design Are Uncorrelated w/ Each Other

As y_{ijk} 's are independent with equal variance σ^2 , for any two contrasts U, V of the 7 contrasts on the right, their covariance is

$$Cov(U, V) = Cov\left(\sum_{ijk} c^{U}_{ijk} y_{ijk}, \sum_{i'j'k'} c^{V}_{i'j'k'} y_{i'j'k'}\right)$$
$$= \sum_{ijk} c^{U}_{ijk} c^{V}_{ijk} \underbrace{Var(y_{ijk})}_{=\sigma^{2}} + \sum_{ijk} \sum_{i'j'k'} c^{U}_{ijk} c^{V}_{i'j'k'} \underbrace{Cov(y_{ijk}, y_{i'j'k'})}_{=0 \text{ by indep.}}$$
$$= \sigma^{2} \underbrace{\sum_{ijk} c^{U}_{ijk} c^{V}_{ijk}}_{=0} = 0 \quad \text{since } U, V \text{ are orthogonal}$$

The same argument applies to other 2^k designs in general.

Contrasts in a 2^k Design Have an Identical Variance As y_{iik} 's are independent with A B C AB AC BC ABC a constant variance σ^2 , all of 000 - 1 - 1 - 1 - 11 001 -1 -1 1 1 -1 -1 1

011

_1 '

the 7 contrasts in a 2^3 design on the right have an identical variance $2^3 \sigma^2$ since

$$\operatorname{Var}\left(\sum_{ijk}c_{ijk}y_{ijk}\right)$$

$$=\sum_{ijk}\underbrace{c_{ijk}^2}_{=1}\underbrace{\operatorname{Var}(y_{ijk})}_{=\sigma^2}=\sum_{ijk}\sigma^2=2^3\sigma^2,$$

where $c_{iik}^2 = 1$ since all c_{iik} 's are 1 or -1.

Contrasts in a 2^k Design Have an Identical Variance As y_{ijk} 's are independent with a constant variance σ^2 , all of the 7 contrasts in a 2^3 design 001 - 1 - 1 - 1 - 1 - 1 - 1 - 1

 $010 | -1 \quad 1 \quad -1 \quad -1 \quad 1 \quad -1 \quad 1$

011 -1 1 1 -1 -1 1 -1

the 7 contrasts in a 2^3 design on the right have an identical variance $2^3\sigma^2$ since

$$\mathsf{Var}\left(\sum_{ijk}c_{ijk}y_{ijk}\right)$$

$$=\sum_{ijk}\underbrace{c_{ijk}^2}_{=1}\underbrace{\operatorname{Var}(y_{ijk})}_{=\sigma^2}=\sum_{ijk}\sigma^2=2^3\sigma^2,$$

where $c_{ijk}^2 = 1$ since all c_{ijk} 's are 1 or -1.

Parameter estimates for the full model (under the zero-sum constraints) of a 2³ design also have an identical variance σ²/2³ since they are just the contrasts above divided by 2³

Contrasts in a 2^k Design Have an Identical Variance As y_{ijk} 's are independent with | A B C AB AC BC ABC

000 -1 -1 -1 1

001 | -1 -1 1 1 -1 -1

010 | -1 | 1 -1 -1 | 1 -1 | 1

 $011 | -1 \quad 1 \quad 1 \quad -1 \quad -1 \quad 1 \quad -1$

1

1

a constant variance σ^2 , all of the 7 contrasts in a 2³ design on the right have an identical variance $2^3\sigma^2$ since

$$\operatorname{Var}\left(\sum_{ijk}c_{ijk}y_{ijk}\right)$$

$$=\sum_{ijk}\underbrace{c_{ijk}^2}_{=1}\underbrace{\operatorname{Var}(y_{ijk})}_{=\sigma^2}=\sum_{ijk}\sigma^2=2^3\sigma^2,$$

where $c_{ijk}^2 = 1$ since all c_{ijk} 's are 1 or -1.

- Parameter estimates for the full model (under the zero-sum constraints) of a 2³ design also have an identical variance σ²/2³ since they are just the contrasts above divided by 2³
- Parameter estimates for the full model of a 2^k design also have an identical variance σ²/2^k.

Properties of Parameter Estimates of a 2^k Design

Under the zero-sum constraints, parameter estimates of the full main-effect-interaction model of a 2^k design

- 1. are unbiased estimates of their corresponding parameters;
- 2. have an *identical variance* $\sigma^2/2^k$;
- 3. are uncorrelated and hence independent of each other
 - Recall if normally distributed, zero correlation implies independence
- 4. are *normally distributed* since they are linear combinations of *y*'s, which are independent normal

Single-Replicate Data (Review)

Recall in L17, we said the MSE of a full *k*-way model is 0 if there is only a *single replicate*.

- cannot test the significance of all main effects and interactions of all order under the full model
- can test the significance of the main effects and some lower-order interactions by *pooling higher order interactions into error* and get a non-zero MSE.
- However, we are not able to test the significance of terms that are pooled into errors

Half normal probability plot is a tool that one can examine all main effects and interactions altogether and identify non-negligible ones.

How Do Half Normal Probability Plots Work?

- Under the zero-sum constraint, recall that parameter estimates of a full model of a 2^k are *independent* and *normally* distributed with *constant variance*.
- The expected value of any of these contrasts is 0 if the corresponding parameter (main effect or interaction) is 0.
- So, estimates corresponding to zero effects would look like a sample from N(0, σ²/2^k), and estimates corresponding to significant effects looks outliers
- Sparsity Assumption: most parameters are 0, only a few are non-zero
- A half-normal probability plot plots the sorted absolute values of the estimates on the vertical axis against the sorted expected scores from a half-normal distribution.

Example 7.5.1 Drill Advance Experiment (p.220 Dean & Voss)

A $2 \times 2 \times 2 \times 2$ experiment to study the effects of 4 factors on the rate of advance of a small stone drill.

- A: load on the drill
- B: flow rate through the drill
- C: speed of rotation
- D: type of mud used in drilling

Each factor was observed at two levels, coded 1 and 2.

 $Response = log_{10}(Advance)$

```
drill = read.table(
                "http://www.stat.uchicago.edu/~yibi/s222/drill.txt", h=T)
drill$A = as.factor(drill$A)
drill$B = as.factor(drill$B)
drill$C = as.factor(drill$C)
drill$D = as.factor(drill$D)
contrasts(drill$A) = contr.sum(2)
contrasts(drill$B) = contr.sum(2)
contrasts(drill$C) = contr.sum(2)
contrasts(drill$D) = contr.sum(2)
```

Fitting a full 4-way model, the SE's of all coefficients are NaN (Not a Number) since $\mathsf{SSE}=0$

<pre>summary(lm()</pre>	log10(Advan	.ce) ~ A*B*C	*D, data	drill))\$coef	
	Estimate	Std. Error	t value 1	Pr(> t)	
(Intercept)	0.693885	NaN	NaN	NaN	
A1	-0.028227	NaN	NaN	NaN	
B1	-0.125963	NaN	NaN	NaN	
C1	-0.250686	NaN	NaN	NaN	
D1	-0.070908	NaN	NaN	NaN	
A1:B1	-0.007462	NaN	NaN	NaN	
A1:C1	0.002248	NaN	NaN	NaN	
B1:C1	-0.010902	NaN	NaN	NaN	
A1:D1	0.014527	NaN	NaN	NaN	
B1:D1	-0.003244	NaN	NaN	NaN	
C1:D1	0.021311	NaN	NaN	NaN	
A1:B1:C1	-0.002253	NaN	NaN	NaN	
A1:B1:D1	-0.011339	NaN	NaN	NaN	
A1:C1:D1	-0.011558	NaN	NaN	NaN	
B1:C1:D1	0.007494	NaN	NaN	NaN	
A1:B1:C1:D1	0.008385	NaN	NaN	NaN	

Pooling 4-way interaction into error, we can get a non-zero SSE and calculate the SE for each remaining parameter.

Observe parameters under the zero-sum constraints all have the same SE since they all have an identical variance.

<pre>summary(lm(</pre>	log10(Adva	nce) ~ (A+B-	+C+D)^ <mark>3</mark> , (data=drill))\$coef
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.693885	0.008385	82.7495	0.007693
A1	-0.028227	0.008385	-3.3662	0.183833
B1	-0.125963	0.008385	-15.0218	0.042317
C1	-0.250686	0.008385	-29.8957	0.021287
D1	-0.070908	0.008385	-8.4562	0.074937
A1:B1	-0.007462	0.008385	-0.8899	0.537056
A1:C1	0.002248	0.008385	0.2681	0.833273
A1:D1	0.014527	0.008385	1.7325	0.333268
B1:C1	-0.010902	0.008385	-1.3001	0.417406
B1:D1	-0.003244	0.008385	-0.3868	0.765012
C1:D1	0.021311	0.008385	2.5415	0.238649
A1:B1:C1	-0.002253	0.008385	-0.2686	0.832926
A1:B1:D1	-0.011339	0.008385	-1.3522	0.405380
A1:C1:D1	-0.011558	0.008385	-1.3784	0.399565
B1:C1:D1	0.007494	0.008385	0.8937	0.535685

Half Normal Probability Plot in R (using daewr)

- 1. Fit the model and get the parameter estimates under the zero-sum constraint.
- 2. Exclude the intercept since we don't expect it to be zero
- Make half-normal probability plot based on the remaining estimates using the halfnom() function in the daewr library ("daewr" = the book Design and Analysis of Experiments with R).

```
library(daewr)
model1 = lm(log10(Advance) ~ A*B*C*D, data=drill)
halfnorm(model1$coef[-1])
```


From the half-normal probability plot, we see estimates B, C, D main effects are outliers compared to other negligible coefficients, consistent with the ANOVA table below obtained by pooling all interactions into errors.

zscore= 0.04179 0.1257 0.2104 0.2967 0.3853 0.477 0.573 0.6745 0.7835 0

```
anova(lm(log10(Advance) ~ A+B+C+D, data=drill))
Analysis of Variance Table
```

```
Response: log10(Advance)
         Df Sum Sq Mean Sq F value Pr(>F)
          1
             0.013
                    0.013
                             7.02
                                   0.023
А
В
             0.254 0.254 139.74 1.4e-07
          1
С
          1
             1.005 1.005 553.46 9.3e-11
          1
             0.080 0.080 44.28 3.6e-05
D
Residuals 11 0.020
                    0.002
```

Half Normal Plot Using the faraway Library

If having trouble installing the daewr library, one can use the halfnorm plot in the faraway library¹ instead, which, by default, labels the effects by 1, 2, 3,..., rather than A, B, AB,..., and the straight line is NOT included.

```
library(faraway)
par(mai=c(.6,.6,.05,.05),mgp=c(2,.5,0))
halfnorm(model1$coef[-1])
```


¹"faraway" = author of the book *Linear Models with R*. This solution is suggested by Antonio Fernandes. Thanks, Antonio!

Half Normal Plot Using the faraway Library (2)

Nonetheless, we can change the effect labels by adding labs= names(model1\$coef[-1]) within halfnorm() and add the straight line using qqline() ourselves.

Pros and Cons of Half-Normal Probability Plot

Pros:

Can check all main effects and interactions of all orders all at once

Cons:

- no p-values are provided. Identification of "significant" effects can be subjective
- doesn't work well if the sparsity assumption is not met(most effects are zero, only a few are non-zero) as we need a sufficient number of null effects to estimate the unknown variance and identify the outliers